Import and manipulate ForestGEO data

lifecycle Coverage status CRAN status R-CMD-check

fgeo.tool helps you to import and manipulate ForestGEO data.

Installation

Install the latest stable version of fgeo.tool from CRAN with:

install.packages("fgeo.tool")

Install the development version of fgeo.tool from GitHub with:

# install.packages("devtools")
devtools::install_github("forestgeo/fgeo.tool")

Or install all fgeo packages in one step.

Example

library(fgeo.tool)
#> 
#> Attaching package: 'fgeo.tool'
#> The following object is masked from 'package:stats':
#> 
#>     filter
# Helps access data for examples
library(fgeo.x)

example_path() allows you to access datasets stored in your R libraries.

example_path()
#>  [1] "csv"           "mixed_files"   "rdata"         "rdata_one"    
#>  [5] "rds"           "taxa.csv"      "tsv"           "vft_4quad.csv"
#>  [9] "view"          "weird"         "xl"

(vft_file <- example_path("view/vft_4quad.csv"))
#> [1] "/home/mauro/R/x86_64-pc-linux-gnu-library/4.1/fgeo.x/extdata/view/vft_4quad.csv"

read_vft() and read_taxa() import a ViewFullTable and ViewTaxonomy from .tsv or .csv files.

read_vft(vft_file)
#> # A tibble: 500 x 32
#>     DBHID PlotName PlotID Family Genus SpeciesName Mnemonic Subspecies SpeciesID
#>     <int> <chr>     <int> <chr>  <chr> <chr>       <chr>    <chr>          <int>
#>  1 385164 luquillo      1 Rubia… Psyc… brachiata   PSYBRA   <NA>             185
#>  2 385261 luquillo      1 Urtic… Cecr… schreberia… CECSCH   <NA>              74
#>  3 384600 luquillo      1 Rubia… Psyc… brachiata   PSYBRA   <NA>             185
#>  4 608789 luquillo      1 Rubia… Psyc… berteroana  PSYBER   <NA>             184
#>  5 388579 luquillo      1 Areca… Pres… acuminata   PREMON   <NA>             182
#>  6 384626 luquillo      1 Arali… Sche… morototoni  SCHMOR   <NA>             196
#>  7 410958 luquillo      1 Rubia… Psyc… brachiata   PSYBRA   <NA>             185
#>  8 385102 luquillo      1 Piper… Piper glabrescens PIPGLA   <NA>             174
#>  9 353163 luquillo      1 Areca… Pres… acuminata   PREMON   <NA>             182
#> 10 481018 luquillo      1 Salic… Case… arborea     CASARB   <NA>              70
#> # … with 490 more rows, and 23 more variables: SubspeciesID <chr>,
#> #   QuadratName <chr>, QuadratID <int>, PX <dbl>, PY <dbl>, QX <dbl>, QY <dbl>,
#> #   TreeID <int>, Tag <chr>, StemID <int>, StemNumber <int>, StemTag <int>,
#> #   PrimaryStem <chr>, CensusID <int>, PlotCensusNumber <int>, DBH <dbl>,
#> #   HOM <dbl>, ExactDate <date>, Date <int>, ListOfTSM <chr>, HighHOM <int>,
#> #   LargeStem <chr>, Status <chr>

pick_dbh_under(), drop_status() and friends pick and drop rows from a ForestGEO ViewFullTable or census table.

tree5 <- fgeo.x::tree5

tree5 %>% 
  pick_dbh_under(100)
#> # A tibble: 18 x 19
#>    treeID stemID tag    StemTag sp     quadrat    gx    gy MeasureID CensusID
#>     <int>  <int> <chr>  <chr>   <chr>  <chr>   <dbl> <dbl>     <int>    <int>
#>  1   7624 160987 108958 175325  TRIPAL 722     139.  425.     486675        5
#>  2  19930 117849 123493 165576  CASARB 425      61.3 496.     471979        5
#>  3  31702  39793 22889  22889   SLOBER 304      53.8  73.8    447307        5
#>  4  35355  44026 27538  27538   SLOBER 1106    203.  110.     449169        5
#>  5  39705  48888 33371  33370   CASSYL 1010    184.  194.     451067        5
#>  6  57380 155867 66962  171649  SLOBER 1414    274.  279.     459427        5
#>  7  95656 129113 131519 131519  OCOLEU 402      79.7  22.8    474157        5
#>  8  96051 129565 132348 132348  HIRRUG 1403    278    40.6    474523        5
#>  9  96963 130553 134707 134707  TETBAL 610     114.  182.     475236        5
#> 10 115310 150789 165286 165286  MANBID 225      24.0 497.     483175        5
#> 11 121424 158579 170701 170701  CASSYL 811     146.  218.     484785        5
#> 12 121689 158871 171277 171277  INGLAU 515      84.2 285.     485077        5
#> 13 121953 159139 171809 171809  PSYBRA 1318    247.  354.     485345        5
#> 14 124522 162698 174224 174224  CASSYL 1411    279.  210.     488386        5
#> 15 125038 163236 175335 175335  CASSYL 822     153.  426.     488924        5
#> 16 126087     NA 177394 <NA>    CASARB 521      89.8 408.         NA       NA
#> 17 126803     NA 178513 <NA>    PSYBER 622     113.  426          NA       NA
#> 18 126934     NA 178763 <NA>    MICRAC 324      47   480.         NA       NA
#> # … with 9 more variables: dbh <dbl>, pom <chr>, hom <dbl>, ExactDate <date>,
#> #   DFstatus <chr>, codes <chr>, nostems <dbl>, status <chr>, date <dbl>

pick_main_stem() and pick_main_stemid() pick the main stem or main stemid(s) of each tree in each census.

stem <- download_data("luquillo_stem6_random")

dim(stem)
#> [1] 1320   19
dim(pick_main_stem(stem))
#> Warning: The `add` argument of `group_by()` is deprecated as of dplyr 1.0.0.
#> Please use the `.add` argument instead.
#> [1] 1000   19

add_status_tree() adds the column status_tree based on the status of all stems of each tree.

stem %>% 
  select(CensusID, treeID, stemID, status) %>% 
  add_status_tree()
#> # A tibble: 1,320 x 5
#>    CensusID treeID stemID status status_tree
#>       <int>  <int>  <int> <chr>  <chr>      
#>  1        6    104    143 A      A          
#>  2        6    119    158 A      A          
#>  3       NA    180    222 G      A          
#>  4       NA    180    223 G      A          
#>  5        6    180    224 G      A          
#>  6        6    180    225 A      A          
#>  7        6    602    736 A      A          
#>  8        6    631    775 A      A          
#>  9        6    647    793 A      A          
#> 10        6   1086   1339 A      A          
#> # … with 1,310 more rows

add_index() and friends add columns to a ForestGEO-like dataframe.

stem %>% 
  select(gx, gy) %>% 
  add_index()
#> Guessing: plotdim = c(320, 500)
#> * If guess is wrong, provide the correct argument `plotdim`
#> # A tibble: 1,320 x 3
#>       gx    gy index
#>    <dbl> <dbl> <dbl>
#>  1  10.3  245.    13
#>  2 183.   410.   246
#>  3 165.   410.   221
#>  4 165.   410.   221
#>  5 165.   410.   221
#>  6 165.   410.   221
#>  7 149.   414.   196
#>  8  38.3  245.    38
#>  9 143.   411.   196
#> 10  68.9  253.    88
#> # … with 1,310 more rows

Get started with fgeo

Information