Package 'fasterElasticNet'

August 11, 2018

Type Package

Title An Amazing Fast Way to Fit Elastic Net

Version 1.1.2

Date 2018-08-01

Description

Fit Elastic Net, Lasso, and Ridge regression and do cross-validation in a fast way. We build the algorithm based on Least Angle Regression by Bradley Efron, Trevor Hastie, Iain Johnstone, etc. (2004)(<doi:10.1214/00905360400000067 >) and some algorithms like Givens rotation and Forward/Back Substitution. In this way, many matrices to be computed are retained as triangular matrices which can eventually speed up the computation. The fitting algorithm for Elastic Net is written in C++ using Armadillo linear algebra library.

Depends R (>= 3.1.0)

License GPL (>= 2)

Imports Rcpp (>= 0.12.16)

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown

URL https://github.com/CUFESAM/Elastic-Net

BugReports https://github.com/CUFESAM/Elastic-Net/issues

NeedsCompilation yes

Author Jingyi Ma [aut], Qiuhong Lai [ctb], Linyu Zuo [ctb, cre], Yi Yang [ctb], Meng Su [ctb], Zhen Yu [ctb], Gege Gao [ctb], Xiao Liu [ctb], Xueni Ruan [ctb], Yu Bai [ctb], Zhijun Liao [ctb]

R topics documented:

fasterElasticNet-package	. 2
elasticnet	. 3
ElasticNetCV	. 4
housing	. 6
	11

fasterElasticNet-package

Fitting ElasticNet in a fast way.

Description

Index

FasterElasticNet uses some math algorithm such as cholesky decomposition and forward solve etc. to reduce the amount of computation. We also use Rcpp with Armadillo to improve our algorithm by speeding up almost 5 times compared by the R version.

Details

To use fasterElasticNet, dataset x(mxn) and y(mx1) should be put into the function to fit the model. Then, a completely trace of lambda1 and lambda2 can be computed if no lambda1 and lambda2 were input by using ElasticNet. Using cv.choosemodel with the number of folds will returns a best model with smallest MSE after cross-validation. Using output to print the output and predict function will return the prediction based on a new dataset.

Author(s)

Jingyi Ma

Maintainer: Linyu Zuo <zuozhe5959@gmail.com>

References

BRADLEY, EFRON, TREVOR, HASTIE, IAIN, JOHNSTONE, AND, ROBERT, TIBSHIRANI. LEAST ANGLE REGRESSION[J]. The Annals of Statistics, 2004, 32(2): 407-499

See Also

https://github.com/CUFESAM/Elastic-Net

elasticnet

Examples

```
#Use R built-in datasets mtcars for a model fitting
x <- mtcars[,-1]
y <- mtcars[, 1]
#fit model
model <- ElasticNetCV(x,y)
#fit a elastic net with lambda2 = 1
model$Elasticnet_(lambda2 = 1)
#choose model using cv
model$cv.choosemodel(k = 31) #Leave-one-out cross validation
model$output() #See the output
#predict
pre <- mtcars[1:3,-1]
model$predict(pre)
```

elasticnet

A fast way fitting elastic net using RcppArmadillo

Description

Elastic net is a regularization and variable selection method which linearly combines the L1 penalty of the lasso and L2 penalty of ridge methods. Based on this method, elastic- net is designed to return the trace of finding the best linear regression model. Compared with the existed R version of ElasticNet, our version speeds up the algorithm by using Cholesky decomposition, Givens rotation and RcppArmadillo.

Usage

```
elasticnet(XTX, XTY, lam2, lam1 = -1)
```

Arguments

ХТХ	The product of the transpose of independent variable X and itself.
ХТҮ	The product of the transpose of independent variable X and response variable Y
lam1	Penalty of L1-norm. No L1 penalty when $lam1 = -1$
lam2	Penalty of L2-norm, a hyper-paramater

Details

When only lambda2 is given, elasticnet will return the trace of variable selection with lambda1 decreasing from lambda1_0 to zero. lambda1_0 is a value for lambda1 when there is only one predictor (the one most correlated with the response variable) in the model.

If lambda1 and lambda2 are both given, it will also return a trace. But in this case, the trace will stop when lambda1 and lambda2 reach the given ones.

To speed up the algorithm, we use some calculational tricks:

In the consideration of the low efficiency of R dealing with high-dimensional matrix, we use lower triangular matrices during the iteration of the algorithm to avoid massive matrix calculations. When adding one predictor into the model, we update XTX by recalcuting the lower triangular matrix in the Cholesky decomposition of it. While re- moving one predictor from the model, we update the lower triangular matrix with the help of Givens rotations.

Furthermore, due to the low efficiency of R dealing with loops, we rewrite the entire algorithm with RcppArmadillo, a C++ linear algebra library.

Value

A list will be returned. When only lambda2 is given, the returned list contains the trace of lambda1 (relamb) and the corresponding coefficients of the predictors (reb). If both lambda1 and lambda2 are given, the corresponding coefficients of the predictors will be returned.

Examples

```
#Use R built-in datasets mtcars for a model fitting
x <- as.matrix(mtcars[,-1])
y <- as.matrix(mtcars[, 1])
XTX <- t(x) %*% x
XTY <- t(x) %*% y
#Prints the output of elastic net model with lambda2 = 0
res <- elasticnet(XTX,XTY,lam2 = 0)</pre>
```

ElasticNetCV Cross validation

Description

Computes k-fold cross-validation for elastic net.

Usage

ElasticNetCV(x, y)

Arguments

Х	A data frame or matrix of predictors
у	A vector of response variables

ElasticNetCV

Details

This function reads data into its environment and returns a list of three outcomes. To perform elastic net or cross-validation of elastic net, use the corresponding element of the returned list. See examples below. The penalty of L1-norm and L2-norm is denoted by lambda1 and lambda2 respectively.

Value

cv.choosemodel Given the parameter k folds and lambda2 (optional), cv.choosemodel performs cross-validation to select the opti- mal lambda1 and computes the corresponding coefficient of each variable. If lambda2 is NULL, cv.choosemodel selects the optimal lambda2 from a sequence going from 0 to 1 in steps of 0.1 and the corresponding optimal lambda1, then it returns the coefficient of each variable.

A list of three outcomes will be returned:

Elasticnet	Given lambda1 (optional) and lambda2, Elasticnet_ calculates an elastic net- regularized regression and returns the coefficients of each variable. If lambda1 is NULL, Elasticnet_ prints out the trace of lambda1 and the corresponding coefficient of each variable.
output	Prints the cross-validation outputs, including the minimum MSE, the coefficient of each variable, lambda1 and lambda2.
predict	Reads a data.frame of the testing data set and returns predictions using the trained model.

Examples

```
#Use R built-in datasets mtcars for a model fitting
x <- mtcars[,-1]
y <- mtcars[, 1]
#fit model
model <- ElasticNetCV(x,y)
#fit a elastic net with lambda2 = 1
model$Elasticnet_(lambda2 = 1)
#choose model using cv
model$cv.choosemodel(k = 31) #Leave-one-out cross validation
model$output() #See the output
#predict
pre <- mtcars[1:3,-1]
model$predict(pre)
```

Description

A subdata from kaggle "Get start" competition

Usage

data("housing")

Format

A data frame with 10153 observations on the following 140 variables.

floor for apartments, floor of the building

area_m Area, sq.m.

green_zone_part Proportion of area of greenery in the total area

indust_part Share of industrial zones in area of the total area

preschool_quota Number of seats in pre-school organizations

preschool_education_centers_raion Number of pre-school institutions

school_quota Number of high school seats in area

school_education_centers_raion Number of high school institutions

school_education_centers_top_20_raion Number of high schools of the top 20 best schools
 in Moscow

healthcare_centers_raion Number of healthcare centers in district

university_top_20_raion Number of higher education institutions in the top ten ranking of the Federal rank

sport_objects_raion Number of higher education institutions

additional_education_raion Number of additional education organizations

culture_objects_top_25_raion Number of objects of cultural heritage

shopping_centers_raion Number of malls and shopping centres in district

office_raion Number of malls and shopping centres in district

build_count_block Share of block buildings

build_count_wood Share of wood buildings

build_count_frame Share of frame buildings

build_count_brick Share of brick buildings

build_count_monolith Share of monolith buildings

build_count_panel Share of panel buildings

build_count_foam Share of foam buildings

build_count_slag Share of slag buildings

build_count_before_1920 Share of before_1920 buildings

build_count_1921.1945 Share of 1921-1945 buildings

- build_count_1946.1970 Share of 1946-1970 buildings
- build_count_1971.1995 Share of 1971-1995 buildings
- build_count_after_1995 Share of after_1995 buildings
- kindergarten_km Distance to kindergarten
- school_km Distance to high school
- park_km Distance to park
- green_zone_km Distance to green zone
- industrial_km Distance to industrial zone
- water_treatment_km Distance to water treatment
- cemetery_km Distance to the cemetery
- incineration_km Distance to the incineration
- railroad_station_walk_min Time to the railroad station (walk)
- railroad_station_avto_km Distance to the railroad station (avto)
- railroad_station_avto_min Time to the railroad station (avto)
- public_transport_station_min_walk Time to the public transport station (walk)
- water_km Distance to the water reservoir / river
- mkad_km Distance to MKAD (Moscow Circle Auto Road)
- big_road1_km Distance to Nearest major road
- big_road2_km The distance to next distant major road
- railroad_km Distance to the railway / Moscow Central Ring / open areas Underground
- bus_terminal_avto_km Distance to bus terminal (avto)
- oil_chemistry_km Distance to dirty industries
- nuclear_reactor_km Distance to nuclear reactor

radiation_km Distance to burial of radioactive waste

- power_transmission_line_km Distance to power transmission line
- thermal_power_plant_km Distance to thermal power plant
- ts_km Distance to power station
- big_market_km Distance to grocery / wholesale markets
- market_shop_km Distance to markets and department stores
- fitness_km Distance to fitness
- swim_pool_km Distance to swimming pool
- ice_rink_km Distance to ice palace
- stadium_km Distance to stadium
- basketball_km Distance to the basketball courts

8

- hospice_morgue_km Distance to hospice/morgue
- detention_facility_km Distance to detention facility
- public_healthcare_km Distance to public healthcare
- university_km Distance to universities
- workplaces_km Distance to workplaces
- shopping_centers_km Distance to shopping centers
- office_km Distance to business centers/ offices
- additional_education_km Distance to additional education
- preschool_km Distance to preschool education organizations
- big_church_km Distance to large church
- church_synagogue_km Distance to Christian chirches and Synagogues
- mosque_km Distance to mosques
- theater_km Distance to theater
- museum km Distance to museums
- exhibition_km Distance to exhibition
- catering_km Distance to catering
- green_part_500 The share of green zones in 500 meters zone
- prom_part_500 The share of industrial zones in 500 meters zone
- office_count_500 The number of office space in 500 meters zone
- office_sqm_500 The square of office space in 500 meters zone
- trc_count_500 The number of shopping malls in 500 meters zone
- trc_sqm_500 The square of shopping malls in 500 meters zone
- cafe_count_500_na_price Cafes and restaurant bill N/A in 500 meters zone
- cafe_count_500_price_500 Cafes and restaurant bill, average under 500 in 500 meters zone
- cafe_count_500_price_1000 Cafes and restaurant bill, average 500-1000 in 500 meters zone
- cafe_count_500_price_1500 Cafes and restaurant bill, average 1000-1500 in 500 meters zone
- cafe_count_500_price_2500 Cafes and restaurant bill, average 1500-2500 in 500 meters zone
- cafe_count_500_price_4000 Cafes and restaurant bill, average 2500-4000 in 500 meters zone
- cafe_count_500_price_high Cafes and restaurant bill, average over 4000 in 500 meters zone
- big_church_count_500 The number of big churchs in 500 meters zone
- church_count_500 The number of churchs in 500 meters zone
- mosque_count_500 The number of mosques in 500 meters zone
- leisure_count_500 The number of leisure facilities in 500 meters zone
- sport_count_500 The number of sport facilities in 500 meters zone
- market_count_500 The number of markets in 500 meters zone
- green_part_1000 The share of green zones in 1000 meters zone
- prom_part_1000 The share of industrial zones in 1000 meters zone

office_sqm_1000 The square of office space in 1000 meters zone trc_count_1000 The number of shopping malls in 1000 meters zone trc_sqm_1000 The square of shopping malls in 1000 meters zone cafe_count_1000_na_price Cafes and restaurant bill N/A in 1000 meters zone cafe_count_1000_price_high Cafes and restaurant bill, average over 4000 in 1000 meters zone big_church_count_1000 The number of big churchs in 1000 meters zone mosque_count_1000 The number of mosques in 1000 meters zone leisure_count_1000 The number of leisure facilities in 1000 meters zone sport_count_1000 The number of sport facilities in 1000 meters zone market_count_1000 The number of markets in 1000 meters zone green_part_1500 The share of green zones in 1500 meters zone prom_part_1500 The share of industrial zones in 1500 meters zone office_sqm_1500 The square of office space in 1500 meters zone trc_count_1500 The number of shopping malls in 1500 meters zone trc_sqm_1500 The square of shopping malls in 1500 meters zone cafe_count_1500_price_high Cafes and restaurant bill, average over 4000 in 1500 meters zone mosque_count_1500 The number of mosques in 1500 meters zone sport_count_1500 The number of sport facilities in 1500 meters zone market_count_1500 The number of markets in 1500 meters zone green_part_2000 The share of green zones in 2000 meters zone prom_part_2000 The share of industrial zones in 2000 meters zone office_sqm_2000 The square of office space in 2000 meters zone trc_count_2000 The number of shopping malls in 2000 meters zone trc_sqm_2000 The square of shopping malls in 2000 meters zone mosque_count_2000 The number of mosques in 2000 meters zone sport_count_2000 The number of sport facilities in 2000 meters zone market_count_2000 The number of markets in 2000 meters zone green_part_3000 The share of green zones in 3000 meters zone prom_part_3000 The share of industrial zones in 3000 meters zone office_sqm_3000 The square of office space in 3000 meters zone trc_count_3000 The number of shopping malls in 3000 meters zone trc_sqm_3000 The square of shopping malls in 3000 meters zone mosque_count_3000 The number of mosques in 3000 meters zone sport_count_3000 The number of sport facilities in 3000 meters zone market_count_3000 The number of markets in 3000 meters zone green_part_5000 The share of green zones in 5000 meters zone prom_part_5000 The share of industrial zones in 5000 meters zone

trc_count_5000 The number of shopping malls in 5000 meters zone trc_sqm_5000 The square of shopping malls in 5000 meters zone mosque_count_5000 The number of mosques in 5000 meters zone sport_count_5000 The number of sport facilities in 5000 meters zone market_count_5000 The number of markets in 5000 meters zone price_doc I don't know

Source

www.kaggle.com

Examples

data(housing)

Index

*Topic datasets
 housing, 6
*Topic package
 fasterElasticNet-package, 2

elasticnet, 3
ElasticNetCV, 4

fasterElasticNet
 (fasterElasticNet-package), 2
fasterElasticNet-package, 2

housing,<mark>6</mark>