Package 'fad'

May 1, 2022
Type Package
Title Factor Analysis for Data
Version 0.9-1
Date 2022-04-27
Maintainer Somak Dutta somakd@iastate.edu
Description Compute maximum likelihood estimators of parameters in a Gaussian factor model using the the matrix-
free methodology described in Dai et al. (2020) doi:10.1080/10618600.2019.1704296. In contrast to the factanal() function from 'stats' package, fad() can handle highdimensional datasets where number of variables exceed the sample size and is also substantially faster than the EM algorithms.
License GPL-3

URL https://github.com/somakd/fad
BugReports https://github.com/somakd/fad/issues
Encoding UTF-8
Depends R ($>=3.0 .2$), methods, RSpectra ($>=0.16-1$)
Imports Matrix (>= 1.1-0), Rcpp (>=0.11.5)
LinkingTo Rcpp, RSpectra, RcppEigen
NeedsCompilation yes
Suggests knitr
VignetteBuilder knitr
RoxygenNote 7.1.2
Author Somak Dutta [aut, cre],
Fan Dai [aut],
Ranjan Maitra [ctb]
Repository CRAN
Date/Publication 2022-05-01 14:20:05 UTC

R topics documented:

fad Factor Analysis for data (high or low dimensional).

Description

Perform fast matrix-free maximum-likelihood factor analysis on a covariance matrix or data matrix, works if number of variables is more than number of observations.

```
Usage
    fad(
        x,
        factors,
        data = NULL,
        covmat = NULL,
        n.obs = NA,
        subset,
        na.action,
        start = NULL,
        scores = c("none", "regression", "Bartlett"),
        rotation = "varimax",
        control = NULL,
        lower = 0.005,
    )
```


Arguments

x
factors
data
covmat
n.obs
subset
subet

A formula or a numeric matrix or an object that can be coerced to a numeric matrix.
The number of factors to be fitted.
An optional data frame (or similar: see model.frame), used only if x is a formula. By default the variables are taken from environment (formula).
A covariance matrix, or a covariance list as returned by cov.wt. Of course, correlation matrices are covariance matrices. The number of observations, used if covmat is a covariance matrix.
A specification of the cases to be used, if x is used as a matrix or formula.

na.action	The na.action to be used if x is used as a formula.
start	NULL or a matrix of starting values, each column giving an initial set of unique- nesses.
scores	Type of scores to produce, if any. The default is none, "regression" gives Thompson's scores, "Bartlett" given Bartlett's weighted least-squares scores. Partial matching allows these names to be abbreviated. Also note that some of the scores-types are not applicable when $p>n$. character. "none" or the name of a function to be used to rotate the factors: it will be called with first argument the loadings matrix, and should return a list with component loadings giving the rotated loadings, or just the rotated load- ings. The options included in the package are: varimax, promax, quartimax, equamax.
control	A list of control values: nstart The number of starting values to be tried if start = NULL. Default 1.
trace logical. Output tracing information? Default FALSE.	

Value

An object of class "fad" with components

loadings	A matrix of loadings on the correlation scale, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings, and given the sign that will make the sum of the loadings positive. This is of class "loadings"
uniquenesses	The uniquenesses computed on the correlation scale. sd
The estimated standard deviations.	
criteria	The results of the optimization: the value of the criterion (a linear function of the negative log-likelihood) and information on the iterations used.
factors	The argument factors. The number of degrees of freedom of the factor analysis model.
dof	The method: always "mle". method
rotmat	The rotation matrix if relevant.
scores	of values omitted by the na. action. n. obs
call number of observations if available, or NA.	

See Also

```
    factanal
```


Examples

```
set.seed(1234)
## Simulate a 200 x 3 loadings matrix ~i.i.d N(0,1)
L <- matrix(rnorm(200*3),200,3)
## Simulate the uniquenesses i.i.d U(0.2,0.9)
D <- runif(200,0.2,0.9)
## Generate a data matrix of size 50 x 200 with rows
## ~i.i.d. N(0,LL'+diag(D))
X<- tcrossprod(matrix(rnorm(50*3),50,3),L) + matrix(rnorm(50*200), 50, 200) %*% diag(sqrt(D))
## Fit a factor model with 3 factors:
fit = fad(X,3)
## Print the loadings:
print(fit$loadings)
```

fads Factor Analysis for data on a sphere (high or low dimensional).

Description

Perform fast matrix-free maximum-likelihood factor analysis on data on sphere, works if number of variables is more than number of observations.

Usage

fads(

inputs,
q,
ii $=123$,
M = NULL,
L = NULL,
D = NULL,
gamma = NA, maxiter $=10000$,
epsi = 1e-04
)

Arguments

inputs A numeric matrix or an object that can be coerced to a numeric matrix.
q The number of factors to be fitted.
ii The random seeds for initialization. Default 123 if no initial values of parameters are imported.

M The initial values of mean.
L
The initial values of loading matrix.
D
gamma
maxiter
epsi The absolute difference between final data log-likelihood values on consecutive step. Default 0.0001 .

Value

An object of class "fads" with components
mu The estimate mean.
loadings A matrix of loadings on the correlation scale, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings, and given the sign that will make the sum of the loadings positive. This is of class "loadings"
uniquenesses The uniquenesses computed on the correlation scale.
sd The estimated standard deviations.
iter The number of iterations
gerr the difference between the gradients on consecutive step.
loglik, eBIC The maximum log-likelihood the extended Bayesian Information Criteria (Chen and Chen, 2008).

```
print.fad
```


Description

Prints the output of the fad.

Usage

\#\# S3 method for class 'fad'
print(x, digits $=3, \ldots$)

Arguments

x
digits
\ldots
an object of class fad.
digits
number of decimal places to use in printing uniquenesses and loadings.
further arguments to print.

Value

None.

```
print.fads Print the Output of Factor Analysis
```


Description

Prints the output of the fads.

Usage

\#\# S3 method for class 'fads'
print(x, digits = 3, ...)

Arguments

x
digits
an object of class fads.
number of decimal places to use in printing uniquenesses and loadings.
further arguments to print.

Value

None.

Index

cov.wt, 2
factanal, 4
fad, 2
fads, 4
model.frame, 2
optim, 3
print.fad, 5
print.fads, 6

