Package 'fastRG'

June 30, 2022

Title Sample Generalized Random Dot Product Graphs in Linear Time **Version** 0.3.1

Description Samples generalized random product graph, a generalization of a broad class of network models. Given matrices X, S, and Y with with non-negative entries, samples a matrix with expectation X S Y^T and independent Poisson or Bernoulli entries using the fastRG algorithm of Rohe et al. (2017) https://www.jmlr.org/papers/v19/17-128.html. The algorithm first samples the number of edges and then puts them down one-by-one. As a result it is O(m) where m is the number of edges, a dramatic improvement over element-wise algorithms that which require O(n^2) operations to sample a random graph, where n is the number of nodes.

```
License MIT + file LICENSE
```

```
URL https://rohelab.github.io/fastRG/,
   https://github.com/RoheLab/fastRG
```

BugReports https://github.com/RoheLab/fastRG/issues

Depends Matrix

Imports ellipsis, glue, igraph, RSpectra, stats, tibble, tidygraph **Suggests** covr, dplyr, ggplot2, knitr, magrittr, rmarkdown, testthat

(>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.0.9000 **NeedsCompilation** no

Author Alex Hayes [aut, cre, cph] (https://orcid.org/0000-0002-4985-5160),

Karl Rohe [aut, cph],

Jun Tao [aut],

Xintian Han [aut],

Norbert Binkiewicz [aut]

Maintainer Alex Hayes <alexpghayes@gmail.com>

Repository CRAN

Date/Publication 2022-06-30 07:30:12 UTC

chung_lu

R topics documented:

	chung_lu	2
	dcsbm	4
	directed_dcsbm	8
	directed_erdos_renyi	11
	directed_factor_model	13
	eigs_sym.undirected_factor_model	15
	erdos_renyi	16
	expected_edges	18
	mmsbm	20
	overlapping_sbm	23
	planted_partition	27
	sample_edgelist	29
	sample_edgelist.matrix	32
	sample_igraph	34
	sample_sparse	37
	sample_tidygraph	40
	sbm	44
	svds.directed_factor_model	46
	svds.undirected_factor_model	47
	undirected_factor_model	48
Index		50

chung_lu

Create an undirected Chung-Lu object

Description

To specify a Chung-Lu graph, you must specify the degree-heterogeneity parameters (via n or theta). We provide reasonable defaults to enable rapid exploration or you can invest the effort for more control over the model parameters. We **strongly recommend** setting the expected_degree or expected_density argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```
chung_lu(
    n = NULL,
    theta = NULL,
    ...,
    sort_nodes = TRUE,
    poisson_edges = TRUE,
    allow_self_loops = TRUE,
    force_identifiability = FALSE
)
```

chung_lu 3

Arguments

n

(degree heterogeneity) The number of nodes in the graph. Use when you don't want to specify the degree-heterogeneity parameters theta by hand. When n is specified, theta is randomly generated from a LogNormal(2, 1) distribution. This is subject to change, and may not be reproducible. n defaults to NULL. You must specify either n or theta, but not both.

theta

(degree heterogeneity) A numeric vector explicitly specifying the degree heterogeneity parameters. This implicitly determines the number of nodes in the resulting graph, i.e. it will have length(theta) nodes. Must be positive. Setting to a vector of ones recovers an erdos renyi graph. Defaults to NULL. You must specify either n or theta, but not both.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

expected_density If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

sort_nodes

Logical indicating whether or not to sort the nodes so that they are grouped by block and by theta. Useful for plotting. Defaults to TRUE.

poisson_edges

Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

force_identifiability

Logical indicating whether or not to normalize theta such that it sums to one within each block. Defaults to FALSE, since this behavior can be surprise when theta is set to a vector of all ones to recover the DC-SBM case.

Value

An undirected_chung_lu S3 object, a subclass of dcsbm().

See Also

Other undirected graphs: dcsbm(), erdos_renyi(), mmsbm(), overlapping_sbm(), planted_partition(), sbm()

Examples

```
set.seed(27)

cl <- chung_lu(n = 1000, expected_density = 0.01)
cl

theta <- round(stats::rlnorm(100, 2))

cl2 <- chung_lu(
    theta = theta,
    expected_degree = 5
)

cl2

edgelist <- sample_edgelist(cl)
edgelist</pre>
```

dcsbm

Create an undirected degree corrected stochastic blockmodel object

Description

To specify a degree-corrected stochastic blockmodel, you must specify the degree-heterogeneity parameters (via n or theta), the mixing matrix (via k or B), and the relative block probabilities (optional, via pi). We provide defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. We **strongly recommend** setting the expected_degree or expected_density argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```
dcsbm(
  n = NULL,
  theta = NULL,
  k = NULL,
  B = NULL,
  ...,
  pi = rep(1/k, k),
  sort_nodes = TRUE,
  force_identifiability = FALSE,
  poisson_edges = TRUE,
  allow_self_loops = TRUE
)
```

Arguments

(degree heterogeneity) The number of nodes in the blockmodel. Use when you don't want to specify the degree-heterogeneity parameters theta by hand. When n is specified, theta is randomly generated from a LogNormal(2, 1) distribution. This is subject to change, and may not be reproducible. n defaults to NULL. You must specify either n or theta, but not both.

theta

(degree heterogeneity) A numeric vector explicitly specifying the degree heterogeneity parameters. This implicitly determines the number of nodes in the resulting graph, i.e. it will have length(theta) nodes. Must be positive. Setting to a vector of ones recovers a stochastic blockmodel without degree correction. Defaults to NULL. You must specify either n or theta, but not both.

k

(mixing matrix) The number of blocks in the blockmodel. Use when you don't want to specify the mixing-matrix by hand. When k is specified, the elements of B are drawn randomly from a Uniform(0, 1) distribution. This is subject to change, and may not be reproducible. k defaults to NULL. You must specify either k or B, but not both.

В

(mixing matrix) A k by k matrix of block connection probabilities. The probability that a node in block i connects to a node in community j is Poisson(B[i, j]). Must be a square matrix. matrix and Matrix objects are both acceptable. If B is not symmetric, it will be symmetrized via the update B := B + t(B). Defaults to NULL. You must specify either k or B, but not both.

Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

expected_density If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

(relative block probabilities) Relative block probabilities. Must be positive, but do not need to sum to one, as they will be normalized internally. Must match the dimensions of B or k. Defaults to rep(1 / k, k), or a balanced blocks.

sort_nodes

Logical indicating whether or not to sort the nodes so that they are grouped by block and by theta. Useful for plotting. Defaults to TRUE.

force_identifiability

Logical indicating whether or not to normalize theta such that it sums to one within each block. Defaults to FALSE, since this behavior can be surprise when theta is set to a vector of all ones to recover the DC-SBM case.

poisson_edges

Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

рi

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Value

An undirected_dcsbm S3 object, a subclass of the undirected_factor_model() with the following additional fields:

- theta: A numeric vector of degree-heterogeneity parameters.
- z: The community memberships of each node, as a factor(). The factor will have k levels, where k is the number of communities in the stochastic blockmodel. There will not always necessarily be observed nodes in each community.
- pi: Sampling probabilities for each block.
- sorted: Logical indicating where nodes are arranged by block (and additionally by degree heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a degree-corrected stochastic blockmodel. First, we randomly chose a block membership for each node in the blockmodel. This is handled by dcsbm(). Then, given these block memberships, we randomly sample edges between nodes. This second operation is handled by sample_edgelist(), sample_sparse(), sample_igraph() and sample_tidygraph(), depending depending on your desired graph representation.

Block memberships:

Let z_i represent the block membership of node i. To generate z_i we sample from a categorical distribution (note that this is a special case of a multinomial) with parameter π , such that π_i represents the probability of ending up in the ith block. Block memberships for each node are independent.

Degree heterogeneity:

In addition to block membership, the DCSBM also allows nodes to have different propensities for edge formation. We represent this propensity for node i by a positive number θ_i . Typically the θ_i are constrained to sum to one for identifiability purposes, but this doesn't really matter during sampling (i.e. without the sum constraint scaling B and θ has the same effect on edge probabilities, but whether B or θ is responsible for this change is uncertain).

Edge formulation:

Once we know the block memberships z and the degree heterogeneity parameters theta, we need one more ingredient, which is the baseline intensity of connections between nodes in block i and block j. Then each edge $A_{i,j}$ is Poisson distributed with parameter

$$\lambda[i,j] = \theta_i \cdot B_{z_i,z_j} \cdot \theta_j.$$

See Also

```
Other stochastic block models: directed_dcsbm(), mmsbm(), overlapping_sbm(), planted_partition(), sbm()
Other undirected graphs: chung_lu(), erdos_renyi(), mmsbm(), overlapping_sbm(), planted_partition(), sbm()
```

Examples

```
set.seed(27)
lazy_dcsbm \leftarrow dcsbm(n = 1000, k = 5, expected_density = 0.01)
lazy_dcsbm
# sometimes you gotta let the world burn and
# sample a wildly dense graph
dense_lazy_dcsbm \leftarrow dcsbm(n = 500, k = 3, expected_density = 0.8)
dense_lazy_dcsbm
# explicitly setting the degree heterogeneity parameter,
# mixing matrix, and relative community sizes rather
# than using randomly generated defaults
k <- 5
n <- 1000
B <- matrix(stats::runif(k * k), nrow = k, ncol = k)</pre>
theta <- round(stats::rlnorm(n, 2))</pre>
pi <- c(1, 2, 4, 1, 1)
custom_dcsbm <- dcsbm(</pre>
  theta = theta,
  B = B,
  pi = pi,
  expected_degree = 50
)
custom_dcsbm
edgelist <- sample_edgelist(custom_dcsbm)</pre>
edgelist
# efficient eigendecompostion that leverages low-rank structure in
\# E(A) so that you don't have to form E(A) to find eigenvectors,
\# as E(A) is typically dense. computation is
# handled via RSpectra
population_eigs <- eigs_sym(custom_dcsbm)</pre>
```

8 directed_dcsbm

directed_dcsbm

Create a directed degree corrected stochastic blockmodel object

Description

To specify a degree-corrected stochastic blockmodel, you must specify the degree-heterogeneity parameters (via n_in or theta_in, and n_out or theta_out), the mixing matrix (via k_in and k_out, or B), and the relative block probabilities (optional, via p_in and pi_out). We provide defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. We strongly recommend setting the expected_in_degree, expected_out_degree, or expected_density argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```
directed_dcsbm(
  n = NULL,
  theta_in = NULL,
  theta_out = NULL,
  k_{in} = NULL,
  k_{out} = NULL,
 B = NULL
  . . . ,
  pi_in = rep(1/k_in, k_in),
  pi_out = rep(1/k_out, k_out),
  sort_nodes = TRUE,
  force_identifiability = TRUE,
  poisson_edges = TRUE,
  allow_self_loops = TRUE
)
```

Arguments

n

(degree heterogeneity) The number of nodes in the blockmodel. Use when you don't want to specify the degree-heterogeneity parameters theta_in and theta_out by hand. When n is specified, theta_in and theta_out are randomly generated from a LogNormal (2, 1) distribution. This is subject to change, and may not be reproducible. n defaults to NULL. You must specify either n or theta_in and theta_out together, but not both.

theta_in

(degree heterogeneity) A numeric vector explicitly specifying the degree heterogeneity parameters. This implicitly determines the number of nodes in the resulting graph, i.e. it will have length(theta_in) nodes. Must be positive. Setting to a vector of ones recovers a stochastic blockmodel without degree correction. Defaults to NULL. You must specify either n or theta_in and theta_out together, but not both.

9 directed_dcsbm

theta_out

(degree heterogeneity) A numeric vector explicitly specifying the degree heterogeneity parameters. This implicitly determines the number of nodes in the resulting graph, i.e. it will have length (theta) nodes. Must be positive. Setting to a vector of ones recovers a stochastic blockmodel without degree correction. Defaults to NULL. You must specify either n or theta_in and theta_out together, but not both.

k_in

(mixing matrix) The number of blocks in the blockmodel. Use when you don't want to specify the mixing-matrix by hand. When k_in is specified, the elements of B are drawn randomly from a Uniform(0, 1) distribution. This is subject to change, and may not be reproducible. k_in defaults to NULL. You must specify either k_in and k_out together, or B. You may specify all three at once, in which case k_in is only used to set pi_in (when pi_in is left at its default argument value).

k_out

(mixing matrix) The number of blocks in the blockmodel. Use when you don't want to specify the mixing-matrix by hand. When k_out is specified, the elements of B are drawn randomly from a Uniform(0, 1) distribution. This is subject to change, and may not be reproducible. k_out defaults to NULL. You may specify all three at once, in which case k_out is only used to set pi_out (when pi_out is left at its default argument value).

В

(mixing matrix) A k_in by k_out matrix of block connection probabilities. The probability that a node in block i connects to a node in community j is Poisson(B[i, j]). matrix and Matrix objects are both acceptable. Defaults to NULL. You must specify either k_in and k_out together, or B, but not both.

Arguments passed on to directed_factor_model

expected_in_degree If specified, the desired expected in degree of the graph. Specifying expected_in_degree simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

expected_out_degree If specified, the desired expected out degree of the graph. Specifying expected_out_degree simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

expected_density If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

pi_in

(relative block probabilities) Relative block probabilities. Must be positive, but do not need to sum to one, as they will be normalized internally. Must match the rows of B, or k_in. Defaults to rep(1 / k_in, k_in), or a balanced incoming blocks.

pi_out

(relative block probabilities) Relative block probabilities. Must be positive, but do not need to sum to one, as they will be normalized internally. Must match the columns of B, or k_out. Defaults to rep(1 / k_out, k_out), or a balanced outgoing blocks.

sort_nodes

Logical indicating whether or not to sort the nodes so that they are grouped by block. Useful for plotting. Defaults to TRUE.

10 directed_dcsbm

force_identifiability

Logical indicating whether or not to normalize theta_in such that it sums to one within each incoming block and theta_out such that it sums to one within each outgoing block. Defaults to TRUE.

poisson_edges

Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Value

A directed_dcsbm S3 object, a subclass of the directed_factor_model() with the following additional fields:

- theta_in: A numeric vector of incoming community degree-heterogeneity parameters.
- theta_out: A numeric vector of outgoing community degree-heterogeneity parameters.
- z_in: The incoming community memberships of each node, as a factor(). The factor will have k_in levels, where k_in is the number of incoming communities in the stochastic blockmodel. There will not always necessarily be observed nodes in each community.
- z_out: The outgoing community memberships of each node, as a factor(). The factor will have k_out levels, where k_out is the number of outgoing communities in the stochastic blockmodel. There will not always necessarily be observed nodes in each community.
- pi_in: Sampling probabilities for each incoming community.
- pi_out: Sampling probabilities for each outgoing community.
- sorted: Logical indicating where nodes are arranged by block (and additionally by degree heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a directed degree-corrected stochastic blockmodel. First, we randomly chose a incoming block membership and an outgoing block membership for each node in the blockmodel. This is handled by directed_dcsbm(). Then, given these block memberships, we randomly sample edges between nodes. This second operation is handled by sample_edgelist(), sample_sparse(), sample_igraph() and sample_tidygraph(), depending on your desired graph representation.

Block memberships:

Let x represent the incoming block membership of a node and y represent the outgoing block membership of a node. To generate x we sample from a categorical distribution with parameter $\pi_i n$. To generate y we sample from a categorical distribution with parameter $\pi_o ut$. Block memberships are independent across nodes. Incoming and outgoing block memberships of the same node are also independent.

directed_erdos_renyi 11

Degree heterogeneity:

In addition to block membership, the DCSBM also nodes to have different propensities for incoming and outgoing edge formation. We represent the propensity to form incoming edges for a given node by a positive number $\theta_i n$. We represent the propensity to form outgoing edges for a given node by a positive number $\theta_i n$. Typically the $\theta_i n$ (and $theta_o ut$) across all nodes are constrained to sum to one for identifiability purposes, but this doesn't really matter during sampling.

Edge formulation:

Once we know the block memberships x and y and the degree heterogeneity parameters θ_{in} and θ_{out} , we need one more ingredient, which is the baseline intensity of connections between nodes in block i and block j. Then each edge forms independently according to a Poisson distribution with parameters

$$\lambda = \theta_{in} * B_{x,y} * \theta_{out}.$$

See Also

```
Other stochastic block models: dcsbm(), mmsbm(), overlapping_sbm(), planted_partition(), sbm()
Other directed graphs: directed_erdos_renyi()
```

Examples

```
set.seed(27)

B <- matrix(0.2, nrow = 5, ncol = 8)
diag(B) <- 0.9

ddcsbm <- directed_dcsbm(
    n = 1000,
    B = B,
    k_in = 5,
    k_out = 8,
    expected_density = 0.01
)

ddcsbm

population_svd <- svds(ddcsbm)</pre>
```

directed_erdos_renyi Create an directed erdos renyi object

Description

Create an directed erdos renyi object

12 directed_erdos_renyi

Usage

```
directed_erdos_renyi(
    n,
    ...,
    p = NULL,
    poisson_edges = TRUE,
    allow_self_loops = TRUE)
```

Arguments

n Number of nodes in graph.

... Arguments passed on to directed_factor_model

expected_in_degree If specified, the desired expected in degree of the graph.

Specifying expected_in_degree simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

expected_out_degree If specified, the desired expected out degree of the graph.

Specifying expected_out_degree simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

Probability of an edge between any two nodes. You must specify either p, expected_in_degree, or expected_out_degree.

poisson_edges

р

Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Value

A directed_factor_model S3 class based on a list with the following elements:

- X: The incoming latent positions as a Matrix() object.
- S: The mixing matrix as a Matrix() object.
- Y: The outgoing latent positions as a Matrix() object.
- n: The number of nodes with incoming edges in the network.
- k1: The dimension of the latent node position vectors encoding incoming latent communities (i.e. in X).

directed_factor_model

- d: The number of nodes with outgoing edges in the network. Does not need to match n rectangular adjacency matrices are supported.
- k2: The dimension of the latent node position vectors encoding outgoing latent communities (i.e. in Y).
- poisson_edges: Whether or not the graph is taken to be have Poisson or Bernoulli edges, as indicated by a logical vector of length 1.
- allow_self_loops: Whether or not self loops are allowed.

See Also

```
Other erdos renyi: erdos_renyi()
Other directed graphs: directed_dcsbm()
```

Examples

```
set.seed(87)
er <- directed_erdos_renyi(n = 10, p = 0.1)
er

big_er <- directed_erdos_renyi(n = 10^6, expected_in_degree = 5)
big_er

A <- sample_sparse(er)
A</pre>
```

directed_factor_model Create a directed factor model graph

Description

A directed factor model graph is a directed generalized Poisson random dot product graph. The edges in this graph are assumpted to be independent and Poisson distributed. The graph is parameterized by its expected adjacency matrix, with is E[A] = X S Y'. We do not recommend that causal users use this function, see instead directed_dcsbm() and related functions, which will formulate common variants of the stochastic blockmodels as undirected factor models with lots of helpful input validation.

Usage

```
directed_factor_model(
   X,
   S,
   Y,
   ...,
```

```
expected_in_degree = NULL,
expected_out_degree = NULL,
expected_density = NULL,
poisson_edges = TRUE,
allow_self_loops = TRUE
)
```

Arguments

X A matrix() or Matrix() representing real-valued latent node positions encoding community structure of incoming edges. Entries must be positive.

S A matrix() or Matrix() mixing matrix. Entries must be positive.

Y A matrix() or Matrix() representing real-valued latent node positions encoding community structure of outgoing edges. Entries must be positive.

Ignored. For internal developer use only.

expected_in_degree

If specified, the desired expected in degree of the graph. Specifying expected_in_degree simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

expected_out_degree

If specified, the desired expected out degree of the graph. Specifying expected_out_degree simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

expected_density

If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Specify only one of expected_in_degree, expected_out_degree, and expected_density.

poisson_edges

Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Value

A directed_factor_model S3 class based on a list with the following elements:

- X: The incoming latent positions as a Matrix() object.
- S: The mixing matrix as a Matrix() object.
- Y: The outgoing latent positions as a Matrix() object.
- n: The number of nodes with incoming edges in the network.

- k1: The dimension of the latent node position vectors encoding incoming latent communities (i.e. in X).
- d: The number of nodes with outgoing edges in the network. Does not need to match n rectangular adjacency matrices are supported.
- k2: The dimension of the latent node position vectors encoding outgoing latent communities (i.e. in Y).
- poisson_edges: Whether or not the graph is taken to be have Poisson or Bernoulli edges, as indicated by a logical vector of length 1.
- allow_self_loops: Whether or not self loops are allowed.

Examples

```
n <- 10000
k1 <- 5
k2 <- 3
d <- 5000

X <- matrix(rpois(n = n * k1, 1), nrow = n)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y <- matrix(rexp(n = k2 * d, 1), nrow = d)

fm <- directed_factor_model(X, S, Y)
fm

fm2 <- directed_factor_model(X, S, Y, expected_in_degree = 50)
fm2</pre>
```

```
\verb|eigs_sym.undirected_factor_model|\\
```

Compute the eigendecomposition of the expected adjacency matrix of an undirected factor model

Description

Compute the eigendecomposition of the expected adjacency matrix of an undirected factor model

Usage

```
## S3 method for class 'undirected_factor_model'
eigs_sym(A, k = A$k, which = "LM", sigma = NULL, opts = list(), ...)
```

16 erdos_renyi

Arguments

A	An undirected_factor_model().
k	Desired rank of decomposition.
which	Selection criterion. See Details below.
sigma	Shift parameter. See section Shift-And-Invert Mode .
opts	Control parameters related to the computing algorithm. See Details below.
	Unused, included only for consistency with generic signature.

Details

The which argument is a character string that specifies the type of eigenvalues to be computed. Possible values are:

"LM" The k eigenvalues with largest magnitude. Here the magnitude means the Euclidean norm of complex numbers.

"SM" The k eigenvalues with smallest magnitude.

"LR" The k eigenvalues with largest real part.

"SR" The k eigenvalues with smallest real part.

"LI" The k eigenvalues with largest imaginary part.

"SI" The k eigenvalues with smallest imaginary part.

"LA" The k largest (algebraic) eigenvalues, considering any negative sign.

"SA" The k smallest (algebraic) eigenvalues, considering any negative sign.

"BE" Compute k eigenvalues, half from each end of the spectrum. When k is odd, compute more from the high and then from

eigs() with matrix types "matrix", "dgeMatrix", "dgCMatrix" and "dgRMatrix" can use "LM", "SM", "LR", "SR", "LI" and "SI".

eigs_sym() with all supported matrix types, and eigs() with symmetric matrix types ("dsyMatrix", "dsCMatrix", and "dsRMatrix") can use "LM", "SM", "LA", "SA" and "BE".

The opts argument is a list that can supply any of the following parameters:

ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but with greater memory use. For general matrix, ncv must satisfy $k+2 \le ncv \le n$, and for symmetric matrix, the constraint is $k < ncv \le n$. Default is $\min(n, \max(2 \le k+1, 20))$.

tol Precision parameter. Default is 1e-10.

maxitr Maximum number of iterations. Default is 1000.

retvec Whether to compute eigenvectors. If FALSE, only calculate and return eigenvalues.

initvec Initial vector of length n supplied to the Arnoldi/Lanczos iteration. It may speed up the convergence if initvec is close to an eigenvector of A.

erdos_renyi Create an undirected erdos renyi object

Description

Create an undirected erdos renyi object

erdos_renyi 17

Usage

```
erdos_renyi(n, ..., p = NULL, poisson_edges = TRUE, allow_self_loops = TRUE)
```

Arguments

n Number of nodes in graph.

... Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

p Probability of an edge between any two nodes. You must specify either p or expected_degree.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a

pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Value

An undirected_factor_model S3 class based on a list with the following elements:

- X: The latent positions as a Matrix() object.
- S: The mixing matrix as a Matrix() object.
- n: The number of nodes in the network.
- k: The rank of expectation matrix. Equivalently, the dimension of the latent node position vectors.

See Also

```
Other erdos renyi: directed_erdos_renyi()
Other undirected graphs: chung_lu(), dcsbm(), mmsbm(), overlapping_sbm(), planted_partition(), sbm()
```

Examples

```
set.seed(87)
er <- erdos_renyi(n = 10, p = 0.1)</pre>
```

18 expected_edges

```
er
er <- erdos_renyi(n = 10, expected_density = 0.1)
er
big_er <- erdos_renyi(n = 10^6, expected_degree = 5)
big_er
A <- sample_sparse(er)
A</pre>
```

expected_edges

Calculate the expected edges in Poisson RDPG graph

Description

These calculations are conditional on the latent factors X and Y.

Usage

```
expected_edges(factor_model, ...)
expected_degree(factor_model, ...)
expected_in_degree(factor_model, ...)
expected_out_degree(factor_model, ...)
expected_density(factor_model, ...)
expected_degrees(factor_model, ...)
```

Arguments

Details

Note that the runtime of the fastRG algorithm is proportional to the expected number of edges in the graph. Expected edge count will be an underestimate of expected number of edges for Bernoulli graphs. See the Rohe et al for details.

Value

Expected edge counts, or graph densities.

expected_edges 19

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13, 2018. https://www.jmlr.org/papers/v19/17-128.html

Examples

```
##### an undirected blockmodel example
n <- 1000
pop <- n / 2
a <- .1
b < - .05
B \leftarrow matrix(c(a,b,b,a), nrow = 2)
b_{model} \leftarrow fastRG::sbm(n = n, k = 2, B = B, poisson_edges = FALSE)
b_model
A <- sample_sparse(b_model)
# compare
mean(rowSums(triu(A)))
pop * a + pop * b # analytical average degree
##### more generic examples
n <- 10000
k <- 5
X \leftarrow matrix(rpois(n = n * k, 1), nrow = n)
S \leftarrow matrix(runif(n = k * k, 0, .1), nrow = k)
ufm <- undirected_factor_model(X, S)</pre>
expected_edges(ufm)
expected_degree(ufm)
eigs_sym(ufm)
n <- 10000
d <- 1000
k1 <- 5
k2 <- 3
X \leftarrow matrix(rpois(n = n * k1, 1), nrow = n)
Y \leftarrow matrix(rpois(n = d * k2, 1), nrow = d)
S \leftarrow matrix(runif(n = k1 * k2, 0, .1), nrow = k1)
```

20 mmsbm

```
dfm <- directed_factor_model(X = X, S = S, Y = Y)
expected_edges(dfm)
expected_in_degree(dfm)
expected_out_degree(dfm)
svds(dfm)</pre>
```

mmsbm

Create an undirected degree-corrected mixed membership stochastic blockmodel object

Description

To specify a degree-corrected mixed membership stochastic blockmodel, you must specify the degree-heterogeneity parameters (via n or theta), the mixing matrix (via k or B), and the relative block propensities (optional, via alpha). We provide defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. We **strongly recommend** setting the expected_degree or expected_density argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```
mmsbm(
  n = NULL,
  theta = NULL,
  k = NULL,
  B = NULL,
  ...,
  alpha = rep(1, k),
  sort_nodes = TRUE,
  force_pure = TRUE,
  poisson_edges = TRUE,
  allow_self_loops = TRUE)
```

Arguments

n

(degree heterogeneity) The number of nodes in the blockmodel. Use when you don't want to specify the degree-heterogeneity parameters theta by hand. When n is specified, theta is randomly generated from a LogNormal(2, 1) distribution. This is subject to change, and may not be reproducible. n defaults to NULL. You must specify either n or theta, but not both.

theta

(degree heterogeneity) A numeric vector explicitly specifying the degree heterogeneity parameters. This implicitly determines the number of nodes in the resulting graph, i.e. it will have length(theta) nodes. Must be positive. Setting to a vector of ones recovers a stochastic blockmodel without degree correction. Defaults to NULL. You must specify either n or theta, but not both.

mmsbm 21

k

(mixing matrix) The number of blocks in the blockmodel. Use when you don't want to specify the mixing-matrix by hand. When k is specified, the elements of B are drawn randomly from a Uniform(0, 1) distribution. This is subject to change, and may not be reproducible. k defaults to NULL. You must specify either k or B, but not both.

В

(mixing matrix) A k by k matrix of block connection probabilities. The probability that a node in block i connects to a node in community j is Poisson(B[i, j]). Must be a square matrix. matrix and Matrix objects are both acceptable. If B is not symmetric, it will be symmetrized via the update B := B + t(B). Defaults to NULL. You must specify either k or B, but not both.

. . .

Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time

expected_density If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

alpha

(relative block propensities) Relative block propensities, which are parameters of a Dirichlet distribution. All elments of alpha must thus be positive. Must match the dimensions of B or k. Defaults to rep(1, k), or balanced membership across blocks.

sort_nodes

Logical indicating whether or not to sort the nodes so that they are grouped by block and by theta. Useful for plotting. Defaults to TRUE.

force_pure

Logical indicating whether or not to force presence of "pure nodes" (nodes that belong only to a single community) for the sake of identifiability. To include pure nodes, block membership sampling first proceeds as per usual. Then, after it is complete, k nodes are chosen randomly as pure nodes, one for each block. Defaults to TRUE.

poisson_edges

Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Value

An undirected_mmsbm S3 object, a subclass of the undirected_factor_model() with the following additional fields:

22 mmsbm

- theta: A numeric vector of degree-heterogeneity parameters.
- Z: The community memberships of each node, a matrix() with k columns, whose row sums all equal one.
- alpha: Community membership proportion propensities.
- sorted: Logical indicating where nodes are arranged by block (and additionally by degree heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a degree-corrected stochastic blockmodel. First, we randomly choose how much each node belongs to each block in the blockmodel. Each node is one unit of block membership to distribute. This is handled by mmsbm(). Then, given these block memberships, we randomly sample edges between nodes. This second operation is handled by sample_edgelist(), sample_sparse(), sample_igraph() and sample_tidygraph(), depending depending on your desired graph representation.

Block memberships:

Let Z_i by a vector on the k dimensional simplex representing the block memberships of node i. To generate z_i we sample from a Dirichlet distribution with parameter vector α . Block memberships for each node are independent.

Degree heterogeneity:

In addition to block membership, the MMSBM also allows nodes to have different propensities for edge formation. We represent this propensity for node i by a positive number θ_i .

Edge formulation:

Once we know the block membership vector z_i, z_j and the degree heterogeneity parameters θ , we need one more ingredient, which is the baseline intensity of connections between nodes in block i and block j. This is given by a $k \times k$ matrix B. Then each edge $A_{i,j}$ is Poisson distributed with parameter

$$\lambda_{i,j} = \theta_i \cdot z_i^T B z_j \cdot \theta_j.$$

See Also

Other stochastic block models: dcsbm(), directed_dcsbm(), overlapping_sbm(), planted_partition(), sbm()

Other undirected graphs: chung_lu(), dcsbm(), erdos_renyi(), overlapping_sbm(), planted_partition(), sbm()

Examples

```
set.seed(27)
lazy_mmsbm <- mmsbm(n = 1000, k = 5, expected_density = 0.01)
lazy_mmsbm
# sometimes you gotta let the world burn and</pre>
```

```
# sample a wildly dense graph
dense_lazy_mmsbm \leftarrow mmsbm(n = 500, k = 3, expected_density = 0.8)
dense_lazy_mmsbm
# explicitly setting the degree heterogeneity parameter,
# mixing matrix, and relative community sizes rather
# than using randomly generated defaults
k <- 5
n <- 1000
B <- matrix(stats::runif(k * k), nrow = k, ncol = k)</pre>
theta <- round(stats::rlnorm(n, 2))</pre>
alpha <- c(1, 2, 4, 1, 1)
custom_mmsbm <- mmsbm(</pre>
  theta = theta,
  B = B,
  alpha = alpha,
  expected_degree = 50
)
custom_mmsbm
edgelist <- sample_edgelist(custom_mmsbm)</pre>
edgelist
# efficient eigendecompostion that leverages low-rank structure in
# E(A) so that you don't have to form E(A) to find eigenvectors,
# as E(A) is typically dense. computation is
# handled via RSpectra
population_eigs <- eigs_sym(custom_mmsbm)</pre>
svds(custom_mmsbm)$d
```

overlapping_sbm

Create an undirected overlapping degree corrected stochastic blockmodel object

Description

To specify a overlapping stochastic blockmodel, you must specify the number of nodes (via n), the mixing matrix (via k or B), and the block probabilities (optional, via pi). We provide defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. We **strongly recommend** setting the expected_degree or expected_density argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```
overlapping_sbm(
    n,
    k = NULL,
    B = NULL,
    ...,
    pi = rep(1/k, k),
    sort_nodes = TRUE,
    force_pure = TRUE,
    poisson_edges = TRUE,
    allow_self_loops = TRUE)
```

Arguments

k

n The number of nodes in the overlapping SBM.

(mixing matrix) The number of blocks in the blockmodel. Use when you don't want to specify the mixing-matrix by hand. When k is specified, B is set to a diagonal dominant matrix with value 0.8 along the diagonal and 0.1 / (k - 1) on the off-diagonal. k defaults to NULL. You must specify either k or B, but not both.

(mixing matrix) A k by k matrix of block connection probabilities. The probability that a node in block i connects to a node in community j is Poisson(B[i, j]). Must be an *invertible*, symmetric square matrix. matrix and Matrix objects are both acceptable. If B is not symmetric, it will be symmetrized via the update B := B + t(B). Defaults to NULL. You must specify either k or B, but not both.

Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time

expected_density If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

(block probabilities) Probability of membership in each block. Membership in each block is independent under the overlapping SBM. Defaults to rep(1 / k, k).

Logical indicating whether or not to sort the nodes so that they are grouped by block. Useful for plotting. Defaults to TRUE.

Logical indicating whether or not to force presence of "pure nodes" (nodes that belong only to a single community) for the sake of identifiability. To include pure nodes, block membership sampling first proceeds as per usual. Then, after it is complete, k nodes are chosen randomly as pure nodes, one for each block. Defaults to TRUE.

В

. . .

рi

sort_nodes

force_pure

poisson_edges

Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Value

An undirected_overlapping_sbm S3 object, a subclass of the undirected_factor_model() with the following additional fields:

- pi: Sampling probabilities for each block.
- sorted: Logical indicating where nodes are arranged by block (and additionally by degree heterogeneity parameter) within each block.

Generative Model

There are two levels of randomness in a degree-corrected overlapping stochastic blockmodel. First, for each node, we independently determine if that node is a member of each block. This is handled by overlapping_sbm(). Then, given these block memberships, we randomly sample edges between nodes. This second operation is handled by sample_edgelist(), sample_sparse(), sample_igraph() and sample_tidygraph(), depending depending on your desired graph representation.

Identifiability:

In order to be identifiable, an overlapping SBM must satisfy two conditions:

- 1. B must be invertible, and
- 2. the must be at least one "pure node" in each block that belongs to no other blocks.

Block memberships:

Note that some nodes may not belong to any blocks.

TODO

Edge formulation:

Once we know the block memberships, we need one more ingredient, which is the baseline intensity of connections between nodes in block i and block j. Then each edge $A_{i,j}$ is Poisson distributed with parameter

TODO

References

Kaufmann, Emilie, Thomas Bonald, and Marc Lelarge. "A Spectral Algorithm with Additive Clustering for the Recovery of Overlapping Communities in Networks," Vol. 9925. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-46379-7.

Latouche, Pierre, Etienne Birmelé, and Christophe Ambroise. "Overlapping Stochastic Block Models with Application to the French Political Blogosphere." The Annals of Applied Statistics 5, no. 1 (March 2011): 309–36. https://doi.org/10.1214/10-AOAS382.

Zhang, Yuan, Elizaveta Levina, and Ji Zhu. "Detecting Overlapping Communities in Networks Using Spectral Methods." ArXiv:1412.3432, December 10, 2014. http://arxiv.org/abs/1412.3432.

See Also

```
Other stochastic block models: dcsbm(), directed_dcsbm(), mmsbm(), planted_partition(), sbm()
Other undirected graphs: chung_lu(), dcsbm(), erdos_renyi(), mmsbm(), planted_partition(), sbm()
```

Examples

```
set.seed(27)
lazy_overlapping_sbm <- overlapping_sbm(n = 1000, k = 5, expected_density = 0.01)</pre>
lazy_overlapping_sbm
# sometimes you gotta let the world burn and
# sample a wildly dense graph
dense_lazy_overlapping_sbm <- overlapping_sbm(n = 500, k = 3, expected_density = 0.8)</pre>
dense_lazy_overlapping_sbm
k <- 5
n <- 1000
B <- matrix(stats::runif(k * k), nrow = k, ncol = k)
pi <- c(1, 2, 4, 1, 1) / 5
custom_overlapping_sbm <- overlapping_sbm(</pre>
 n = 200,
  B = B,
  pi = pi,
  expected_degree = 5
custom_overlapping_sbm
edgelist <- sample_edgelist(custom_overlapping_sbm)</pre>
edgelist
```

planted_partition 27

```
# efficient eigendecompostion that leverages low-rank structure in
# E(A) so that you don't have to form E(A) to find eigenvectors,
# as E(A) is typically dense. computation is
# handled via RSpectra

population_eigs <- eigs_sym(custom_overlapping_sbm)</pre>
```

planted_partition

Create an undirected planted partition object

Description

To specify a planted partition model, you must specify the number of nodes (via n), the mixing matrix (optional, either via within_block/between_block or a/b), and the relative block probabilites (optional, via pi). We provide defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. We **strongly recommend** setting the expected_degree or expected_density argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```
planted_partition(
    n,
    k,
    ...,
    within_block = NULL,
    between_block = NULL,
    a = NULL,
    b = NULL,
    pi = rep(1/k, k),
    sort_nodes = TRUE,
    poisson_edges = TRUE,
    allow_self_loops = TRUE)
```

Arguments

n The number of nodes in the network. Must be a positive integer. This argument is required.

k Number of planted partitions, as a positive integer. This argument is required.

.. Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

28 planted_partition

expected_density If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time. within_block Probability of within block edges. Must be strictly between zero and one. Must specify either within_block and between_block, or a and b to determine edge probabilities. Probability of between block edges. Must be strictly between zero and one.

between_block

Must specify either within_block and between_block, or a and b to determine edge probabilities.

Integer such that a/n is the probability of edges within a block. Useful for sparse graphs. Must specify either within_block and between_block, or a and b to

determine edge probabilities.

Integer such that b/n is the probability of edges between blocks. Useful for sparse graphs. Must specify either within_block and between_block, or a

and b to determine edge probabilities.

(relative block probabilities) Relative block probabilities. Must be positive, but рi do not need to sum to one, as they will be normalized internally. Must match the

dimensions of B or k. Defaults to rep(1 / k, k), or a balanced blocks.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by

block and by theta. Useful for plotting. Defaults to TRUE.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a

pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some

additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing selfloops, and these are then removed after the fact.

Details

а

h

A planted partition model is stochastic blockmodel in which the diagonal and the off-diagonal of the mixing matrix B are both constant. This means that edge probabilities depend only on whether two nodes belong to the same block, or to different blocks, but the particular blocks themselves don't have any impact apart from this.

Value

An undirected_planted_partition S3 object, which is a subclass of the sbm() object, with additional fields:

- within_block: The probability of edge formation within a block.
- between_block: The probability of edge formation between two distinct blocks.

sample_edgelist 29

See Also

```
Other stochastic block models: dcsbm(), directed_dcsbm(), mmsbm(), overlapping_sbm(), sbm()
Other undirected graphs: chung_lu(), dcsbm(), erdos_renyi(), mmsbm(), overlapping_sbm(), sbm()
```

Examples

```
set.seed(27)

lazy_pp <- planted_partition(
    n = 1000,
    k = 5,
    expected_density = 0.01,
    within_block = 0.1,
    between_block = 0.01
)</pre>
```

sample_edgelist

Sample a random edgelist from a random dot product graph

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this specification. Then, use sample_*() functions to generate a random graph in your preferred format.

Usage

```
sample_edgelist(factor_model, ...)
## S3 method for class 'undirected_factor_model'
sample_edgelist(factor_model, ...)
## S3 method for class 'directed_factor_model'
sample_edgelist(factor_model, ...)
```

Arguments

30 sample_edgelist

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

A single realization of a random Poisson (or Bernoulli) Dot Product Graph, represented as a tibble::tibble() with two integer columns, from and to.

In the undirected case, from and to do not encode information about edge direction, but we will always have from <= to for convenience of edge identification. To avoid handling such considerations yourself, we recommend using sample_sparse(), sample_igraph(), and sample_tidygraph() over sample_edgelist().

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13, 2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

```
Other samplers: sample_edgelist.matrix(), sample_igraph(), sample_sparse(), sample_tidygraph()
```

Examples

sample_edgelist 31

```
edgelist <- sample_edgelist(ufm)</pre>
edgelist
### sampling graphs as sparse matrices ------
A <- sample_sparse(ufm)
inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)
B <- sample_sparse(ufm)</pre>
inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)
### sampling graphs as igraph graphs -----
sample_igraph(ufm)
### sampling graphs as tidygraph graphs -----
sample_tidygraph(ufm)
##### directed examples -----
n2 <- 100
k1 <- 5
k2 <- 3
d <- 50
X \leftarrow matrix(rpois(n = n2 * k1, 1), nrow = n2)
S \leftarrow matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y \leftarrow matrix(rexp(n = k2 * d, 1), nrow = d)
fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)</pre>
fm
### sampling graphs as edgelists -----
edgelist2 <- sample_edgelist(fm)</pre>
edgelist2
### sampling graphs as sparse matrices -----
A2 <- sample_sparse(fm)
inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)
```

```
B2 <- sample_sparse(fm)

inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)

### sampling graphs as igraph graphs ------

# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here

# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups

dig <- sample_igraph(fm)
is_bipartite(dig)

### sampling graphs as tidygraph graphs -------
sample_tidygraph(fm)
```

sample_edgelist.matrix

Low level interface to sample RPDG edgelists

Description

This is a breaks-off, no safety checks interface. We strongly recommend that you do not call sample_edgelist.matrix() unless you know what you are doing, and even then, we still do not recommend it, as you will bypass all typical input validation. **extremely loud coughing** All those who bypass input validation suffer foolishly at their own hand. **extremely loud coughing**

Usage

```
## S3 method for class 'matrix'
sample_edgelist(
  factor_model,
  S,
  Y,
  directed,
  poisson_edges,
  allow_self_loops,
   ...
)
## S3 method for class 'Matrix'
```

```
sample_edgelist(
  factor_model,
  S,
  Y,
  directed,
  poisson_edges,
  allow_self_loops,
  ...
)
```

Arguments

factor_model	An n by k1 matrix() or Matrix::Matrix() of latent node positions encoding incoming edge community membership. The X matrix in Rohe et al (2017). Naming differs only for consistency with the S3 generic.	
S	A k1 by k2 mixing matrix() or Matrix::Matrix(). In the undirect case this is assumed to be symmetric but we do not check that this is the case .	
Υ	A d by k2 matrix() or Matrix::Matrix() of latent node positions encoding outgoing edge community membership.	
directed	Logical indicating whether or not the graph should be directed. When directed = FALSE, symmetrizes S internally. Y = X together with a symmetric S implies a symmetric expectation (although not necessarily an undirected graph). When directed = FALSE, samples a directed graph with symmetric expectation, and then adds edges until symmetry is achieved.	
poisson_edges	Whether or not to remove duplicate edges after sampling. See Section 2.3 of Rohe et al. (2017) for some additional details. Defaults to TRUE.	
allow_self_loops		
	Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.	
	Ignored, for generic consistency only.	

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

A single realization of a random Poisson (or Bernoulli) Dot Product Graph, represented as a tibble::tibble() with two integer columns, from and to.

In the undirected case, from and to do not encode information about edge direction, but we will always have from <= to for convenience of edge identification. To avoid handling such considerations yourself, we recommend using sample_sparse(), sample_igraph(), and sample_tidygraph() over sample_edgelist().

34 sample_igraph

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13, 2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

```
Other samplers: sample_edgelist(), sample_igraph(), sample_sparse(), sample_tidygraph()
```

Examples

```
set.seed(46)

n <- 10000
d <- 1000

k1 <- 5
k2 <- 3

X <- matrix(rpois(n = n * k1, 1), nrow = n)
S <- matrix(runif(n = k1 * k2, 0, .1), nrow = k1)
Y <- matrix(rpois(n = d * k2, 1), nrow = d)

sample_edgelist(X, S, Y, TRUE, TRUE, TRUE)</pre>
```

sample_igraph

Sample a random dot product graph as an igraph graph

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this specification. Then, use sample_*() functions to generate a random graph in your preferred format.

Usage

```
sample_igraph(factor_model, ...)
## S3 method for class 'undirected_factor_model'
sample_igraph(factor_model, ...)
## S3 method for class 'directed_factor_model'
sample_igraph(factor_model, ...)
```

sample_igraph 35

Arguments

```
factor_model A directed_factor_model() or undirected_factor_model().
... Ignored. Do not use.
```

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

An igraph::igraph() object that is possibly a multigraph (that is, we take there to be multiple edges rather than weighted edges).

When factor_model is undirected:

- the graph is undirected and one-mode.

When factor_model is **directed** and **square**:

- the graph is directed and one-mode.

When factor_model is directed and rectangular:

- the graph is undirected and bipartite.

Note that working with bipartite graphs in igraph is more complex than working with one-mode graphs.

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13, 2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

```
Other samplers: sample_edgelist.matrix(), sample_edgelist(), sample_sparse(), sample_tidygraph()
```

Examples

36 sample_igraph

```
k <- 5
X \leftarrow matrix(rpois(n = n * k, 1), nrow = n)
S \leftarrow matrix(runif(n = k * k, 0, .1), nrow = k)
# S will be symmetrized internal here, or left unchanged if
# it is already symmetric
ufm <- undirected_factor_model(</pre>
 X, S,
 expected_density = 0.1
)
ufm
### sampling graphs as edgelists -----
edgelist <- sample_edgelist(ufm)</pre>
edgelist
### sampling graphs as sparse matrices -----
A <- sample_sparse(ufm)
inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)
B <- sample_sparse(ufm)</pre>
inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)
### sampling graphs as igraph graphs -----
sample_igraph(ufm)
### sampling graphs as tidygraph graphs -----
sample_tidygraph(ufm)
##### directed examples ------
n2 <- 100
k1 <- 5
k2 <- 3
d <- 50
X \leftarrow matrix(rpois(n = n2 * k1, 1), nrow = n2)
S \leftarrow matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
```

sample_sparse 37

```
Y \leftarrow matrix(rexp(n = k2 * d, 1), nrow = d)
fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)</pre>
fm
### sampling graphs as edgelists -----
edgelist2 <- sample_edgelist(fm)</pre>
edgelist2
### sampling graphs as sparse matrices -----
A2 <- sample_sparse(fm)
inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)
B2 <- sample_sparse(fm)
inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)
### sampling graphs as igraph graphs -----
# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here
# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups
dig <- sample_igraph(fm)</pre>
is_bipartite(dig)
### sampling graphs as tidygraph graphs ------
sample_tidygraph(fm)
```

sample_sparse

Sample a random dot product graph as a sparse Matrix

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this specification. Then, use sample_*() functions to generate a random graph in your preferred format.

38 sample_sparse

Usage

```
sample_sparse(factor_model, ...)
## S3 method for class 'undirected_factor_model'
sample_sparse(factor_model, ...)
## S3 method for class 'directed_factor_model'
sample_sparse(factor_model, ...)
```

Arguments

```
factor_model A directed_factor_model() or undirected_factor_model().
... Ignored. Do not use.
```

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

For undirected factor models, a sparse Matrix::Matrix() of class dsCMatrix. In particular, this means the Matrix object (1) has double data type, (2) is symmetric, and (3) is in column compressed storage format.

For directed factor models, a sparse Matrix::Matrix() of class dgCMatrix. This means the Matrix object (1) has double data type, (2) in *not* symmetric, and (3) is in column compressed storage format.

To reiterate: for undirected graphs, you will get a symmetric matrix. For directed graphs, you will get a general sparse matrix.

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13, 2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

```
Other samplers: sample_edgelist.matrix(), sample_edgelist(), sample_igraph(), sample_tidygraph()
```

sample_sparse 39

```
n <- 100
k <- 5
X \leftarrow matrix(rpois(n = n * k, 1), nrow = n)
S \leftarrow matrix(runif(n = k * k, 0, .1), nrow = k)
# S will be symmetrized internal here, or left unchanged if
# it is already symmetric
ufm <- undirected_factor_model(</pre>
 X, S,
 expected_density = 0.1
ufm
### sampling graphs as edgelists -----
edgelist <- sample_edgelist(ufm)</pre>
edgelist
### sampling graphs as sparse matrices ------
A <- sample_sparse(ufm)
inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)
B <- sample_sparse(ufm)</pre>
inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)
### sampling graphs as igraph graphs -----
sample_igraph(ufm)
### sampling graphs as tidygraph graphs -----
sample_tidygraph(ufm)
##### directed examples -----
n2 <- 100
k1 <- 5
k2 <- 3
d <- 50
```

```
X \leftarrow matrix(rpois(n = n2 * k1, 1), nrow = n2)
S \leftarrow matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y \leftarrow matrix(rexp(n = k2 * d, 1), nrow = d)
fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)</pre>
fm
### sampling graphs as edgelists -----
edgelist2 <- sample_edgelist(fm)</pre>
edgelist2
### sampling graphs as sparse matrices -----
A2 <- sample_sparse(fm)
inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)
B2 <- sample_sparse(fm)
inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)
### sampling graphs as igraph graphs ------
# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here
# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups
dig <- sample_igraph(fm)</pre>
is_bipartite(dig)
### sampling graphs as tidygraph graphs -----
sample_tidygraph(fm)
```

 $sample_tidygraph$

Sample a random dot product graph as a tidygraph graph

Description

There are two steps to using the fastRG package. First, you must parameterize a random dot product graph by sampling the latent factors. Use functions such as dcsbm(), sbm(), etc, to perform this specification. Then, use sample_*() functions to generate a random graph in your preferred format.

Usage

```
sample_tidygraph(factor_model, ...)
## S3 method for class 'undirected_factor_model'
sample_tidygraph(factor_model, ...)
## S3 method for class 'directed_factor_model'
sample_tidygraph(factor_model, ...)
```

Arguments

```
factor_model A directed_factor_model() or undirected_factor_model().
... Ignored. Do not use.
```

Details

This function implements the fastRG algorithm as described in Rohe et al (2017). Please see the paper (which is short and open access!!) for details.

Value

A tidygraph::tbl_graph() object that is possibly a multigraph (that is, we take there to be multiple edges rather than weighted edges).

When factor_model is undirected:

- the graph is undirected and one-mode.

When factor_model is **directed** and **square**:

- the graph is directed and one-mode.

When factor_model is **directed** and **rectangular**:

- the graph is undirected and bipartite.

Note that working with bipartite graphs in tidygraph is more complex than working with one-mode graphs.

References

Rohe, Karl, Jun Tao, Xintian Han, and Norbert Binkiewicz. 2017. "A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation." Journal of Machine Learning Research; 19(77):1-13, 2018. https://www.jmlr.org/papers/v19/17-128.html

See Also

```
Other samplers: sample_edgelist.matrix(), sample_edgelist(), sample_igraph(), sample_sparse()
```

```
library(igraph)
library(tidygraph)
set.seed(27)
##### undirected examples -----
n <- 100
k <- 5
X \leftarrow matrix(rpois(n = n * k, 1), nrow = n)
S \leftarrow matrix(runif(n = k * k, 0, .1), nrow = k)
# S will be symmetrized internal here, or left unchanged if
# it is already symmetric
ufm <- undirected_factor_model(</pre>
 expected_density = 0.1
ufm
### sampling graphs as edgelists -----
edgelist <- sample_edgelist(ufm)</pre>
edgelist
### sampling graphs as sparse matrices -----
A <- sample_sparse(ufm)
inherits(A, "dsCMatrix")
isSymmetric(A)
dim(A)
B <- sample_sparse(ufm)</pre>
inherits(B, "dsCMatrix")
isSymmetric(B)
dim(B)
### sampling graphs as igraph graphs -----
sample_igraph(ufm)
### sampling graphs as tidygraph graphs -----
sample_tidygraph(ufm)
```

```
##### directed examples ------
n2 <- 100
k1 <- 5
k2 <- 3
d <- 50
X \leftarrow matrix(rpois(n = n2 * k1, 1), nrow = n2)
S \leftarrow matrix(runif(n = k1 * k2, 0, .1), nrow = k1, ncol = k2)
Y \leftarrow matrix(rexp(n = k2 * d, 1), nrow = d)
fm <- directed_factor_model(X, S, Y, expected_in_degree = 2)</pre>
fm
### sampling graphs as edgelists -----
edgelist2 <- sample_edgelist(fm)</pre>
edgelist2
### sampling graphs as sparse matrices -----
A2 <- sample_sparse(fm)
inherits(A2, "dgCMatrix")
isSymmetric(A2)
dim(A2)
B2 <- sample_sparse(fm)</pre>
inherits(B2, "dgCMatrix")
isSymmetric(B2)
dim(B2)
### sampling graphs as igraph graphs -----
# since the number of rows and the number of columns
# in `fm` differ, we will get a bipartite igraph here
# creating the bipartite igraph is slow relative to other
# sampling -- if this is a blocker for
# you please open an issue and we can investigate speedups
dig <- sample_igraph(fm)</pre>
is_bipartite(dig)
### sampling graphs as tidygraph graphs -----
sample_tidygraph(fm)
```

44 sbm

sbm

Create an undirected stochastic blockmodel object

Description

To specify a stochastic blockmodel, you must specify the number of nodes (via n), the mixing matrix (via k or B), and the relative block probabilities (optional, via pi). We provide defaults for most of these options to enable rapid exploration, or you can invest the effort for more control over the model parameters. We strongly recommend setting the expected_degree or expected_density argument to avoid large memory allocations associated with sampling large, dense graphs.

Usage

```
sbm(
  n,
 k = NULL
 B = NULL
 pi = rep(1/k, k),
  sort_nodes = TRUE,
 poisson_edges = TRUE,
  allow_self_loops = TRUE
)
```

Arguments

k

The number of nodes in the network. Must be a positive integer. This argument n is required.

(mixing matrix) The number of blocks in the blockmodel. Use when you don't want to specify the mixing-matrix by hand. When k is specified, the elements of B are drawn randomly from a Uniform(0, 1) distribution. This is subject to change, and may not be reproducible. k defaults to NULL. You must specify either k or B, but not both.

(mixing matrix) A k by k matrix of block connection probabilities. The probability that a node in block i connects to a node in community j is Poisson(B[i, j]). Must be a square matrix. matrix and Matrix objects are both acceptable. If B is not symmetric, it will be symmetrized via the update B := B + t(B). Defaults to NULL. You must specify either k or B, but not both.

Arguments passed on to undirected_factor_model

expected_degree If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

expected_density If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to

В

sbm 45

NULL. Do not specify both expected_degree and expected_density at the same time.

pi (relative block probabilities) Relative block probabilities. Must be positive, but

do not need to sum to one, as they will be normalized internally. Must match the dimensions of B or k. Defaults to rep(1 / k, k), or a balanced blocks.

sort_nodes Logical indicating whether or not to sort the nodes so that they are grouped by

block and by theta. Useful for plotting. Defaults to TRUE.

poisson_edges Logical indicating whether or not multiple edges are allowed to form between a

pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some

additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Details

A stochastic block is equivalent to a degree-corrected stochastic blockmodel where the degree heterogeneity parameters have all been set equal to 1.

Value

An undirected_sbm S3 object, which is a subclass of the dcsbm() object.

See Also

```
Other stochastic block models: dcsbm(), directed_dcsbm(), mmsbm(), overlapping_sbm(), planted_partition()
Other undirected graphs: chung_lu(), dcsbm(), erdos_renyi(), mmsbm(), overlapping_sbm(), planted_partition()
```

```
set.seed(27)
lazy_sbm <- sbm(n = 1000, k = 5, expected_density = 0.01)
lazy_sbm

# by default we get a multigraph (i.e. multiple edges are
# allowed between the same two nodes). using bernoulli edges
# will with an adjacency matrix with only zeroes and ones
bernoulli_sbm <- sbm(
    n = 5000,</pre>
```

```
k = 300,
poisson_edges = FALSE,
expected_degree = 8
)

bernoulli_sbm

edgelist <- sample_edgelist(bernoulli_sbm)
edgelist

A <- sample_sparse(bernoulli_sbm)

# only zeroes and ones!
sign(A)</pre>
```

svds.directed_factor_model

Compute the singular value decomposition of the expected adjacency matrix of a directed factor model

Description

Compute the singular value decomposition of the expected adjacency matrix of a directed factor model

Usage

```
## S3 method for class 'directed_factor_model'
svds(A, k = min(A$k1, A$k2), nu = k, nv = k, opts = list(), ...)
```

Arguments

Α	<pre>An undirected_factor_model().</pre>	
k	Desired rank of decomposition.	
nu	Number of left singular vectors to be computed. This must be between 0 and k.	
nv	Number of right singular vectors to be computed. This must be between 0 and k.	
opts	Control parameters related to the computing algorithm. See Details below.	
	Unused, included only for consistency with generic signature.	

Details

The opts argument is a list that can supply any of the following parameters:

ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but with greater memory use. ncv must be satisfy $k < ncv \le p$ where p = min(m, n). Default is min(p, max(2*k+1, 20)).

tol Precision parameter. Default is 1e-10.

maxitr Maximum number of iterations. Default is 1000.

center Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector c is supplied, then SVD is computed on the matrix A-1c', in an implicit way without actually forming this matrix. center = TRUE has the same effect as center = colMeans(A). Default is FALSE.

scale Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector s is supplied, then SVD is computed on the matrix (A-1c')S, where c is the centering vector and S=diag(1/s). If scale = TRUE, then the vector s is computed as the column norm of A-1c'. Default is FALSE.

```
svds.undirected_factor_model
```

Compute the singular value decomposition of the expected adjacency matrix of an undirected factor model

Description

Compute the singular value decomposition of the expected adjacency matrix of an undirected factor model

Usage

```
## S3 method for class 'undirected_factor_model'
svds(A, k = A$k, nu = k, nv = k, opts = list(), ...)
```

Arguments

A	An undirected_factor_model().
k	Desired rank of decomposition.
nu	Number of left singular vectors to be computed. This must be between 0 and k.
nv	Number of right singular vectors to be computed. This must be between 0 and k.
opts	Control parameters related to the computing algorithm. See Details below.
	Unused, included only for consistency with generic signature.

Details

The opts argument is a list that can supply any of the following parameters:

- ncv Number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but with greater memory use. ncv must be satisfy $k < ncv \le p$ where p = min(m, n). Default is min(p, max(2*k+1, 20)).
- tol Precision parameter. Default is 1e-10.

maxitr Maximum number of iterations. Default is 1000.

center Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector c is supplied, then SVD is computed on the matrix A-1c', in an implicit way without actually forming this matrix. center = TRUE has the same effect as center = colMeans(A). Default is FALSE.

scale Either a logical value (TRUE/FALSE), or a numeric vector of length n. If a vector s is supplied, then SVD is computed on the matrix (A-1c')S, where c is the centering vector and S=diag(1/s). If scale = TRUE, then the vector s is computed as the column norm of A-1c'. Default is FALSE.

undirected_factor_model

Create an undirected factor model graph

Description

An undirected factor model graph is an undirected generalized Poisson random dot product graph. The edges in this graph are assumed to be independent and Poisson distributed. The graph is parameterized by its expected adjacency matrix, which is E[A|X] = X S X'. We do not recommend that casual users use this function, see instead dcsbm() and related functions, which will formulate common variants of the stochastic blockmodels as undirected factor models with lots of helpful input validation.

Usage

```
undirected_factor_model(
   X,
   S,
   ...,
   expected_degree = NULL,
   expected_density = NULL,
   poisson_edges = TRUE,
   allow_self_loops = TRUE
)
```

Arguments

X A matrix() or Matrix() representing real-valued latent node positions. Entries must be positive.

S A matrix() or Matrix() mixing matrix. S is symmetrized if it is not already, as this is the undirected case. Entries must be positive.

... Ignored. Must be empty.

expected_degree

If specified, the desired expected degree of the graph. Specifying expected_degree simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

expected_density

If specified, the desired expected density of the graph. Specifying expected_density simply rescales S to achieve this. Defaults to NULL. Do not specify both expected_degree and expected_density at the same time.

poisson_edges

Logical indicating whether or not multiple edges are allowed to form between a pair of nodes. Defaults to TRUE. When FALSE, sampling proceeds as usual, and duplicate edges are removed afterwards. Further, when FALSE, we assume that S specifies a desired between-factor connection probability, and back-transform this S to the appropriate Poisson intensity parameter to approximate Bernoulli factor connection probabilities. See Section 2.3 of Rohe et al. (2017) for some additional details.

allow_self_loops

Logical indicating whether or not nodes should be allowed to form edges with themselves. Defaults to TRUE. When FALSE, sampling proceeds allowing self-loops, and these are then removed after the fact.

Value

An undirected_factor_model S3 class based on a list with the following elements:

- X: The latent positions as a Matrix() object.
- S: The mixing matrix as a Matrix() object.
- n: The number of nodes in the network.
- k: The rank of expectation matrix. Equivalently, the dimension of the latent node position vectors.

```
n <- 10000
k <- 5

X <- matrix(rpois(n = n * k, 1), nrow = n)
S <- matrix(runif(n = k * k, 0, .1), nrow = k)

ufm <- undirected_factor_model(X, S)
ufm

ufm2 <- undirected_factor_model(X, S, expected_degree = 50)
ufm2

svds(ufm2)</pre>
```

Index

<pre>* directed graphs directed_dcsbm, 8 directed_erdos_renyi, 11 * erdos renyi directed_erdos_renyi, 11 erdos_renyi, 16</pre>	expected_degree (expected_edges), 18 expected_degrees (expected_edges), 18 expected_density (expected_edges), 18 expected_edges, 18 expected_in_degree (expected_edges), 18 expected_out_degree (expected_edges), 18
* samplers	factor() 6 10
<pre>sample_edgelist, 29 sample_edgelist.matrix, 32 sample_igraph, 34</pre>	<pre>factor(), 6, 10 igraph::igraph(), 35</pre>
sample_sparse, 37 sample_tidygraph, 40 * stochastic block models dcsbm, 4	Matrix(), 12, 14, 17, 48, 49 matrix(), 14, 22, 33, 48 Matrix::Matrix(), 33, 38 mmsbm, 3, 7, 11, 17, 20, 26, 29, 45
directed_dcsbm, 8 mmsbm, 20	overlapping_sbm, 3, 7, 11, 17, 22, 23, 29, 45
overlapping_sbm, 23 planted_partition, 27 sbm, 44	planted_partition, 3, 7, 11, 17, 22, 26, 27, 45
* undirected graphs	<pre>sample_edgelist, 29, 34, 35, 38, 41 sample_edgelist(), 6, 10, 22, 25, 30, 33 sample_edgelist.Matrix</pre>
directed_erdos_renyi, 11, 11, 17 directed_factor_model, 9, 12, 13 directed_factor_model(), 10, 18, 29, 35, 38, 41	<pre>svds.undirected_factor_model, 47 tibble::tibble(), 30, 33 tidygraph::tbl_graph(), 41</pre>
eigs_sym.undirected_factor_model, 15 erdos_renyi, 3, 7, 13, 16, 22, 26, 29, 45	undirected_factor_model, 3, 5, 17, 21, 24, 27, 44, 48

INDEX 51

 $\begin{array}{c} {\rm undirected_factor_model(), 6, 16, 18, 21,} \\ 25, 29, 35, 38, 41, 46, 47 \end{array}$