
Package ‘flow’
March 8, 2022

Title View and Browse Code Using Flow Diagrams

Version 0.1.0

Description Visualize as flow diagrams the logic of functions, expressions or
scripts in a static way or when running a call, and ease debugging. Advanced
features include analogs to 'debug' and 'debugonce' to target specific functions to draw,
an utility to draw the calls used in the tests of the package in a markdown report,
and an utility to draw all the functions of one package in a markdown report.

License GPL-3

URL https://github.com/moodymudskipper/flow,

https://moodymudskipper.github.io/flow/

BugReports https://github.com/moodymudskipper/flow/issues

Encoding UTF-8

Suggests testthat (>= 2.1.0), covr, knitr, rmarkdown, esquisse,
tidyselect

Imports nomnoml, utils, htmlwidgets, rstudioapi, webshot, styler,
methods, here, lifecycle

RoxygenNote 7.1.2

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Antoine Fabri [aut, cre]

Maintainer Antoine Fabri <antoine.fabri@gmail.com>

Repository CRAN

Date/Publication 2022-03-08 11:30:02 UTC

R topics documented:
flow_debug . 2
flow_doc . 3

1

https://github.com/moodymudskipper/flow
https://moodymudskipper.github.io/flow/
https://github.com/moodymudskipper/flow/issues

2 flow_debug

flow_draw . 4
flow_test . 5
flow_view . 6
flow_view_deps . 7
flow_view_shiny . 8
flow_view_vars . 9

Index 12

flow_debug Debug With Flow Diagrams

Description

These functions are named after the base functions debug(), undebug() and debugonce(). flow_debug()
will call flow_run(), with the same additional arguments, on all the following calls to f() until
flow_undebug() is called. flow_debugonce() will only call flow_run() on the next call to f().

Usage

flow_debug(
f,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
browse = FALSE

)

flow_debugonce(
f,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
browse = FALSE

)

flow_undebug(f)

Arguments

f function to debug

flow_doc 3

prefix prefix to use for special comments in our code used as block headers, must start
with "#", several prefixes can be provided

code Whether to display the code in code blocks or only the header, to be more com-
pact, if NA, the code will be displayed only if no header is defined by special
comments

narrow TRUE makes sure the diagram stays centered on one column (they’ll be longer
but won’t shift to the right)

truncate maximum number of characters to be printed per line

swap whether to change var <-if(cond) expr into if(cond) var <-expr so the di-
agram displays better

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

browse whether to debug step by step (block by block), can also be a vector of block
ids, in this case browser() calls will be inserted at the start of these blocks

Details

By default, unlike debug() and debugonce(), flow_debug() and flow_debugonce() don’t trigger
a debugger but only draw diagrams, this is consistent with flow_run()’s defaults. To browse
through the code, use the browse argument.

Value

These functions return NULL invisibly (called for side effects)

flow_doc Draw Flow Diagrams for an Entire Package

Description

Draw Flow Diagrams for an Entire Package

Usage

flow_doc(
pkg = NULL,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
engine = c("nomnoml", "plantuml")

)

4 flow_draw

Arguments

pkg package name as a string

prefix prefix to use for special comments in our code used as block headers, must start
with "#", several prefixes can be provided

code Whether to display the code in code blocks or only the header, to be more com-
pact, if NA, the code will be displayed only if no header is defined by special
comments

narrow TRUE makes sure the diagram stays centered on one column (they’ll be longer
but won’t shift to the right)

truncate maximum number of characters to be printed per line

swap whether to change var <-if(cond) expr into if(cond) var <-expr so the di-
agram displays better

out path to output (.html or .md), if left NULL a temp html file will be created and
opened.

engine either "nomnoml" (default) or "plantuml" (experimental), if the latter, argu-
ments prefix, narrow, and code

Details

if pkg and out are both left NULL, a vignette diagrams.md will be built in the root, so that pkgdown::build_site
will use it as an additional page. See also the vignette "Build reports to document functions and unit
tests".

Value

Returns NULL invisibly (called for side effects).

flow_draw Draw Diagram From Debugger

Description

flow_draw() should only be used in the debugger triggered by a call to flow_run(), or following
a call to flow_debug() or flow_debugonce(). d is an active binding to flow_draw(), it means
you can just type d (without parentheses) instead of flow_draw().

Usage

flow_draw()

d

flow_test 5

Details

d was designed to look like the other shortcuts detailed in ?browser, such as f, c etc... It differs
however in that it can be overridden. For instance if the function uses a variable d or that a parent
environment contains a variable d, flow::d won’t be found. In that case you will have to use
flow_draw().

If d or flow_draw() are called outside of the debugger they will return NULL silently.

Value

Returns NULL invisibly (called for side effects)

flow_test Build Report From Tests

Description

Build a markdown report from test scripts, showing the paths taken in tested functions, and where
they fail if they do. See also the vignette "Build reports to document functions and unit tests".

Usage

flow_test(
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
failed_only = FALSE

)

Arguments

prefix prefix to use for special comments in our code used as block headers, must start
with "#", several prefixes can be provided

code Whether to display the code in code blocks or only the header, to be more com-
pact, if NA, the code will be displayed only if no header is defined by special
comments

narrow TRUE makes sure the diagram stays centered on one column (they’ll be longer
but won’t shift to the right)

truncate maximum number of characters to be printed per line
swap whether to change var <-if(cond) expr into if(cond) var <-expr so the di-

agram displays better
out path to output (.html or .md), if left NULL a temp html file will be created and

opened.
failed_only whether to restrict the report to failing tests only

6 flow_view

Value

Returns NULL invisibly (called for side effects)

flow_view View function as flow chart

Description

flow_view() shows the code of a function as a flow diagram, flow_run() runs a call and draws
the logical path taken by the code.

Usage

flow_view(
x,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
nested_fun = NULL,
swap = TRUE,
out = NULL,
engine = c("nomnoml", "plantuml")

)

flow_run(
x,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
browse = FALSE

)

Arguments

x a call, a function, or a path to a script

prefix prefix to use for special comments in our code used as block headers, must start
with "#", several prefixes can be provided

code Whether to display the code in code blocks or only the header, to be more com-
pact, if NA, the code will be displayed only if no header is defined by special
comments

narrow TRUE makes sure the diagram stays centered on one column (they’ll be longer
but won’t shift to the right)

flow_view_deps 7

truncate maximum number of characters to be printed per line

nested_fun if not NULL, the index or name of the function definition found in x that we wish
to inspect

swap whether to change var <-if(cond) expr into if(cond) var <-expr so the di-
agram displays better

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

engine either "nomnoml" (default) or "plantuml" (experimental), if the latter, argu-
ments prefix, narrow, and code

browse whether to debug step by step (block by block), can also be a vector of block
ids, in this case browser() calls will be inserted at the start of these blocks

Details

On some system the output might sometimes display the box character when using the nomnoml
engine, this is due to the system not recognizing the Braille character \u2800. This character is
used to circumvent a nomnoml shortcoming: lines can’t start with a standard space and multiple
subsequent spaces might be collapsed. To choose another character, set the option flow.indenter,
for instance : options(flow.indenter = "\u00b7").

Value

flow_view() returns NULL invisibly, or the output path invisibly if out is not NULL (called for side
effects). flow_run() returns the output of the wrapped call.

Examples

flow_view(rle)
flow_run(rle(c(1, 2, 2, 3)))

flow_view_deps Show dependency graph of a function

Description

[Experimental]

Usage

flow_view_deps(
fun,
max_depth = Inf,
trim = NULL,
promote = NULL,

8 flow_view_shiny

demote = NULL,
hide = NULL,
show_imports = c("functions", "packages", "none"),
out = NULL,
lines = TRUE

)

Arguments

fun A function, can be of the form fun, pkg::fun, pkg:::fun, if in the form fun,
the binding should be located in a package namespace or the global environment

max_depth An integer, the maximum depth to display

trim A vector or list of function names where the recursion will stop

promote A vector or list of external functions to show as internal functions

demote A vector or list of internal functions to show as external functions

hide A vector or list of internal functions to completely remove from the chart

show_imports Whether to show imported "functions", only "packages", or "none"

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

lines Whether to show the number of lines of code next to the function name

Details

Exported functions are shown in blue, unexported functions are shown in yellow.

Examples

flow_view_deps(flow_view_deps)

flow_view_shiny Visualize a shiny app’s dependency graph

Description

[Experimental]

Usage

flow_view_shiny(
fun,
max_depth = Inf,
trim = NULL,
promote = NULL,

flow_view_vars 9

demote = NULL,
hide = NULL,
show_imports = c("functions", "packages", "none"),
out = NULL,
lines = TRUE,
pattern = "(_ui)|(_server)|(Ui)|(Server)|(UI)|(SERVER)"

)

Arguments

fun The function that runs the app

max_depth An integer, the maximum depth to display

trim A vector or list of function names where the recursion will stop

promote A vector or list of external functions to show as internal functions

demote A vector or list of internal functions to show as external functions

hide A vector or list of internal functions to completely remove from the chart

show_imports Whether to show imported "functions", only "packages", or "none"

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

lines Whether to show the number of lines of code next to the function name

pattern A regular expression used to detect ui and server functions

Details

A wrapper around flow_view_deps which demotes every object that is not a server function, a ui
function or a function calling either. What is or isn’t considered as a server or ui function depends
on a regular expression provided through the pattern argument.

Examples

if (requireNamespace("esquisse", quietly = TRUE)) {
flow_view_shiny(esquisse::esquisser, show_imports = "none")

}

flow_view_vars Draw the dependencies of variables in a function

Description

[Experimental]
This draws the dependencies between variables. This function is useful to detect dead code and
variable clusters. By default the variable is shown a new time when it’s overwritten or modified,
this can be changed by setting expand to FALSE.

10 flow_view_vars

Usage

flow_view_vars(
x,
expand = TRUE,
refactor = c("refactored", "original"),
out = NULL

)

Arguments

x The function, script or expression to draw

expand A boolean, if FALSE a variable name is only shown once, else (the default) it’s
repeated and suffixed with a number of *

refactor If using ’refactor’ package, whether to consider original or refactored code

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

Details

Colors and lines are to be understood as follows:

• The function is blue

• The arguments are green

• The variables starting as constants are yellow

• The dead code or pure side effect branches are orange and dashed

• dashed lines represent how variables are undirectly impacted by control flow conditions, for
instance the expression if(z == 1) x <-y would give you a full arrow from y to x and a dashed
arrow from z to x

expand = TRUE gives a sense of the chronology, and keep separate the unrelated uses of temp vari-
ables. expand = FALSE is more compact and shows you directly what variables might impact a given
variable, and what variables it impacts.

This function will work best if the function doesn’t draw from or assign to other environments and
doesn’t use assign() or attach(). The output might be polluted by variable names found in some
lazily evaluated function arguments. We ignore variable names found in calls to quote() and ~ as
well as nested function definitions, but complete robustness is probably impossible.

The diagram assumes that for / while / repeat loops were at least run once, if a value is modified in
a branch of an if call (or both branches) and expand is TRUE, the modified variable(s) will point to
a new one at the end of the ìf call.

Value

Called for side effects

flow_view_vars 11

Examples

flow_view_vars(ave)

Index

d (flow_draw), 4

flow_debug, 2
flow_debugonce (flow_debug), 2
flow_doc, 3
flow_draw, 4
flow_run (flow_view), 6
flow_test, 5
flow_undebug (flow_debug), 2
flow_view, 6
flow_view_deps, 7
flow_view_shiny, 8
flow_view_vars, 9

12

	flow_debug
	flow_doc
	flow_draw
	flow_test
	flow_view
	flow_view_deps
	flow_view_shiny
	flow_view_vars
	Index

