Package ‘fastmatrix’

August 10, 2022

Type Package
Title Fast Computation of some Matrices Useful in Statistics

Version 0.4-124
Date 2022-08-05

Author Felipe Osorio [aut, cre] (<https://orcid.org/0000-0002-4675-5201>),
Alonso Ogueda [aut]

Maintainer Felipe Osorio <felipe.osorios@usm.cl>

Description Small set of functions to fast computation of some matrices and operations
useful in statistics and econometrics. Currently, there are functions for efficient
computation of duplication, commutation and symmetrizer matrices with minimal storage
requirements. Some commonly used matrix decompositions (LU and LDL), basic matrix
operations (for instance, Hadamard, Kronecker products and the Sherman-Morrison formula)
and iterative solvers for linear systems are also available. In addition, the package
includes a number of common statistical procedures such as the sweep operator, weighted
mean and covariance matrix using an online algorithm, linear regression (using Cholesky,
QR, SVD, sweep operator and conjugate gradients methods), ridge regression (with optimal
selection of the ridge parameter considering several procedures), functions to compute
the multivariate skewness, kurtosis, Mahalanobis distance (checking the positive
defineteness) and the Wilson-Hilferty transformation of chi squared variables. Furthermore,
the package provides interfaces to C code callable by another C code from other R packages.

Depends R(>=3.5.0)
License GPL-3

URL https://faosorios.github.io/fastmatrix/
NeedsCompilation yes

LazyLoad yes

Repository CRAN

Date/Publication 2022-08-10 15:50:10 UTC

R topics documented:

array.multo e

https://orcid.org/0000-0002-4675-5201
https://faosorios.github.io/fastmatrix/

R topics documented:

asSymmetric e e e e e e e 4
bezier e e 5
bracket.prod L 6
CE o e e e e 7
cholupdate e 8
circulant L e e e 8
comm.info e e 9
comm.prod e e e e e e e e 10
COMMULAtIONt i e e e e e e e e e e e 11
corARL . . . e e 12
corCS . . e e e e 13
COV.MSSD . . . e e e e e 13
cov.weighted L 14
dupl.croSso e 15
duplinfo e e e 16
duplprod e 17
duplication 18
equilibrate L e e e 19
frank e e e 20
GEOMECAM . .« .« ¢ v v v e 21
hadamard 22
harris.test L e e e e e e e e e e e 23
helmert e e 24
ISdowertri L e e 25
Jacobl . .o e e 26
kronecker.prod L 27
krylov . . o e 28
Kurtosis L e 29
Idl . . e e e e 30
U . e 31
Iu-methods e 32
u2inV . . . e e e 33
Mahalanobis e 34
MatrixX.ANNer e e e e e e e e e 35
MAatriX.NOMM o o v e o e 36
medianCenter e e e e e e e e e e e e e e e e e e e 37
minkowski L e e 38
MOMENTS v v v vt e 39
OIS . . o e e e e e 40
ols.fit . . . L e e e 41
ols.fitmethods 42
powermethod L e 43
TIAZe . . . o e e 44
seidel 46
sherman.morrison e e e e e e 47
SWEEP.OPETALOT . . . v v v v v i e 48
symm.nfoo Lo 49

symm.prod L. e e e e 50

array.mult 3

SYMMELTIZET « . o o v v v v e e e e e e e e e e e e e e e e e e e 51
VEC . v v v e e e e e e e e e e e e e 52
vech . . . e e 53
whitening 53
wilson.hilferty 54
Index 56
array.mult Array multiplication
Description

Multiplication of 3-dimensional arrays was first introduced by Bates and Watts (1980). More ex-
tensions and technical details can be found in Wei (1998).

Usage

array.mult(a, b, x)

Arguments

a a numeric matrix.

b a numeric matrix.

X a three-dimensional array.
Details

Let X = (x;;) be a 3-dimensional n X p x ¢ where indices ¢, ¢ and j indicate face, row and column,
respectively. The product Y = AX B isann X r X s array, with A and B are r X pand ¢ X s
matrices respectively. The elements of Y are defined as:

Value

P q
ytkl:E E ki Teijbj1

i=1 j=1

array.mult returns a 3-dimensional array of dimension n X r X s.

References

Bates, D.M., Watts, D.G. (1980). Relative curvature measures of nonlinearity. Journal of the Royal
Statistical Society, Series B 42, 1-25.

Wei,

See Also

B.C. (1998). Exponential Family Nonlinear Models. Springer, New York.

array, matrix, bracket.prod.

4 asSymmetric

Examples

x <- array(@, dim = c(2,3,3)) # 2 x 3 x 3 array
x[,,1] <- c(1,2,2,4,3,6)

x[,,2] <- ¢c(2,4,4,8,6,12)

x[,,3] <- ¢(3,6,6,12,9,18)

a <- matrix(1, nrow = 2, ncol = 3)
b <- matrix(1, nrow = 3, ncol = 2)

y <- array.mult(a, b, x) # a 2 x 2 x 2 array
y

asSymmetric Force a matrix to be symmetric

Description

Force a square matrix x to be symmetric

Usage

asSymmetric(x, lower = TRUE)

Arguments
X a square matrix to be forced to be symmetric.
lower logical, should the upper (lower) triangle be replaced with the lower (upper)
triangle?
Value

a square symmetric matrix.

Examples

a <- matrix(1:16, ncol = 4)
isSymmetric(a) # FALSE
a <- asSymmetric(a) # copy lower triangle into upper triangle

bezier

bezier Computation of Bezier curve

Description

Computes the Bezier curve based on n + 1 control points using the De Casteljau’s method.

Usage

bezier(x, y, ngrid = 200)

Arguments
X,y vector giving the coordinates of the control points. Missing values are deleted.
ngrid number of elements in the grid used to compute the smoother.
Details
Given py, p1, - - - , Pr, control points the Bezier curve is given by B(t) defined as
s =(1) =3 (1)ia-rn
yt)) = \k |

where ¢ € [0, 1]. To evaluate the Bezier curve the De Casteljau’s method is used.

Value

A list containing xgrid and ygrid elements used to plot the Bezier curve.

Examples

a tiny example

x <- c(1.9, 0.25, 1.25, 2.5, 4.

y <- c(0.5, 2.00, 3.75, 4.0, 3.25,
plot(x, y, type = "0")

z <- bezier(x, y, ngrid = 50)
lines(z$xgrid, z$ygrid, lwd = 2, lty

00, 5.0)
25, 1.9)

2, col = "red")

other simple example

x <- c(4,6,4,5,6,7)

y <-1:6

plot(x, y, type = "0o")

z <- bezier(x, y, ngrid = 50)
lines(z$xgrid, z$ygrid, lwd = 2, 1ty

1
N

, col = "red")

6 bracket.prod
bracket.prod Bracket product
Description
Bracket product of a matrix and a 3-dimensional array.
Usage
bracket.prod(a, x)
Arguments
a a numeric matrix.
X a three-dimensional array.
Details
Let X = (x;;) be a 3-dimensional n x p x ¢ array and A an m x n matrix, then Y = [A][X] is

called the bracket product of A and X, that is an m X p x ¢ with elements
n
Ytij = Z Atk Lkij
k=1

Value

bracket.prod returns a 3-dimensional array of dimension m X p X q.

References

Wei, B.C. (1998). Exponential Family Nonlinear Models. Springer, New York.

See Also

array, matrix, array.mult.

Examples

x <- array(@, dim = c(2,3,3)) # 2 x 3 x 3 array
x[,,11 <- ¢c(1,2,2,4,3,6)

x[,,2] <- c(2,4,4,8,6,12)

x[,,3] <- ¢(3,6,6,12,9,18)

a <- matrix(1, nrow = 3, ncol = 2)

y <- bracket.prod(a, x) # a 3 x 3 x 3 array
y

cg 7

cg Solve linear systems using the conjugate gradients method

Description
Conjugate gradients (CG) method is an iterative algorithm for solving linear systems with positive
definite coefficient matrices.

Usage
cg(a, b, maxiter = 200, tol = le-7)

Arguments
a a symmetric positive definite matrix containing the coefficients of the linear sys-
tem.
b a vector of right-hand sides of the linear system.
maxiter the maximum number of iterations. Defaults to 200
tol tolerance level for stopping iterations.
Value

a vector with the approximate solution, the iterations performed are returned as the attribute ’itera-
tions’.
Warning

The underlying C code does not check for symmetry nor positive definitiveness.

References

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

Hestenes, M.R., Stiefel, E. (1952). Methods of conjugate gradients for solving linear equations.
Journal of Research of the National Bureau of Standards 49, 409-436.

See Also

jacobi, seidel, solve

Examples

a <- matrix(c(4,3,90,3,4,-1,0,-1,4), ncol = 3)
b <- c(24,30,-24)

z <- cg(a, b)

z # converged in 3 iterations

8 circulant

cholupdate Rank 1 update to Cholesky factorization

Description
function cholupdate, where R = chol(A) is the original Cholesky factorization of A, returns the
upper triangular Cholesky factor of A + xza”, with = a column vector of appropriate dimension.
Usage

cholupdate(r, x)

Arguments
r a upper triangular matrix, the Cholesky factor of matrix a.
X vector defining the rank one update.

References

Golub, G.H., Van Loan, C.F. (2013). Matrix Computations, 4th Edition. John Hopkins University
Press.

See Also
chol

Examples

a <- matrix(c(1,1,1,1,2,3,1,3,6), ncol = 3)
r <- chol(a)

x <- ¢(0,0,1)

b <- a + outer(x,x)

r1 <- cholupdate(r, x)

ri

all(r1 == chol(b)) # TRUE

circulant Form a symmetric circulant matrix

Description

Forms a symmetric circulant matrix using a backwards shift of its first column

Usage

circulant(x)

comm.info 9

Arguments

X the first column to form the circulant matrix.

Value

A symmetric circulant matrix.

Examples

x <- ¢(2,3,5,7,11,13)
circulant(x)

comm. info Compact information to construct the commutation matrix

Description

This function provides the minimum information required to create the commutation matrix.

The commutation matrix is a square matrix of order mn that, for an m x n matrix A, transform
vec(A) to vec(AT).

Usage

comm.info(m = 1, n = m, condensed = TRUE)

Arguments

m a positive integer row dimension.

n a positive integer column dimension.

condensed logical. Information should be returned in compact form?
Details

This function returns a list containing two vectors that represent an element of the commutation
matrix and is accesed by the indexes in vectors row and col. This information is used by func-
tion comm. prod to do some operations involving the commutation matrix without forming it. This
information also can be obtained using function commutation.

Value

A list containing the following elements:

row vector of indexes, each entry represents the row index of the commutation ma-
trix.
col vector of indexes, each entry represents the column index of the commutation

matrix. Only present if condensed = FALSE.
m positive integer, row dimension.

n positive integer, column dimension.

10 comm.prod

References
Magnus, J.R., Neudecker, H. (1979). The commutation matrix: some properties and applications.
The Annals of Statistics T, 381-394.

See Also

commutation, comm.prod

Examples

z <- comm.info(m = 3, n = 2, condensed = FALSE)
z # where are the ones in commutation matrix of order '3,2'?

K32 <- commutation(m = 3, n = 2, matrix = TRUE)
K32 # only recommended if m and n are very small

comm. prod Matrix multiplication envolving the commutation matrix

Description

Given the row and column dimensions of a commutation matrix K of order mn and a conformable
matrix @, performs one of the matrix-matrix operations:

Y = KX, ifside="1eft"” and transposed = FALSE, or

e Y = KTX,if side="1eft" and transposed = TRUE, or

Y = XK, if side="right" and transposed = FALSE, or
Y = XKT7,if side = "right" and transposed = TRUE.

The main aim of comm.prod is to do this matrix multiplication without forming the commutation
matrix.

Usage

comm.prod(m = 1, n =m, x = NULL, transposed = FALSE, side = "left")

Arguments
m a positive integer row dimension.
n a positive integer column dimension.
X numeric matrix (or vector).
transposed logical. Commutation matrix should be transposed?
side a string selecting if commutation matrix is pre-multiplying x, that is side =

"left" or post-multiplying x, by using side = "right".

commutation 11

Details

Underlying Fortran code only uses information provided by comm.info to performs the matrix
multiplication. The commutation matrix is never created.

See Also

commutation

Examples

K42 <- commutation(m = 4, n = 2, matrix = TRUE)
x <- matrix(1:24, ncol = 3)
y <= K42 %*% x

z <- comm.prod(m = 4, n = 2, x) # K42 is not stored

all(z == y) # matrices y and z are equal!
commutation Commutation matrix
Description

This function returns the commutation matrix of order mn which transforms, for an m X n matrix
A, vec(A) to vec(AT).

Usage

commutation(m = 1, n = m, matrix = FALSE, condensed = FALSE)

Arguments
m a positive integer row dimension.
n a positive integer column dimension.
matrix a logical indicating whether the commutation matrix will be returned.
condensed logical. Information should be returned in compact form?
Details

This function is a wrapper function for the function comm. info. This function provides the mini-
mum information required to create the commutation matrix. If option matrix = FALSE the commu-
tation matrix is stored in two vectors containing the coordinate list of indexes for rows and columns.
Option condensed = TRUE only returns vector of indexes for the rows of commutation matrix.

Warning: matrix = TRUE is not recommended, unless the order m and n be small. This matrix can
require a huge amount of storage.

Value

Returns an mn by mn matrix (if requested).

12 corAR1

References

Magnus, J.R., Neudecker, H. (1979). The commutation matrix: some properties and applications.
The Annals of Statistics T, 381-394.

Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics, 3rd Edition. Wiley, New York.
See Also

comm. info

Examples

z <- commutation(m = 100, condensed = TRUE)
object.size(z) # 40.6 Kb of storage

z <- commutation(m = 100, condensed
object.size(z) # 80.7 Kb of storage

FALSE)

K100 <- commutation(m = 100, matrix = TRUE) # time: < 2 secs
object.size(K100) # 400 Mb of storage, do not request this matrix!

a small example

K32 <- commutation(m = 3, n = 2, matrix = TRUE)
a <- matrix(1:6, ncol = 2)

v <- K32 %x% vec(a)

all(vec(t(a)) == as.vector(v)) # vectors are equal!
COrAR1 AR(1) Correlation Structure
Description

This function is a constructor for the corAR1 correlation matrix representing an autocorrelation
structure of order 1.

Usage

corAR1(rho, p = 2)

Arguments
rho the value of the lag 1 autocorrelation, which must be between -1 and 1.
p dimension of the requested correlation matrix.

Value

Returns a p by p matrix.

corCS 13

Examples

R <- corAR1(rho = 0.8, p = 5)

corCS Compound Symmetry Correlation Structure

Description

This function is a constructor for the corCS correlation matrix representing a compound symmetry
structure corresponding to uniform correlation.

Usage

corCS(rho, p = 2)

Arguments
rho the value of the correlation between any two correlated observations, which must
be between -1 and 1.
p dimension of the requested correlation matrix.
Value

Returns a p by p matrix.

Examples

R <- corCS(rho = 0.8, p = 5)

cov.MSSD Mean Square Successive Difference (MSSD) estimator of the covari-
ance matrix

Description

Returns a list containing the mean and covariance matrix of the data.

Usage
cov.MSSD(x)

Arguments

X a matrix or data frame. As usual, rows are observations and columns are vari-
ables.

cov.weighted

14
Details
This procedure uses the Holmes-Mergen method using the difference between each successive pairs
of observations also known as Mean Square Successive Method (MSSD) to estimate the covariance
matrix.
Value
A list containing the following named components:
mean an estimate for the center (mean) of the data.
cov the estimated covariance matrix.
References
Holmes, D.S., Mergen, A.E. (1993). Improving the performance of the 72 control chart. Quality
Engineering 5, 619-625.
See Also
cov and var.
Examples
X <- cbind(1:10, c(1:3, 8:5, 8:10))
z0 <- cov(x)
z0
z1 <- cov.MSSD(x)
z1
cov.weighted Weighted covariance matrices
Description
Returns a list containing estimates of the weighted mean and covariance matrix of the data.
Usage
cov.weighted(x, weights = rep(1, nrow(x)))
Arguments
X a matrix or data frame. As usual, rows are observations and columns are vari-
ables.
weights a non-negative and non-zero vector of weights for each observation. Its length

must equal the number of rows of x.

dupl.cross 15

Details

The covariance matrix is divided by the number of observations, which arise for instance, when
we use the class of elliptical contoured distributions. This differs from the behaviour of function
cov.wt.

Value

A list containing the following named components:

mean an estimate for the center (mean) of the data.
cov the estimated (weighted) covariance matrix.
References

Clarke, M.R.B. (1971). Algorithm AS 41: Updating the sample mean and dispersion matrix. Ap-
plied Statistics 20, 206-209.

See Also

cov.wt, cov and var.

Examples

x <= cbind(1:10, c(1:3, 8:5, 8:10))

z0@ <- cov.weighted(x) # all weights are 1

D2 <- Mahalanobis(x, center = z@$mean, cov = z@$cov)
p <- ncol(x)

wts <= (p + 1) / (1 + D2) # nice weights!

z1 <- cov.weighted(x, weights = wts)

z1

dupl.cross Matrix crossproduct envolving the duplication matrix

Description

Given the order of two duplication matrices and a conformable matrix X, this function performs
the operation: Y = Dg X Dy, where D,, and D;, are duplication matrices of order n and k,
respectively.

Usage
dupl.cross(n =1, k = n, x = NULL)

Arguments

order of the duplication matrix used pre-multiplying x.
k order of the duplication matrix used post-multiplying x. By default k = n is used.

X numeric matrix, this argument is required.

16 dupl.info

Details

This function calls dupl. prod to performs the matrix multiplications required but without forming
any duplication matrices.

See Also

dupl.prod

Examples

2, matrix = TRUE)

D2 <- duplication(n
D3 <- duplication(n = 3, matrix = TRUE)
x <= matrix(1, nrow = 9, ncol = 4)

y <= t(D3) %*% x %x% D2

z <- dupl.cross(n = 3, k = 2, x) # D2 and D3 are not stored
all(z == y) # matrices y and z are equal!

x <= matrix(1, nrow = 9, ncol = 9)
z <- dupl.cross(n = 3, x = x) # same matrix is used to pre- and post-multiplying x
z # print result

dupl.info Compact information to construct the duplication matrix

Description

This function provides the minimum information required to create the duplication matrix.

Usage

dupl.info(n = 1, condensed = TRUE)

Arguments

n order of the duplication matrix.

condensed logical. Information should be returned in compact form?
Details

This function returns a list containing two vectors that represent an element of the duplication ma-
trix and is accesed by the indexes in vectors row and col. This information is used by function
dupl.prod to do some operations involving the duplication matrix without forming it. This infor-
mation also can be obtained using function duplication

dupl.prod 17

Value

A list containing the following elements:

row vector of indexes, each entry represents the row index of the duplication matrix.
Only present if condensed = FALSE.
col vector of indexes, each entry represents the column index of the duplication
matrix.
order order of the duplication matrix.
See Also

duplication, dupl.prod

Examples

z <- dupl.info(n = 3, condensed = FALSE)
z # where are the ones in duplication of order 3?

D3 <- duplication(n = 3, matrix = TRUE)
D3 # only recommended if n is very small

dupl.prod Matrix multiplication envolving the duplication matrix

Description

Given the order of a duplication and a conformable matrix X, performs one of the matrix-matrix
operations:

Y =DX,if side="1eft" and transposed = FALSE, or

e Y = DTX,if side = "left" and transposed = TRUE, or

Y = XD, if side="right" and transposed = FALSE, or
Y = XD7 ifside = "right"” and transposed = TRUE,

where D is the duplication matrix of order n. The main aim of dupl.prod is to do this matrix
multiplication without forming the duplication matrix.

Usage

dupl.prod(n = 1, x, transposed = FALSE, side = "left")

Arguments
n order of the duplication matrix.
X numeric matrix (or vector).
transposed logical. Duplication matrix should be transposed?
side a string selecting if duplication matrix is pre-multiplying x, thatis side = "left"”

or post-multiplying x, by using side = "right".

18 duplication

Details
Underlying C code only uses information provided by dupl.info to performs the matrix multipli-
cation. The duplication matrix is never created.

See Also

duplication

Examples

D4 <- duplication(n = 4, matrix = TRUE)
x <= matrix(1, nrow = 16, ncol = 2)
y <- crossprod(D4, x)

z <- dupl.prod(n = 4, x, transposed = TRUE) # D4 is not stored

all(z == y) # matrices y and z are equal!
duplication Duplication matrix
Description

This function returns the duplication matrix of order n which transforms, for a symmetric matrix
A, vech(A) into vec(A).

Usage
duplication(n = 1, matrix = FALSE, condensed = FALSE)

Arguments
n order of the duplication matrix.
matrix a logical indicating whether the duplication matrix will be returned.
condensed logical. Information should be returned in compact form?.

Details

This function is a wrapper function for the function dupl.info. This function provides the mini-
mum information required to create the duplication matrix. If option matrix = FALSE the duplica-
tion matrix is stored in two vectors containing the coordinate list of indexes for rows and columns.
Option condensed = TRUE only returns vector of indexes for the columns of duplication matrix.

Warning: matrix = TRUE is not recommended, unless the order n be small. This matrix can require
a huge amount of storage.

Value

Returns an n? by n(n + 1)/2 matrix (if requested).

equilibrate 19

References

Magnus, J.R., Neudecker, H. (1980). The elimination matrix, some lemmas and applications. SIAM
Journal on Algebraic Discrete Methods 1, 422-449.

Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics, 3rd Edition. Wiley, New York.
See Also

dupl.info

Examples

z <- duplication(n = 100, condensed = TRUE)
object.size(z) # 40.5 Kb of storage

z <- duplication(n = 100, condensed
object.size(z) # 80.6 Kb of storage

FALSE)

D100 <- duplication(n = 100, matrix = TRUE)
object.size(D100) # 202 Mb of storage, do not request this matrix!

a small example
D3 <- duplication(n = 3, matrix = TRUE)
a <- matrix(c(1, 2, 3,

2, 3, 4,

3, 4, 5), nrow = 3)
upper <- vech(a)
v <- D3 %*% upper

all(vec(a) == as.vector(v)) # vectors are equal!
equilibrate Equilibration of a rectangular or symmetric matrix
Description

Equilibrate a rectangular or symmetric matrix using 2-norm.

Usage

equilibrate(x, scale = TRUE)

Arguments

X a numeric matrix.

scale a logical value, x must be scaled to norm unity?

20 frank

Value

For scale = TRUE, the equilibrated matrix. The scalings and an approximation of the condition
number, are returned as attributes "scales” and "condition”. If x is a rectangular matrix, only
the columns are equilibrated.

Examples

x <= matrix(c(1, 1
1, 2
1, 3,
1, 1
1, 2
1, 3,-1), ncol = 3, byrow = TRUE)
z <- equilibrate(x)
apply(z, 2, function(x) sum(x*2)) # all 1

XX <= crossprod(x)
equilibrate(xx)

frank Frank matrix

Description

This function returns the Frank matrix of order n.

Usage
frank(n = 1)

Arguments

n order of the Frank matrix.

Details
A Frank matrix of order n is a square matrix F,, = (f;;) defined as
n _j + 17 1< j7
0, t1>7+2
Value

Returns an n by n matrix.

geomean 21

References

Frank, W.L. (1958). Computing eigenvalues of complex matrices by determinant evaluation and by
methods of Danilewski and Wielandt. Journal of the Society for Industrial and Applied Mathematics
6, 378-392.

Examples

F5 <- frank(n = 5)
det(F5) # equals 1

geomean Geometric mean

Description

It calculates the geometric mean using a Fused-Multiply-and-Add (FMA) compensated scheme for
accurate computation of floating-point product.

Usage

geomean(x)

Arguments

X a numeric vector containing the sample observations.

Details

If x contains any non-positive values, geomean returns NA and a warning message is displayed.

The geometric mean is a measure of central tendency, which is defined as
n 1/n
G = Yrixo... 2, = (Hml) .
i=1

This procedure calculates the product required in the geometric mean safely using a compensated
scheme as proposed by Graillat (2009).
Value

The geometric mean of the sample, a non-negative number.

References

Graillat, S. (2009). Accurate floating-point product and exponentiation. [EEE Transactions on
Computers 58, 994-1000.

Oguita, T., Rump, S.M., Oishi, S. (2005). Accurate sum and dot product. SIAM Journal on Scientific
Computing 26, 1955-1988.

22 hadamard

See Also

mean, median.

Examples

set.seed(149)

X <= rlnorm(1000)
mean(x) # 1.68169
median(x) # ©.99663
geomean(x) # 1.01688

hadamard Hadamard product of two matrices

Description

This function returns the Hadamard or element-wise product of two matrices x and y, that have the
same dimensions.

Usage

hadamard(x, y = x)

Arguments
X a numeric matrix or vector.
y a numeric matrix or vector.
Value

A matrix with the same dimension of x (and y) which corresponds to the element-by-element prod-
uct of the two matrices.

References

Styan, G.P.H. (1973). Hadamard products and multivariate statistical analysis, Linear Algebra and
Its Applications 6, 217-240.

Examples

x <- matrix(rep(1:10, times = 5), ncol = 5)
y <- matrix(rep(1:5, each = 10), ncol = 5)
z <- hadamard(x, y)

z

harris.test 23

harris.test Test for variance homogeneity of correlated variables

Description

Performs large-sample methods for testing equality of p > 2 correlated variables.

Usage

harris.test(x, test = "Wald")

Arguments
X a matrix or data frame. As usual, rows are observations and columns are vari-
ables.
test test statistic to be used. One of "Wald" (default), "log", "robust" or "log-robust".
Value

A list of class harris.test’ with the following elements:

statistic value of the statistic, i.e. the value of either Wald test, using the log-transformation,
or distribution-robust versions of the test (robust and log-robust).

parameter the degrees of freedom for the test statistic, which is chi-square distributed.
p.value the p-value for the test.
estimate the estimated covariance matrix.
method a character string indicating what type of test was performed.
References

Harris, P. (1985). Testing the variance homogeneity of correlated variables. Biometrika 72, 103-
107.

Examples

x <- iris[,1:4]
z <- harris.test(x, test = "robust")
z

24 helmert

helmert Helmert matrix

Description

This function returns the Helmert matrix of order n.

Usage
helmert(n = 1)

Arguments

n order of the Helmert matrix.

Details

A Helmert matrix of order n is a square matrix defined as

1/v/n 1/v/n v ... 1/v/n

V2 —1/V2 0 0

H. — 1/V6 1/vV6 —2/V6 ... 0
i 1 1 R
\/n(n—l) \/n(n—l) \/n(n—l) e \/m

Helmert matrix is orthogonal and is frequently used in the analysis of variance (ANOVA).

Value

Returns an n by n matrix.

References

Lancaster, H.O. (1965). The Helmert matrices. The American Mathematical Monthly 72, 4-12.

Gentle, J.E. (2007). Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer,
New York.

Examples

n <- 1000
set.seed(149)
X <= rnorm(n)

H <- helmert(n)

object.size(H) # 7.63 Mb of storage
K <- H[2:n,]

z <= c(K %*% x)

sum(z*2) # 933.1736

is.lower.tri 25

same that
(n - 1) * var(x)

is.lower.tri Check if a matrix is lower or upper triangular

Description

Returns TRUE if the given matrix is lower or upper triangular matrix.

Usage

is.lower.tri(x, diag = FALSE)

is.upper.tri(x, diag = FALSE)

Arguments
X a matrix of other R object with length(dim(x)) = 2.
diag logical. Should the diagonal be included?

Value

Check if a matrix is lower or upper triangular. You can also include diagonal to the check.

See Also

lower.tri, upper.tri

Examples

x <= matrix(rnorm(1@ * 3), ncol = 3)
R <- chol(crossprod(x))

is.lower.tri(R)
is.upper.tri(R)

26 jacobi

jacobi Solve linear systems using the Jacobi method

Description

Jacobi method is an iterative algorithm for solving a system of linear equations.

Usage

jacobi(a, b, start, maxiter = 200, tol = 1e-7)

Arguments
a a square numeric matrix containing the coefficients of the linear system.
b a vector of right-hand sides of the linear system.
start a vector for initial starting point.
maxiter the maximum number of iterations. Defaults to 200
tol tolerance level for stopping iterations.
Details

Let D, L, and U denote the diagonal, lower triangular and upper triangular parts of a matrix A.
Jacobi’s method solve the equation Ax = b, iteratively by rewriting Dx + (L + U)x = b.
Assuming that D is nonsingular leads to the iteration formula

2 Y = _D YL+ U)z® + Db

Value
a vector with the approximate solution, the iterations performed are returned as the attribute ’itera-
tions’.

References

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also

seidel

Examples

a <- matrix(c(5,-3,2,-2,9,-1,3,1,-7), ncol = 3)
b <- c(-1,2,3)

start <- c(1,1,1)

z <- jacobi(a, b, start)

z # converged in 15 iterations

kronecker.prod 27

kronecker.prod Kronecker product on matrices

Description

Computes the kronecker product of two matrices, x and y.

Usage

kronecker.prod(x, y = x)

Arguments
X a numeric matrix or vector.
y a numeric matrix or vector.
Details

Let X beanm x nand Y a p x g matrix. The mp X nq matrix defined by

1‘11Y NN l‘mY

Tm1Y .. TomnY

is called the Kronecker product of X and Y.

Value

An array with dimensions dim(x) * dim(y).

References

Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics, 3rd Edition. Wiley, New York.

See Also

kronecker function from base package is based on outer. Our C version is slightly faster.

Examples

block diagonal matrix:

a <- diag(1:3)

b <- matrix(1:4, ncol = 2)
kronecker.prod(a, b)

examples with vectors
ones <- rep(1, 4)

28 krylov

y <= 1:3
kronecker.prod(ones, y) # 12-dimensional vector
kronecker.prod(ones, t(y)) # 3 x 3 matrix

krylov Computes a Krylov matrix

Description

Given A an n by n real matrix and an n-vector b, this function constructs the Krylov matrix K,
where

K = [b, Ab,..., A" 1b].

Usage

krylov(a, b, m = ncol(a))

Arguments
a a numeric square matrix of order n by n for which the Krylov matrix is to be
computed.
b a numeric vector of length n.
m length of the Krylov sequence.
Value

Returns an n by m matrix.

Examples

a <- matrix(c(1, 3, 2, -5, 1, 7, 1, 5, -4), ncol = 3, byrow = TRUE)
b <-c(1, 1, 1)

k <- krylov(a, b, m = 4)

k

kurtosis 29

kurtosis Mardia’s multivariate skewness and kurtosis coefficients

Description

Functions to compute measures of multivariate skewness (b1,,) and kurtosis (b2,,) proposed by Mar-
dia (1970),

hy = 1 32 Yol =S s -2

and

%}j 2~ 3)"S 7 (w; - @))°.

Usage

kurtosis(x)

skewness(x)

Arguments

X matrix of data with, say, p columns.

References

Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika
57, 519-530.

Mardia, K.V., Zemroch, P.J. (1975). Algorithm AS 84: Measures of multivariate skewness and
kurtosis. Applied Statistics 24, 262-265.

Examples

setosa <- iris[1:50,1:4]
kurtosis(setosa)
skewness(setosa)

30 1di

1d1 The LDL decomposition

Description

Compute the LDL decomposition of a real symmetric matrix.

Usage
1d1(x)

Arguments

X a symmetric numeric matrix whose LDL decomposition is to be computed.

Value

The factorization has the form X = LDL”, where D is a diagonal matrix and L is unitary lower
triangular.

The LDL decomposition of is returned as a list with components:

lower the unitary lower triangular factor L.
d a vector containing the diagonal elements of D.
References

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also
chol

Examples

a <- matrix(c(2,-1,0,-1,2,-1,0,-1,1), ncol = 3)
z <- 1d1(a)
z # information of LDL factorization

computing det(a)
prod(z$d) # product of diagonal elements of D

a non-positive-definite matrix

m <- matrix(c(5,-5,-5,3), ncol = 2)
try(chol(m)) # fails

1d1(m)

Iu 31

1u The LU factorization of a square matrix

Description

lu computes the LU factorization of a matrix.

Usage

lu(x)
Default S3 method:
lu(x)

S3 method for class 'lu'
solve(a, b, ...)

is.lu(x)
Arguments
X a square numeric matrix whose LU factorization is to be computed.
a an LU factorization of a square matrix.
b a vector or matrix of right-hand sides of equations.
further arguments passed to or from other methods
Details

The LU factorization plays an important role in many numerical procedures. In particular it is the
basic method to solve the equation Ax = b for given matrix A, and vector b.

solve. lu is the method for solve for lu objects.
is.lureturns TRUE if x isa 1list and inherits from "1u".

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the Fortran code.

Value

The LU factorization of the matrix as computed by LAPACK. The components in the returned value
correspond directly to the values returned by DGETRF.

1u a matrix with the same dimensions as x. The upper triangle contains the U of
the decomposition and the strict lower triangle contains information on the L of
the factorization.

pivot information on the pivoting strategy used during the factorization.

32 lu-methods

Note

To compute the determinant of a matrix (do you really need it?), the LU factorization is much more
efficient than using eigenvalues (eigen). See det.

LAPACK uses column pivoting and does not attempt to detect rank-deficient matrices.

References

Anderson. E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A. Sorensen, D. (1999). LAPACK Users’ Guide, 3rd Edi-
tion. SIAM.

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also

extractlL, extractU, constructX for reconstruction of the matrices, lu2inv

Examples

a <- matrix(c(3,2,6,17,4,18,10,-2,-12), ncol = 3)
z <- lu(a)
z # information of LU factorization

computing det(a)
prod(diag(z$lu)) # product of diagonal elements of U

solve linear equations
b <- matrix(1:6, ncol = 2)
solve(z, b)

lu-methods Reconstruct the L, U, or X Matrices from an LU object

Description
Returns the original matrix from which the object was constructed or the components of the factor-
ization.

Usage

constructX(x)
extractL(x)
extractU(x)

Arguments

X object representing an LU factorization. This will typically have come from a
previous call to 1u.

Iu2inv 33

Value

constructX returns X, the original matrix from which the l1u object was constructed (because of
the pivoting the X matrix is not exactly the product between L and U).

extractL returns L. This may be pivoted.

extractU returns U.

See Also
lu.

Examples

<- matrix(c(10,-3,5,-7,2,-1,0,6,5), ncol = 3)
<- lu(a)
<- extractL(z)

cCrr— N O

<- extractU(z)
u

X <- constructX(z)
all(a == X)

lu2inv Inverse from LU factorization

Description

Invert a square matrix from its LU factorization.

Usage
lu2inv(x)
Arguments
X object representing an LU factorization. This will typically have come from a
previous call to 1u.
Value

The inverse of the matrix whose LU factorization was given.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the Fortran code.

Source

This is an interface to the LAPACK routine DGETRI. LAPACK is from https://netlib.org/
lapack/ and its guide is listed in the references.

https://netlib.org/lapack/
https://netlib.org/lapack/

34 Mahalanobis

References

Anderson. E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A. Sorensen, D. (1999). LAPACK Users’ Guide, 3rd Edi-
tion. SIAM.

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.
See Also

lu, solve.

Examples

a <- matrix(c(3,2,6,17,4,18,10,-2,-12), ncol = 3)
z <- lu(a)
a %*% lu2inv(z)

Mahalanobis Mahalanobis distance

Description

Returns the squared Mahalanobis distance of all rows in & and the vector p = center with respect
to X = cov. This is (for vector) defined as

D*=(z—p)"E (z - p)

Usage

Mahalanobis(x, center, cov, inverted = FALSE)

Arguments
X vector or matrix of data. As usual, rows are observations and columns are vari-
ables.
center mean vector of the distribution.
cov covariance matrix (p x p) of the distribution, must be positive definite.
inverted logical. If TRUE, cov is supposed to contain the inverse of the covariance matrix.
Details

Unlike function mahalanobis, the covariance matrix is factorized using the Cholesky decomposi-
tion, which allows to assess if cov is positive definite. Unsuccessful results from the underlying
LAPACK code will result in an error message.

See Also

cov, mahalanobis

matrix.inner 35

Examples

X <= cbind(1:6, 1:3)

xbar <- colMeans(x)

S <- matrix(c(1,4,4,1), ncol = 2) # is negative definite
D2 <- mahalanobis(x, center = xbar, S)

all(D2 >= @) # several distances are negative

next command produces the following error:
Covariance matrix is possibly not positive-definite
Not run: D2 <- Mahalanobis(x, center = xbar, S)

matrix.inner Compute the inner product between two rectangular matrices

Description

Computes the inner product between two rectangular matrices calling BLAS.

Usage

matrix.inner(x, y = x)

Arguments
X a numeric matrix.
y a numeric matrix.
Value

a real value, indicating the inner product between two matrices.

Examples

x <- matrix(c(1, 1
, 2
» 3,
, 1
, 2,71,

, 3,-1), ncol = 3, byrow = TRUE)
y <- matrix(1, nrow = 6, ncol = 3)
matrix.inner(x, y)

—_ A g a4

must be equal
matrix.norm(x, type = "Frobenius")*2
matrix.inner(x)

36 matrix.norm

matrix.norm Compute the norm of a rectangular matrix

Description

Computes a matrix norm of x using LAPACK. The norm can be the one (”1") norm, the infin-
ity ("inf") norm, the Frobenius norm, the maximum modulus ("maximum”) among elements of a
matrix, as determined by the value of type.

Usage
matrix.norm(x, type = "Frobenius")
Arguments
X a numeric matrix.
type character string, specifying the type of matrix norm to be computed. A character
indicating the type of norm desired.
"1" specifies the one norm, (maximum absolute column sum);
"Inf" specifies the infinity norm (maximum absolute row sum);
"Frobenius” specifies the Frobenius norm (the Euclidean norm of x treated
as if it were a vector);
"maximum” specifies the maximum modulus of all the elements in x.
Details

As function norm in package base, method of matrix.norm calls the LAPACK function DLANGE.

Note that the 1-, Inf- and maximum norm is faster to calculate than the Frobenius one.

Value

The matrix norm, a non-negative number.

Examples

a tiny example

x <- matrix(c(1, 1, 1,

1, 2, 1,

1, 3, 1,

1, 1,-1,

1, 2,-1,

1, 3,-1), ncol = 3, byrow = TRUE)
matrix.norm(x, type = "Frobenius”)
matrix.norm(x, type = "1")
matrix.norm(x, type = "Inf")

an example not that small

mediancenter 37

n <- 1000
X <= .5 % diag(n) + 0.5 * matrix(1, nrow = n, ncol = n)
matrix.norm(x, type = "Frobenius")
matrix.norm(x, type = "1")
matrix.norm(x, type = "Inf")
matrix.norm(x, type = "maximum”) # equal to 1
mediancenter Mediancenter
Description

It calculates the mediancenter (or geometric median) of multivariate data.

Usage
mediancenter(x)
Arguments
X a matrix or data frame. As usual, rows are observations and columns are vari-
ables.
Details

The mediancenter for a sample of multivariate observations is computed using a steepest descend
method combined with bisection. The mediancenter invariant to rotations of axes and is useful as a
multivariate generalization of the median of univariate sample.

Value

A list containing the following named components:

median an estimate for the mediancenter of the data.
iter the number of iterations performed, it is negative if a degenerate solution is
found.
References

Gower, J.C. (1974). Algorithm AS 78: The mediancentre. Applied Statistics 23, 466-470.

See Also

cov.wt, median.

38 minkowski

Examples

X <- cbind(1:10, c(1:3, 8:5, 8:10))

z <- mediancenter(x)$median # degenerate solution
xbar <- colMeans(x)

plot(x, xlab = "", ylab = "")

points(x = xbar[1], y = xbar[2], pch = 16, col = "re

d"
points(x = z[1], y = z[2], pch = 3, col = "blue”", 1lwd =

2)

minkowski Computes the p-norm of a vector

Description

Computes a p-norm of vector . The norm can be the one (p = 1) norm, Euclidean (p = 2) norm,
the infinity (p = Inf) norm. The underlying C or Fortran code is inspired on ideas of BLAS Level
1.

Usage

minkowski(x, p = 2)

Arguments
X a numeric vector.
p a number, specifying the fype of norm desired. Possible values include real
number greater or equal to 1, or Inf, Default value is p = 2.
Details

Method of minkowski for p = Inf calls idamax BLAS function. For other values, C or Fortran
subroutines using unrolled cycles are called.

Value

The vector p-norm, a non-negative number.

Examples

a tiny example
X <= rnorm(1000)
minkowski(x, p = 1)
minkowski(x, p = 1.5)
minkowski(x, p = 2)
minkowski(x, p = Inf)

X <= x / minkowski(x)
minkowski(x, p = 2) # equal to 1

moments 39

moments Central moments

Description
It calculates up to fourth central moments (or moments about the mean), and the skewness and
kurtosis coefficients using an online algorithm.

Usage

moments(x)

Arguments

X a numeric vector containing the sample observations.

Details

The k-th central moment is defined as

i=1
In particular, the second central moment is the variance of the sample. The sample skewness and
kurtosis are defined, respectively, as
ms
b = — I
! s37 s
where s denotes de standard deviation.
Value
A list containing second, third and fourth central moments, and skewness and kurtosis coef-
ficients.
References
Spicer, C.C. (1972). Algorithm AS 52: Calculation of power sums of deviations about the mean.
Applied Statistics 21, 226-227.
See Also

var.

Examples

set.seed(149)

X <= rnorm(1000)
z <- moments(x)
z

40 ols

ols Fit linear regression model

Description

Returns an object of class "ols” that represents a linear model fit.

Usage
ols(formula, data, subset, na.action, method = "qr"”, tol = le-7, maxiter = 100,
model = FALSE, x = FALSE, y = FALSE, contrasts = NULL, ...)
Arguments
formula an object of class "formula” (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted.
data an optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which ols is called.
subset an optional vector specifying a subset of observations to be used in the fitting
process.
na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset.
method the least squares fitting method to be used; the options are "cg” (conjugate gra-
dients), "chol”, "gr" (the default), "svd" and "sweep".
tol tolerance for the conjugate gradients (gc) method. Default is tol = 1e-7.
maxiter The maximum number of iterations for the conjugate gradients (gc) method.
Defaults to 100.
model, x, y logicals. If TRUE the corresponding components of the fit (the model frame, the
model matrix, the response) are returned.
contrasts an optional list. See the contrasts.arg of model.matrix.default.
additional arguments (currently disregarded).
Value

ols returns an object of class "ols".

The function summary is used to obtain and print a summary of the results. The generic accessor
functions coefficients, fitted.values and residuals extract various useful features of the
value returned by ols.

An object of class "o0ls" is a list containing at least the following components:

coefficients a named vector of coefficients

ols.fit 41

residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

RSS the residual sum of squares.
cov.unscaled a p x p matrix of (unscaled) covariances of the Bj, i=1...,p.
call the matched call.
terms the terms object used.
contrasts (only where relevant) the contrasts used.
y if requested, the response used.
X if requested, the model matrix used.
model if requested (the default), the model frame used.
See Also

ols.fit, Im, 1sfit

Examples

tiny example of regression
y <_ c(1! 3! 3! 2! 2’ 1)
x <- matrix(c(1, 1,

1
2, 1
3, 1,
1,-1
2

’

’_1 ’

3,-1), ncol = 2, byrow = TRUE)
fo <- ols(y ~ x) # intercept is included by default
fo # printing results (QR method was used)

f1 <- ols(y ~ x, method = "svd") # using SVD method instead
f1

ols.fit Fitter Functions for Linear Models

Description

This function is a switcher among various numerical fitting functions (ols.fit.cg, ols.fit.chol,
ols.fit.qr,ols.fit.svd and ols.fit.sweep). The argument method does the switching: "qr"
for ols.fit.qr, etc. This should usually not be used directly unless by experienced users.

Usage

ols.fit(x, y, method = "gr", tol = 1e-7, maxiter = 100)

42

Arguments

X

y
method

tol

maxiter

Value

ols.fit-methods

design matrix of dimension n X q.
vector of observations of length n.

currently, methods "cg"”, "chol”, "qr" (default), "svd"” and "sweep" are sup-
ported.

tolerance for the conjugate gradients (gc) method. Default is tol = 1e-7.

The maximum number of iterations for the conjugate gradients (gc) method.
Defaults to 100.

a list with components:

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

RSS the residual sum of squares.

cov.unscaled a p X p matrix of (unscaled) covariances of the Bj, i=1...,p.
See Also

ols.fit.cg,ols.fit.chol, ols.fit.qr, ols.fit.svd, ols.fit.sweep.
Examples

set.seed(151)

n <- 100

p <-2

x <= matrix(rnorm(n * p), n, p) # no intercept!
y <= rnorm(n)
fm <- ols.fit(x = x, y =y, method = "chol”)

fm

ols.fit-methods Fit a Linear Model

Description

Fits a linear model, returning the bare minimum computations.

Usage

ols.fit.
ols.fit.
ols.fit.
ols.fit.
ols.fit.

cg(x, y, tol = 1e-7, maxiter = 100)

chol(x, y)
ar(x, y)
svd(x, y)

sweep(x, ¥)

power.method 43

Arguments
X,y numeric vectors or matrices for the predictors and the response in a linear model.
Typically, but not necessarily, x will be constructed by one of the fitting func-
tions.
tol tolerance for the conjugate gradients (gc) method. Default is tol = 1e-7.
maxiter The maximum number of iterations for the conjugate gradients (gc) method.
Defaults to 100.
Value

The bare bones of an ols object: the coefficients, residuals, fitted values, and some information
used by summary.ols.

See Also

ols, ols.fit, 1m

Examples

set.seed(151)

<- 100

<-2

<- matrix(rnorm(n * p), n, p) # no intercept!
<- rnorm(n)

<- ols.fit.chol(x, y)

N N < X T S

power .method Power method to approximate dominant eigenvalue and eigenvector

Description

The power method seeks to determine the eigenvalue of maximum modulus, and a corresponding
eigenvector.

Usage

power.method(x, only.value = FALSE, maxiter = 100, tol = 1e-8)

Arguments
X a symmetric matrix.
only.value if TRUE, only the dominant eigenvalue is returned, otherwise both dominant
eigenvalue and eigenvector are returned.
maxiter the maximum number of iterations. Defaults to 100

tol a numeric tolerance.

44 ridge

Value

When only.value is not true, as by default, the result is a list with components "value” and
"vector”. Otherwise only the dominan eigenvalue is returned. The performed number of iterations
to reach convergence is returned as attribute "iterations”.

See Also

eigen for eigenvalues and eigenvectors computation.

Examples

n <- 1000
X <= .5 % diag(n) + 0.5 * matrix(1, nrow = n, ncol = n)

dominant eigenvalue must be (n + 1) / 2
z <- power.method(x, only.value = TRUE)

ridge Ridge regression

Description

Fit a linear model by ridge regression, returning an object of class "ridge".

Usage

ridge(formula, data, subset, lambda = 1.0, method = "GCV", ngrid = 200, tol = 1e-07,
maxiter = 5@, na.action, model = FALSE, x = FALSE, y = FALSE, contrasts = NULL, ...)

Arguments

formula an object of class "formula” (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which ridge is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset.

lambda a scalar or vector of ridge constants. A value of 0 corresponds to ordinary least

squares.

ridge

method

ngrid

tol
maxiter

model, x, y

contrasts

Details

45

the method for choosing the ridge parameter lambda. If method = "none”, then
lambda is ’fixed’. If method = "GCV" (the default) then the ridge parameter is
chosen automatically using the generalized cross validation (GCV) criterion.
For method = "grid", optimal value of lambda is selected computing the GCV
criterion over a grid. If method = "MSE" the optimal ridge parameter is selected
minimizing the mean squared estimation error criterion, this is the ORPS1 sub-
routine by Lee (1987).

number of elements in the grid used to compute the GCV criterion. Only re-
quired if method = "grid” and lambda is a scalar.

tolerance for the optimization of the GCV criterion. Default is 1e-7.
maximum number of iterations. The default is 50.

logicals. If TRUE the corresponding components of the fit (the model frame, the
model matrix, the response) are returned.

an optional list. See the contrasts.arg of model.matrix.default.

additional arguments to be passed to the low level regression fitting functions
(not implemented).

ridge function fits in linear ridge regression without scaling or centering the regressors and the
response. In addition, If an intercept is present in the model, its coefficient is penalized.)

Value

A list with the following components:

dims
coefficients
scale
fitted.values
residuals
RSS

edf

GCV

HKB

LW

lambda

optimal

iterations

call

terms

dimensions of model matrix.

a named vector of coefficients.

a named vector of coefficients.

the fitted mean values.

the residuals, that is response minus fitted values.
the residual sum of squares.

the effective number of parameters.

vector (if method = "grid") of GCV values.
HKB estimate of the ridge constant.

LW estimate of the ridge constant.

vector (if method = "grid") of lambda values; otherwise, for methods method
= "none", "GCV" or "MSE", the value of ridge parameter used by the algorithm.

value of lambda with the minimum GCV (only relevant if method = "grid").

number of iterations performed by the algorithm (only relevant if method =
“MSEII).

the matched call.

the terms object used.

46 seidel

contrasts (only where relevant) the contrasts used.

y if requested, the response used.

X if requested, the model matrix used.

model if requested, the model frame used.
References

Golub, G.H., Heath, M., Wahba, G. (1979). Generalized cross-validation as a method for choosing
a good ridge parameter. Technometrics 21, 215-223.

Hoerl, A.E., Kennard, R.W., Baldwin, K.F. (1975). Ridge regression: Some simulations. Commu-
nication in Statistics 4, 105-123.

Hoerl, A.E., Kennard, R.W. (1970). Ridge regression: Biased estimation of nonorthogonal prob-
lems. Technometrics 12, 55-67.

Lawless, J.F., Wang, P. (1976). A simulation study of ridge and other regression estimators. Com-
munications in Statistics 5, 307-323.

Lee, T.S (1987). Algorithm AS 223: Optimum ridge parameter selection. Applied Statistics 36,
112-118.

See Also

Im, ols

Examples

z <- ridge(GNP.deflator ~ ., data = longley, lambda = 4, method = "grid")
z # ridge regression on a grid over seq(@, 4, length = 200)

z <- ridge(GNP.deflator ~ ., data = longley)
z # ridge parameter selected using GCV (default)

seidel Solve linear systems using the Gauss-Seidel method

Description

Gauss-Seidel method is an iterative algorithm for solving a system of linear equations.

Usage

seidel(a, b, start, maxiter = 200, tol = 1e-7)

Arguments
a a square numeric matrix containing the coefficients of the linear system.
b a vector of right-hand sides of the linear system.
start a vector for initial starting point.
maxiter the maximum number of iterations. Defaults to 200

tol tolerance level for stopping iterations.

sherman.morrison 47

Details

Let D, L, and U denote the diagonal, lower triangular and upper triangular parts of a matrix A.
Gauss-Seidel method solve the equation Az = b, iteratively by rewriting (L + D)x + Ux = b.
Assuming that L + D is nonsingular leads to the iteration formula

z*Y) = (L+ D) 'Uz™ + (L + D) 'b

Value
a vector with the approximate solution, the iterations performed are returned as the attribute ’itera-
tions’.

References

Golub, G.H., Van Loan, C.F. (1996). Matrix Computations, 3rd Edition. John Hopkins University
Press.

See Also

jacobi

Examples

a <- matrix(c(5,-3,2,-2,9,-1,3,1,-7), ncol = 3)
b <- c(-1,2,3)

start <- c¢(1,1,1)

z <- seidel(a, b, start)

z # converged in 10 iterations

sherman.morrison Sherman-Morrison formula

Description

The Sherman-Morrison formula gives a convenient expression for the inverse of the rank 1 update
(A + bd") where A is an x n matrix and b, d are n-dimensional vectors. Thus

A TbdT AT
A =1 _ po-1_ 22 7 7
(A+bd) 1+dTA b
Usage

sherman.morrison(a, b, d = b, inverted = FALSE)

Arguments
a a numeric matrix.
b a numeric vector.
d a numeric vector.

inverted logical. If TRUE, a is supposed to contain its inverse.

48 sweep.operator

Details

Method of sherman.morrison calls BLAS level 2 subroutines DGEMV and DGER for computational
efficiency.

Value

a square matrix of the same order as a.

Examples

n<-10

ones <- rep(1, n)

a <- 0.5 * diag(n)

z <- sherman.morrison(a, ones, 0.5 * ones)
z

sweep.operator Gauss-Jordan sweep operator for symmetric matrices

Description

Perform the sweep operation (or reverse sweep) on the diagonal elements of a symmetric matrix.

Usage

sweep.operator(x, k = 1, reverse = FALSE)

Arguments
X a symmetric matrix.
k elements (if k is vector) of the diagonal which will be sweeped.
reverse logical. If reverse = TRUE the reverse sweep is performed.
Details

The symmetric sweep operator is a powerful tool in computational statistics with uses in stepwise
regression, conditional multivariate normal distributions, MANOVA, and more.

Value

a square matrix of the same order as x.

References

Goodnight, J.H. (1979). A tutorial on the SWEEP operator. The American Statistician 33, 149-158.

symm.info 49

Examples

[

tiny example of regression, last column contains 'y
xy <- matrix(c(1, 1, 1, 1,

1, 2, 1, 3,
1, 3, 1, 3,
1, 1,-1, 2,
1, 2,-1, 2,
1, 3,-1, 1), ncol = 4, byrow = TRUE)

z <- crossprod(xy)

z <- sweep.operator(z, k = 1:3)

cf <- z[1:3,4] # regression coefficients
RSS <- z[4,4] # residual sum of squares

an example not that small

x <= matrix(rnorm(1000 * 100), ncol = 100)
xx <= crossprod(x)

z <- sweep.operator(xx, k = 1)

symm. info Compact information to construct the symmetrizer matrix

Description

This function provides the information required to create the symmetrizer matrix.

Usage

symm.info(n = 1)

Arguments

n order of the symmetrizer matrix.

Details

This function returns a list containing vectors that represent an element of the symmetrizer matrix
and is accesed by the indexes in vectors row, col and values contained in val. This information
is used by function symm.prod to do some operations involving the symmetrizer matrix without
forming it. This information also can be obtained using function symmetrizer.

Value

A list containing the following elements:

row vector of indexes, each entry represents the row index of the symmetrizer matrix.

col vector of indexes, each entry represents the column index of the symmetrizer
matrix.

val vector of values, each entry represents the value of the symmetrizer matrix at

element given by row and col indexes.
order order of the symmetrizer matrix.

50 symm.prod

See Also

symmetrizer, symm.prod

Examples

z <- symm.info(n = 3)
z # elements in symmetrizer matrix of order 3

N3 <- symmetrizer(n = 3, matrix = TRUE)
N3 # only recommended if n is very small

symm. prod Matrix multiplication envolving the symmetrizer matrix

Description

Given the order of a symmetrizer matrix N of order n and a conformable matrix X, performs one
of the matrix-matrix operations:

* Y = NX,if side ="left", or
* Y = XN, if side ="right",

The main aim of symm.prod is to do this matrix multiplication without forming the symmetrizer
matrix.

Usage

symm.prod(n = 1, x = NULL, side = "left")

Arguments
n order of the symmetrizer matrix.
X numeric matrix (or vector).
side a string selecting if symmetrizer matrix is pre-multiplying X, that is side =
"left" or post-multiplying X, by using side = "right".
Details

Underlying C code only uses information provided by symm. info to performs the matrix multipli-
cation. The symmetrizer matrix is never created.

See Also

symmetrizer

symmetrizer 51

Examples

N4 <- symmetrizer(n = 4, matrix = TRUE)
X <- matrix(1:32, ncol = 2)
y <= N4 %x% x

z <- symm.prod(n = 4, x) # N4 is not stored

all(z == y) # matrices y and z are equal!
symmetrizer Symmetrizer matrix
Description

This function returns the symmetrizer matrix of order n which transforms, for every n X n matrix
A, vec(A) into vec((A + AT)/2).

Usage

symmetrizer(n = 1, matrix = FALSE)

Arguments

n order of the symmetrizer matrix.

matrix a logical indicating whether the symmetrizer matrix will be returned.
Details

This function is a wrapper function for the function symm. info. This function provides the infor-
mation required to create the symmetrizer matrix. If option matrix = FALSE the symmetrizer matrix
is stored in three vectors containing the coordinate list of indexes for rows, columns and the values.

Warning: matrix = TRUE is not recommended, unless the order n be small. This matrix can require
a huge amount of storage.
Value

Returns an n? by n? matrix (if requested).

References

Abadir, K.M., Magnus, J.R. (2005). Matrix Algebra. Cambridge University Press.

Magnus, J.R., Neudecker, H. (2007). Matrix Differential Calculus with Applications in Statistics
and Econometrics, 3rd Edition. Wiley, New York.

See Also

symm.info

52

Examples

z <- symmetrizer(n = 100)
object.size(z) # 319 Kb of storage

N100 <- symmetrizer(n = 100, matrix = TRUE) # time: < 2 secs
object.size(N10@) # 800 Mb of storage, do not request this matrix!

a small example

N3 <- symmetrizer(n = 3, matrix = TRUE)

a <- matrix(rep(c(2,4,6), each = 3), ncol = 3)
a

b <- 0.5 x (a + t(a))

vee

b
v <- N3 %*% vec(a)
all(vec(b) == as.vector(v)) # vectors are equal!
vec Vectorization of a matrix
Description

This function returns a vector obtained by stacking the columns of X.

Usage

vec(x)

Arguments

X a numeric matrix.

Value

Let X be a n by m matrix, then vec(X) is a nm-dimensional vector.

Examples

x <- matrix(rep(1:10, each = 10), ncol = 10)
X

y <- vec(x)

y

vech 53

vech Vectorization the lower triangular part of a square matrix

Description

This function returns a vector obtained by stacking the lower triangular part of a square matrix.

Usage

vech(x)

Arguments

X a square matrix.

Value

Let X be a n by n matrix, then vech(X) is a n(n + 1)/2-dimensional vector.

Examples

x <- matrix(rep(1:10, each = 10), ncol = 10)
X

y <- vech(x)

y

whitening Whitening transformation

Description

Applies the whitening transformation to a data matrix based on the Cholesky decomposition of the
empirical covariance matrix.

Usage

whitening(x, Scatter = NULL)

Arguments
X vector or matrix of data with, say, p columns.
Scatter covariance (or scatter) matrix (p X p) of the distribution, must be positive definite.

If NULL, the covariance matrix is estimated from the data.

54 wilson.hilferty

Value
Returns the whitened data matrix Z = X W7, where
Wiw =871,

with S the empirical covariance matrix.

References

Kessy, A., Lewin, A., Strimmer, K. (2018). Optimal whitening and decorrelation. The American
Statistician 72, 309-314.

Examples

X <- iris[,1:4]
species <- iris[,5]
pairs(x, col = species) # plot of Iris

whitened data
z <- whitening(x)
pairs(z, col = species) # plot of

wilson.hilferty Wilson-Hilferty transformation

Description

Returns the Wilson-Hilferty transformation of random variables with chi-squared distribution.

Usage

wilson.hilferty(x)

Arguments

X vector or matrix of data with, say, p columns.

Details

Let F = D? /p be a random variable, where D? denotes the squared Mahalanobis distance defined
as
D?=(z—p)'s(z—p)

Thus the Wilson-Hilferty transformation is given by

1/3 2
_ PP --g)
Z= (2)1/2

9p
and z is approximately distributed as a standard normal distribution. This is useful, for instance, in

the construction of QQ-plots.

wilson.hilferty 55

References

Wilson, E.B., and Hilferty, M.M. (1931). The distribution of chi-square. Proceedings of the Na-
tional Academy of Sciences of the United States of America 17, 684-688.

See Also

cov, Mahalanobis

Examples

X <- iris[,1:4]

z <- wilson.hilferty(x)

par(pty = "s")

ggnorm(z, main = "Transformed distances Q-Q plot")
abline(c(@,1), col = "red"”, 1lwd = 2, 1ty = 2)

Index

x algebra
array.mult, 3
bracket.prod, 6
cg, 7
cholupdate, 8
circulant, 8
comm. prod, 10
commutation, 11
dupl.cross, 15
dupl.prod, 17
duplication, 18
equilibrate, 19
frank, 20
hadamard, 22
helmert, 24
jacobi, 26
1d1, 30
1u, 31
lu-methods, 32
lu2inv, 33
power .method, 43
seidel, 46

sherman.morrison, 47
sweep.operator, 48

symm. prod, 50
symmetrizer, 51
* array
array.mult, 3
asSymmetric, 4
bracket.prod, 6
cg, 7
cholupdate, 8
circulant, 8
comm.info, 9
comm. prod, 10
commutation, 11
corAR1, 12
corCS, 13
dupl.cross, 15

56

dupl.info, 16
dupl.prod, 17
duplication, 18
equilibrate, 19
frank, 20
hadamard, 22
helmert, 24
is.lower.tri, 25
jacobi, 26
kronecker.prod, 27
krylov, 28

1d1, 30

1u, 31
lu-methods, 32
lu2inv, 33
matrix.inner, 35
matrix.norm, 36
ols.fit, 41
ols.fit-methods, 42
power.method, 43
seidel, 46
sherman.morrison, 47
sweep.operator, 48
symm. info, 49
symm. prod, 50
symmetrizer, 51
vec, 52

vech, 53

* htest

harris.test, 23

* math

matrix.inner, 35
matrix.norm, 36
minkowski, 38

* models

ridge, 44

* multivariate

cov.MSSD, 13
cov.weighted, 14

INDEX

kurtosis, 29
Mahalanobis, 34
mediancenter, 37
whitening, 53
wilson.hilferty, 54
* regression
ols, 40
ols.fit, 41
ols.fit-methods, 42
* smooth
bezier, 5
* univar
geomean, 21
moments, 39

array, 3,6
array.mult, 3, 6
as.data.frame, 40, 44
asSymmetric, 4

bezier, 5
bracket.prod, 3, 6

cg, 7

chol, 8, 30
cholupdate, 8
circulant, 8
class, 40
comm.info,9, 11, 12
comm.prod, 9, 10, 10
commutation, 9-71, 11
constructX, 32
constructX (lu-methods), 32
corAR1, 12

corCS, 13

cov, 14, 15, 34, 55
cov.MSSD, 13
cov.weighted, 14
cov.wt, 15, 37

det, 32

dupl.cross, 15
dupl.info, 16, I8, 19
dupl.prod, 16, 17,17
duplication, 16-18, 18

eigen, 32,44
equilibrate, 19
extractL, 32

extractL (lu-methods), 32
extractu, 32
extractU (lu-methods), 32

formula, 40, 44
frank, 20

geomean, 21

hadamard, 22
harris.test, 23
helmert, 24

inherits, 31
is.lower.tri, 25
is.1lu(1u), 31

is.upper.tri (is.lower.tri), 25

jacobi, 7, 26,47

kronecker, 27
kronecker.prod, 27
krylov, 28
kurtosis, 29

1d1, 30

list, 31,42
1m, 41,43, 46
lower.tri, 25
1sfit, 41

1u, 31, 32-34
lu-methods, 32
lu2inv, 32, 33

Mahalanobis, 34, 55
mahalanobis, 34
matrix, 3, 6
matrix.inner, 35
matrix.norm, 36
mean, 22
median, 22, 37
mediancenter, 37
minkowski, 38
model .matrix.default, 40, 45
moments, 39

na.fail, 40, 44

ols, 40,43, 46
ols.fit, 41,41,43

58

ols.fit-methods, 42
ols.fit.cg, 41, 42
ols.fit.cg(ols.fit-methods), 42
ols.fit.chol, 41, 42

ols.fit.chol (ols.fit-methods), 42
ols.fit.qr, 41, 42

ols.fit.qr (ols.fit-methods), 42
ols.fit.svd, 41, 42

ols.fit.svd (ols.fit-methods), 42
ols.fit.sweep, 41, 42
ols.fit.sweep (ols.fit-methods), 42
options, 40, 44

outer, 27

power .method, 43
ridge, 44

seidel, 7, 26, 46
sherman.morrison, 47
skewness (kurtosis), 29
solve, 7,31, 34
solve.lu(1lu), 31
sweep.operator, 48
symm. info, 49, 50, 51
symm. prod, 49, 50, 50
symmetrizer, 49, 50, 51

terms, 41,45
upper.tri, 25

var, 14, 15, 39
vec, 52
vech, 53

whitening, 53
wilson.hilferty, 54

INDEX

	array.mult
	asSymmetric
	bezier
	bracket.prod
	cg
	cholupdate
	circulant
	comm.info
	comm.prod
	commutation
	corAR1
	corCS
	cov.MSSD
	cov.weighted
	dupl.cross
	dupl.info
	dupl.prod
	duplication
	equilibrate
	frank
	geomean
	hadamard
	harris.test
	helmert
	is.lower.tri
	jacobi
	kronecker.prod
	krylov
	kurtosis
	ldl
	lu
	lu-methods
	lu2inv
	Mahalanobis
	matrix.inner
	matrix.norm
	mediancenter
	minkowski
	moments
	ols
	ols.fit
	ols.fit-methods
	power.method
	ridge
	seidel
	sherman.morrison
	sweep.operator
	symm.info
	symm.prod
	symmetrizer
	vec
	vech
	whitening
	wilson.hilferty
	Index

