# Package 'fairness’ 

April 14, 2021

Title Algorithmic Fairness Metrics
Version 1.2.2

## Maintainer Nikita Kozodoi [n.kozodoi@icloud.com](mailto:n.kozodoi@icloud.com)

Description Offers calculation, visualization and comparison of algorithmic fairness metrics. Fair machine learning is an emerging topic with the overarching aim to critically assess whether ML algorithms reinforce existing social biases. Unfair algorithms can propagate such biases and produce predictions with a disparate impact on various sensitive groups of individuals (defined by sex, gender, ethnicity, religion, income, socioeconomic status, physical or mental disabilities). Fair algorithms possess the underlying foundation that these groups should be treated similarly or have similar prediction outcomes. The fairness R package offers the calculation and comparisons of commonly and less commonly used fairness metrics in population subgroups. These methods are described by Calders and Verwer (2010) [doi:10.1007/s10618-010-0190-x](doi:10.1007/s10618-010-0190-x), Chouldechova (2017) [doi:10.1089/big.2016.0047](doi:10.1089/big.2016.0047), Feldman et al. (2015) [doi:10.1145/2783258.2783311](doi:10.1145/2783258.2783311) , Friedler et al. (2018) [doi:10.1145/3287560.3287589](doi:10.1145/3287560.3287589) and Zafar et al. (2017) [doi:10.1145/3038912.3052660](doi:10.1145/3038912.3052660). The package also offers convenient visualizations to help understand fairness metrics.
License MIT + file LICENSE
Language en-US
Encoding UTF-8
LazyData true

## RoxygenNote 7.1.1

URL https://kozodoi.me/r/fairness/packages/2020/05/01/fairness-tutorial.html
BugReports https://github.com/kozodoi/fairness/issues
Depends R (>=3.5.0)
Imports caret, devtools, e1071, ggplot2, pROC
Suggests testthat, knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Nikita Kozodoi [aut, cre],
Tibor V. Varga [aut] ([https://orcid.org/0000-0002-2383-699X](https://orcid.org/0000-0002-2383-699X))
Repository CRAN
Date/Publication 2021-04-14 15:00:02 UTC

## $R$ topics documented:

acc_parity ..... 2
compas ..... 4
dem_parity ..... 5
equal_odds ..... 6
fairness ..... 8
fnr_parity ..... 9
fpr_parity ..... 10
germancredit ..... 12
mcc_parity ..... 13
npv_parity ..... 14
pred_rate_parity ..... 16
prop_parity ..... 17
roc_parity ..... 19
spec_parity ..... 20
Index ..... 22
acc_parity Accuracy parity

## Description

This function computes the Accuracy parity metric
Formula: $(\mathrm{TP}+\mathrm{TN}) /(\mathrm{TP}+\mathrm{FP}+\mathrm{TN}+\mathrm{FN})$

## Usage

```
acc_parity(
        data,
        outcome,
        group,
        probs = NULL,
        preds = NULL,
        outcome_base = NULL,
        cutoff = 0.5,
        base = NULL,
        group_breaks = NULL
    )
```


## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).

$$
\begin{array}{ll}
\text { probs } & \begin{array}{l}
\text { Column name or vector with the predicted probabilities (numeric between } 0- \\
\text { 1). Either probs or preds need to be supplied. }
\end{array} \\
\text { preds } & \begin{array}{l}
\text { Column name or vector with the predicted binary outcome (0 or 1). Either probs } \\
\text { or preds need to be supplied. }
\end{array} \\
\text { outcome_base } & \begin{array}{l}
\text { Base level of the outcome variable (i.e., negative class). Default is the first level } \\
\text { of the outcome variable. }
\end{array} \\
\text { cutoff } & \begin{array}{l}
\text { Cutoff to generate predicted outcomes from predicted probabilities. Default set } \\
\text { to } 0.5 .
\end{array} \\
\text { base } & \begin{array}{l}
\text { Base level of the sensitive group (character). }
\end{array} \\
\text { group_breaks } & \begin{array}{l}
\text { If group is continuous (e.g., age): either a numeric vector of two or more unique } \\
\text { cut points or a single number }>=2 \text { giving the number of intervals into which } \\
\text { group feature is to be cut. }
\end{array}
\end{array}
$$

## Details

This function computes the Accuracy parity metric as described by Friedler et al., 2018. Accuracy metrics are calculated by the division of correctly predicted observations (the sum of all true positives and true negatives) with the number of all predictions. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their accuracies are lower or higher compared to the reference group. Lower accuracies will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

## Value

$\begin{array}{ll}\text { Metric } & \begin{array}{l}\text { Raw accuracy metrics for all groups and metrics standardized for the base group } \\ \text { (accuracy parity metric). Lower values compared to the reference group mean } \\ \text { lower accuracies in the selected subgroups }\end{array} \\ \text { Metric_plot } \quad & \text { Bar plot of Accuracy parity metric }\end{array} \begin{aligned} & \text { Probability_plot } \\ & \text { Density plot of predicted probabilities per subgroup. Only plotted if probabili- } \\ & \text { ties are defined }\end{aligned}$

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
acc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
acc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```


## compas Modified COMPAS dataset

## Description

compas is a landmark dataset to study algorithmic (un)fairness. This data was used to predict recidivism (whether a criminal will reoffend or not) in the USA. The tool was meant to overcome human biases and offer an algorithmic, fair solution to predict recidivism in a diverse population. However, the algorithm ended up propagating existing social biases and thus, offered an unfair algorithmic solution to the problem. In this dataset, a model to predict recidivism has already been fit and predicted probabilities and predicted status (yes/no) for recidivism have been concatenated to the original data.

## Usage

compas

## Format

A data frame with 6172 rows and 9 variables:
Two_yr_Recidivism factor, yes/no for recidivism or no recidivism. This is the outcome or target in this dataset

Number_of_Priors numeric, number of priors, normalized to mean $=0$ and standard deviation $=$ 1

Age_Above_FourtyFive factor, yes/no for age above 45 years or not
Age_Below_TwentyFive factor, yes/no for age below 25 years or not
Female factor, female/male for gender
Misdemeanor factor, yes/no for having recorded misdemeanor(s) or not
ethnicity factor, Caucasian, African American, Asian, Hispanic, Native American or Other
probability numeric, predicted probabilities for recidivism, ranges from 0 to 1
predicted numeric, predicted values for recidivism, $0 / 1$ for no/yes

## Source

The dataset is downloaded from Kaggle https://www.kaggle.com/danofer/compass and has undergone modifications (e.g. ethnicity was originally encoded using one-hot encoding, number or priors have been normalized, variables have been renamed, prediction model was fit and predicted probabilities and predicted status were concatenated to the original dataset).

```
dem_parity Demographic parity
```


## Description

This function computes the Demographic parity metric
Formula: (TP + FP)

## Usage

dem_parity(
data,
outcome,
group,
probs = NULL,
preds = NULL,
outcome_base = NULL,
cutoff $=0.5$,
base = NULL,
group_breaks $=$ NULL
)

## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs $\quad$ Column name or vector with the predicted probabilities (numeric between 0 1). Either probs or preds need to be supplied.
preds $\quad$ Column name or vector with the predicted binary outcome ( 0 or 1 ). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5 .
base $\quad$ Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $>=2$ giving the number of intervals into which group feature is to be cut.

## Details

This function computes the Demographic parity metric (also known as Statistical Parity, Equal Parity, Equal Acceptance Rate or Independence) as described by Calders and Verwer 2010. Demographic parity is calculated based on the comparison of the absolute number of all positively classified individuals in all subgroups of the data. In the returned named vector, the reference group will be assigned 1 , while all other groups will be assigned values according to whether their proportion of positively predicted observations are lower or higher compared to the reference group. Lower proportions will be reflected in numbers lower than 1 in the returned named vector.

## Value

$\begin{array}{ll}\text { Metric } & \begin{array}{l}\text { Absolute number of positive classifications for all groups and metrics standard- } \\ \text { ized for the base group (demographic parity metric). Lower values compared to } \\ \text { the reference group mean lower number of positively predicted observations in } \\ \text { the selected subgroups }\end{array} \\ \text { Metric_plot } \quad & \text { Bar plot of Demographic parity metric } \\ \text { Probability_plot } \\ & \begin{array}{l}\text { Density plot of predicted probabilities per subgroup. Only plotted if probabili- } \\ \text { ties are defined }\end{array}\end{array}$

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
dem_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
dem_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

equal_odds Equalized Odds

## Description

This function computes the Equalized Odds metric
Formula: TP / (TP + FN)

## Usage

equal_odds( data, outcome, group, probs = NULL, preds = NULL, outcome_base = NULL,

```
        cutoff = 0.5,
        base = NULL,
        group_breaks = NULL
    )
```


## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs $\quad$ Column name or vector with the predicted probabilities (numeric between $0-$ 1). Either probs or preds need to be supplied.
preds $\quad$ Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5 .
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $>=2$ giving the number of intervals into which group feature is to be cut.

## Details

This function computes the Equalized Odds metric (also known as Equal Opportunity, Positive Rate Parity or Separation). Equalized Odds are calculated by the division of true positives with all positives (irrespective of predicted values). This metrics equals to what is traditionally known as sensitivity. In the returned named vector, the reference group will be assigned 1 , while all other groups will be assigned values according to whether their sensitivities are lower or higher compared to the reference group. Lower sensitivities will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

## Value

Metric Raw sensitivities for all groups and metrics standardized for the base group (equalized odds parity metric). Lower values compared to the reference group mean lower sensitivities in the selected subgroups

Metric_plot Bar plot of Equalized Odds metric
Probability_plot
Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
equal_odds(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
equal_odds(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

fairness fairness: Algorithmic Fairness Metrics

## Description

The fairness package offers calculation, visualization and comparison of algorithmic fairness metrics. Fair machine learning is an emerging topic with the overarching aim to critically assess whether ML algorithms reinforce existing social biases. Unfair algorithms can propagate such biases and produce predictions with a disparate impact on various sensitive groups of individuals (defined by sex, gender, ethnicity, religion, income, socioeconomic status, physical or mental disabilities). Fair algorithms possess the underlying foundation that these groups should be treated similarly or have similar prediction outcomes. The fairness R package offers the calculation and comparisons of commonly and less commonly used fairness metrics in population subgroups. The package also offers convenient visualizations to help understand fairness metrics.

## Details

| Package: | fairness |
| :--- | :--- |
| Depends: | R $(>=3.5 .0)$ |
| Type: | Package |
| Version: | 1.2 .2 |
| Date: | $2021-04-14$ |
| License: | MIT |
| LazyLoad: | Yes |

## Author(s)

- Nikita Kozodoi <n. kozodoi@icloud.com>
- Tibor V. Varga [tirgit@hotmail.com](mailto:tirgit@hotmail.com)


## See Also

https://github.com/kozodoi/fairness https://kozodoi.me/r/fairness/packages/2020/ 05/01/fairness-tutorial.html

## Description

This function computes the False Negative Rate (FNR) parity metric
Formula: FN / (TP + FN)

## Usage

fnr_parity( data, outcome, group, probs = NULL, preds = NULL, outcome_base = NULL, cutoff $=0.5$, base = NULL, group_breaks = NULL
)

## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 1). Either probs or preds need to be supplied.
preds $\quad$ Column name or vector with the predicted binary outcome ( 0 or 1 ). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5 .
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $>=2$ giving the number of intervals into which group feature is to be cut.

## Details

This function computes the False Negative Rate (FNR) parity metric as described by Chouldechova 2017. False negative rates are calculated by the division of false negatives with all positives (irrespective of predicted values). In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their false negative rates are lower or higher compared to the reference group. Lower false negative error rates will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean BETTER prediction for the subgroup.

## Value

| Metric | Raw false negative rates for all groups and metrics standardized for the base <br> group (false negative rate parity metric). Lower values compared to the refer- <br> ence group mean lower false negative error rates in the selected subgroups |
| :--- | :--- |
| Metric_plot $\quad$Bar plot of False Negative Rate parity metric |  |
| Probability_plot |  |
|  | Density plot of predicted probabilities per subgroup. Only plotted if probabili- <br> ties are defined |

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
fnr_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
fnr_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

fpr_parity

False Positive Rate parity

## Description

This function computes the False Positive Rate (FPR) parity metric
Formula: FP / (TN + FP)

## Usage

fpr_parity( data, outcome, group, probs = NULL, preds = NULL, outcome_base = NULL, cutoff $=0.5$,

```
        base = NULL,
        group_breaks = NULL
)
```


## Arguments

| data | Data.frame that contains the necessary columns. |
| :--- | :--- |
| outcome | Column name indicating the binary outcome variable (character). <br> group <br> probs |
| Column name indicating the sensitive group (character). |  |$\quad$| Column name or vector with the predicted probabilities (numeric between 0 - |
| :--- |
| 1). Either probs or preds need to be supplied. |
| column name or vector with the predicted binary outcome (0 or 1). Either probs |
| or preds need to be supplied. |

## Details

This function computes the False Positive Rate (FPR) parity metric as described by Chouldechova 2017. False positive rates are calculated by the division of false positives with all negatives (irrespective of predicted values). In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their false positive rates are lower or higher compared to the reference group. Lower false positives error rates will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean BETTER prediction for the subgroup.

## Value

| Metric | Raw false positive rates for all groups and metrics standardized for the base <br> group (false positive rate parity metric). Lower values compared to the reference <br> group mean lower false positive error rates in the selected subgroups |
| :--- | :--- |
| Metric_plot $\quad$Bar plot of False Positives Rate metric |  |
| Probability_plot |  |
|  | Density plot of predicted probabilities per subgroup. Only plotted if probabili- <br> ties are defined |

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
fpr_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
```

```
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
fpr_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

```
germancredit Modified german credit dataset
```


## Description

germancredit is a credit scoring data set that can be used to study algorithmic (un)fairness. This data was used to predict defaults on consumer loans in the German market. In this dataset, a model to predict default has already been fit and predicted probabilities and predicted status (yes/no) for default have been concatenated to the original data.

## Usage

germancredit

## Format

A data frame with 1000 rows and 23 variables:
Account_status factor, status of existing checking account
Duration numeric, loan duration in month
Credit_history factor, previous credit history
Purpose factor, loan purpose
Amount numeric, credit amount
Savings factor, savings account/bonds
Employment factor, present employment since
Installment_rate numeric, installment rate in percentage of disposable income
Guarantors factor, other debtors / guarantors
Resident_since factor, present residence since
Property factor, property
Age numeric, age in years
Other_plans factor, other installment plans
Housing factor, housing
Num_credits numeric, Number of existing credits at this bank
Job factor, job
People_maintenance numeric, number of people being liable to provide maintenance for
Phone factor, telephone
Foreign factor, foreign worker

BAD factor, GOOD/BAD for whether a customer has defaulted on a loan. This is the outcome or target in this dataset
Female factor, female/male for gender probability numeric, predicted probabilities for default, ranges from 0 to 1
predicted numeric, predicted values for default, $0 / 1$ for no/yes

## Source

The dataset has undergone modifications (e.g. categorical variables were encoded, prediction model was fit and predicted probabilities and predicted status were concatenated to the original dataset).

```
mcc_parity Matthews Correlation Coefficient parity
```


## Description

This function computes the Matthews Correlation Coefficient (MCC) parity metric
Formula: $(\mathrm{TP} \times \mathrm{TN}-\mathrm{FP} \times \mathrm{FN}) / \operatorname{sqrt}((\mathrm{TP}+\mathrm{FP}) \times(\mathrm{TP}+\mathrm{FN}) \times(\mathrm{TN}+\mathrm{FP}) \times(\mathrm{TN}+\mathrm{FN}))$

## Usage

```
mcc_parity(
        data,
        outcome,
        group,
        probs = NULL,
        preds = NULL,
        outcome_base = NULL,
        cutoff = 0.5,
        base = NULL,
        group_breaks = NULL
)
```


## Arguments

| data | Data.frame that contains the necessary columns. |
| :--- | :--- |
| outcome | Column name indicating the binary outcome variable (character). |
| group | Column name indicating the sensitive group (character). <br> probs |
| Column name or vector with the predicted probabilities (numeric between 0 - |  |
| preds | 1). Either probs or preds need to be supplied. <br> Column name or vector with the predicted binary outcome (0 or 1). Either probs <br> or preds need to be supplied. |
| outcome_base | Base level of the outcome variable (i.e., negative class). Default is the first level <br> of the outcome variable. |

cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5 .
base $\quad$ Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $>=2$ giving the number of intervals into which group feature is to be cut.

## Details

This function computes the Matthews Correlation Coefficient (MCC) parity metric. In the returned named vector, the reference group will be assigned 1 , while all other groups will be assigned values according to whether their Matthews Correlation Coefficients are lower or higher compared to the reference group. Lower Matthews Correlation Coefficients rates will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

## Value

```
Metric Raw Matthews Correlation Coefficient metrics for all groups and metrics stan-
    dardized for the base group (parity metric). Lower values compared to the ref-
    erence group mean Matthews Correlation Coefficients in the selected subgroups
Metric_plot Bar plot of Matthews Correlation Coefficient metric
Probability_plot
Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined
```


## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
mcc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
mcc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

npv_parity Negative Predictive Value parity

## Description

This function computes the Negative Predictive Value (NPV) parity metric
Formula: TN / (TN + FN)

## Usage

```
npv_parity(
        data,
        outcome,
        group,
        probs = NULL,
        preds = NULL,
        outcome_base = NULL,
        cutoff \(=0.5\),
        base = NULL,
        group_breaks = NULL
    )
```


## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 1). Either probs or preds need to be supplied.
preds Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5 .
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $>=2$ giving the number of intervals into which group feature is to be cut.

## Details

This function computes the Negative Predictive Value (NPV) parity metric as described by the Aequitas bias toolkit. Negative Predictive Values are calculated by the division of true negatives with all predicted negatives. In the returned named vector, the reference group will be assigned 1 , while all other groups will be assigned values according to whether their negative predictive values are lower or higher compared to the reference group. Lower negative predictive values will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

## Value

Metric Raw negative predictive values for all groups and metrics standardized for the base group (negative predictive value parity metric). Lower values compared to the reference group mean lower negative predictive values in the selected subgroups

```
Metric_plot Bar plot of Negative Predictive Value metric
Probability_plot
Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined
```


## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
npv_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
npv_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

```
pred_rate_parity Predictive Rate Parity
```


## Description

This function computes the Predictive Rate Parity metric.
Formula: TP / (TP + FP)

## Usage

pred_rate_parity( data, outcome, group, probs = NULL, preds = NULL, outcome_base = NULL, cutoff $=0.5$, base = NULL, group_breaks = NULL )

## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 1). Either probs or preds need to be supplied.
preds Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5 .
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $>=2$ giving the number of intervals into which group feature is to be cut.

## Details

This function computes the Predictive Rate Parity metric (also known as Sufficiency) as described by Zafar et al., 2017. Predictive rate parity is calculated by the division of true positives with all observations predicted positives. This metrics equals to what is traditionally known as precision or positive predictive value. In the returned named vector, the reference group will be assigned 1 , while all other groups will be assigned values according to whether their precisions are lower or higher compared to the reference group. Lower precisions will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

## Value

Metric Raw precision metrics for all groups and metrics standardized for the base group (predictive rate parity metric). Lower values compared to the reference group mean lower precisions in the selected subgroups

Metric_plot Bar plot of Predictive Rate Parity metric
Probability_plot
Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
pred_rate_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
pred_rate_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

prop_parity Proportional parity

## Description

This function computes the Proportional parity metric
Formula: $(\mathrm{TP}+\mathrm{FP}) /(\mathrm{TP}+\mathrm{FP}+\mathrm{TN}+\mathrm{FN})$

## Usage

```
    prop_parity(
        data,
        outcome,
        group,
        probs = NULL,
        preds = NULL,
        outcome_base = NULL,
        cutoff \(=0.5\),
        base = NULL,
        group_breaks = NULL
    )
```


## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 1). Either probs or preds need to be supplied.
preds Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5 .
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $>=2$ giving the number of intervals into which group feature is to be cut.

## Details

This function computes the Proportional parity metric (also known as Impact Parity or Minimizing Disparate Impact) as described by Calders and Verwer 2010. Proportional parity is calculated based on the comparison of the proportion of all positively classified individuals in all subgroups of the data. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their proportion of positively predicted observations are lower or higher compared to the reference group. Lower proportions will be reflected in numbers lower than 1 in the returned named vector.

## Value

Metric Raw proportions for all groups and metrics standardized for the base group (proportional parity metric). Lower values compared to the reference group mean lower proportion of positively predicted observations in the selected subgroups

Metric_plot Bar plot of Proportional parity metric
Probability_plot
Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
prop_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
prop_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

```
roc_parity ROC AUC parity
```


## Description

This function computes the ROC AUC parity metric

## Usage

roc_parity(data, outcome, group, probs, base = NULL, group_breaks = NULL)

## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 1).
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $>=2$ giving the number of intervals into which group feature is to be cut.

## Details

This function computes the ROC AUC values for each subgroup. In the returned table, the reference group will be assigned 1, while all other groups will be assigned values according to whether their ROC AUC values are lower or higher compared to the reference group. Lower ROC AUC will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

## Value

| Metric | Raw ROC AUC metrics for all groups and metrics standardized for the base <br> group (parity metric). Lower values compared to the reference group mean <br> lower ROC AUC values in the selected subgroups |
| :--- | :--- |
| Metric_plot | Bar plot of ROC AUC metric |
| Probability_plot |  |$\quad$| Density plot of predicted probabilities per subgroup |
| :--- |
| ROCAUC_plot |

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
roc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', base = 'Caucasian')
roc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', base = 'African_American')
```

spec_parity Specificity parity

## Description

This function computes the Specificity parity metric
Formula: TN / (TN + FP)

## Usage

spec_parity( data, outcome, group, probs = NULL, preds = NULL, outcome_base = NULL, cutoff $=0.5$, base = NULL, group_breaks = NULL
)

## Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).

| probs | Column name or vector with the predicted probabilities (numeric between $0-$ <br> 1). Either probs or preds need to be supplied. <br> Column name or vector with the predicted binary outcome (0 or 1). Either probs <br> or preds need to be supplied. |
| :--- | :--- |
| preds | Base level of the outcome variable (i.e., negative class). Default is the first level <br> of the outcome variable. |
| outcome_base |  |
| cutoff | Cutoff to generate predicted outcomes from predicted probabilities. Default set <br> to 0.5. |
| base | Base level of the sensitive group (character). <br> group_breaks |
| If group is continuous (e.g., age): either a numeric vector of two or more unique <br> cut points or a single number $>=2$ giving the number of intervals into which <br> group feature is to be cut. |  |

## Details

This function computes the Specificity parity metric. Specificities are calculated by the division of true negatives with all negatives (irrespective of predicted values). In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their specificities are lower or higher compared to the reference group. Lower specificities will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

## Value

```
Metric Raw specificity metrics for all groups and metrics standardized for the base
    group (specificity parity metric). Lower values compared to the reference group
    mean lower specificities in the selected subgroups
    Metric_plot Bar plot of Specificity parity metric
    Probability_plot
```

Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

## Examples

```
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
spec_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
spec_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```


## Index

```
* datasets
    compas,4
    germancredit,12
acc_parity,2
compas, 4, 4
dem_parity,5
equal_odds,6
fairness,8
fnr_parity,9
fpr_parity,10
germancredit, 12,12
mcc_parity,13
npv_parity,14
pred_rate_parity,16
prop_parity,17
roc_parity,19
spec_parity,20
```

