Package ‘fmbasics’

January 6, 2018

Type Package
Title Financial Market Building Blocks
Version 0.3.0

Description Implements basic financial market objects like currencies, currency
pairs, interest rates and interest rate indices. You will be able to use
Benchmark instances of these objects which have been defined using their most
common conventions or those defined by International Swap Dealer Association
(ISDA, <https://www.isda.org>) legal documentation.

License GPL-2

URL https://github.com/imanuelcostigan/fmbasics,
https://imanuelcostigan.github.io/fmbasics/

BugReports https://github.com/imanuelcostigan/fmbasics/issues

Imports assertthat, fmdates (>= 0.1.2), lubridate (>= 1.6.0), methods,
stats, tibble, utils

Suggests covr, knitr, rmarkdown, testthat
VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Author Imanuel Costigan [aut, cre]

Maintainer Imanuel Costigan <i.costigan@me.com>
Repository CRAN

Date/Publication 2018-01-06 04:19:05 UTC

R topics documented:

as_DiscountFactor e
as_InterestRate L e

https://github.com/imanuelcostigan/fmbasics
https://imanuelcostigan.github.io/fmbasics/
https://github.com/imanuelcostigan/fmbasics/issues

Index

R topics documented:

as_tibble.ZeroCurve e e 4
build_zero_curve e e 5
CashFlow e 5
CashIndex e 6
CUITENCY . . v v o v e e e e e e e e e e e e e e e e 7
CurrencyConstruCtors v v v v v e e e e e e e e e e e e e e e 7
CurrencyPair e 8
CurrencyPairConstructors o 9
CurrencyPairMethods Lo 10
DiscountFactor e e e 12
DiscountFactor-operators 12
fmbasics e e e e 13
IborIndex e e 13
iborindices e e e e e e 14
indexcheckers e e 15
indexshifters L. e e 16
InterestRate 17
InterestRate-operators 18
interpolate 19
interpolate.ZeroCurveo e e e 19
interpolate_dfs L 20
interpolate_zeros L. e 21
Interpolation e e e e e e e 21
is.CashFlow e 22
ISSCUITENCY o o o e e e e e e e e 23
is.CurrencyPair L e 23
is.DiscountFactoro 24
isnterestRate 24
is.Interpolation L. L e 25
is.MultiCurrencyMoney L e e 25
is.SingleCurrencyMoney e 26
1S.ZeTOCUIVE o o e 27
iso.CurrencyPair 27
is_valid_compounding L e 28
MultiCurrencyMoney 29
oniaiNdiCes e e e e e e e e e e e e e 30
SingleCurrencyMoney e 31
ZeroCUIVE o o e e e e e e e e e e 32

33

as_DiscountFactor

as_DiscountFactor Coerce to DiscountFactor

Description

You can coerce objects to the DiscountFactor class using this method.

Usage

as_DiscountFactor(x, ...)

S3 method for class 'InterestRate'

as_DiscountFactor(x, d1, d2, ...)
Arguments
X object to coerce

other parameters passed to methods

d1 a Date vector containing the as of date
d2 a Date vector containing the date to which the discount factor applies
Value

a DiscountFactor object

Examples

library("lubridate”)
as_DiscountFactor(InterestRate(c(@.04, 0.05), c(2, 4), 'act/365'),
ymd(20140101), ymd(20150101))

as_InterestRate Coerce to InterestRate

Description

You can coerce objects to the InterestRate class using this method.

Usage

as_InterestRate(x, ...)

S3 method for class 'DiscountFactor’
as_InterestRate(x, compounding, day_basis, ...)

S3 method for class 'InterestRate'
as_InterestRate(x, compounding = NULL,
day_basis = NULL, ...)

4 as_tibble.ZeroCurve

Arguments
X object to coerce
other parameters passed to methods
compounding a numeric vector representing the compounding frequency.
day_basis a character vector representing the day basis associated with the interest rate
(see fmdates: :year_frac())
Value

an InterestRate object

Examples

library("lubridate”)

as_InterestRate(DiscountFactor(0.95, ymd(20130101), ymd(20140101)),
compounding = 2, day_basis = "act/365")

as_InterestRate(InterestRate(c(0.04, 0.05), c(2, 4), 'act/365'),
compounding = 4, day_basis = 'act/365")

as_tibble.ZeroCurve ZeroCurve attributes as a data frame

Description

Create a tibble that contains the pillar point maturities in years (using the act/365 convention)
and the corresponding continuously compounded zero rates.

Usage

S3 method for class 'ZeroCurve'
as_tibble(x, ...)

Arguments
X a ZeroCurve object
other parameters that are not used by this methods
Value

a tibble with two columns named Years and Zeros.

See Also
tibble: :tibble()

build zero_curve 5

Examples

library(tibble)
zc <- build_zero_curve()
as_tibble(zc)

build_zero_curve Build a ZeroCurve from example data set

Description

This creates a ZeroCurve object from the example data set zerocurve. csv.

Usage

build_zero_curve(interpolation = NULL)

Arguments

interpolation an Interpolation object

Value

a ZeroCurve object using data from zerocurve.csv

Examples

build_zero_curve(LogDFInterpolation())

CashFlow Create a CashFlow

Description

This allows you to create a CashFlow object.

Usage

CashFlow(dates, monies)

Arguments

dates a Date vector with either the same length as monies or a vector of length one
that is recycled

monies a MultiCurrencyMoney object

6 CashIndex

Value

a CashFlow object that extends tibble: :tibble()

See Also

Other money functions: MultiCurrencyMoney, SingleCurrencyMoney, is.CashFlow, is.MultiCurrencyMoney,
is.SingleCurrencyMoney

Examples

CashFlow(as.Date("2017-11-15"),
MultiCurrencyMoney(list(SingleCurrencyMoney(1, AUD())))
)

CashIndex Cashindex class

Description

This can be used to represent ONIA like indices (e.g. AONIA, FedFunds) and extends the InterestRateIndex
class.

Usage

CashIndex(name, currency, spot_lag, calendar, day_basis, day_convention)

Arguments
name the name of the index as a string
currency the currency associated with the index as a Currency object
spot_lag the period between the index’s fixing and the start of the index’s term
calendar the calendar used to determine whether the index fixes on a given date as a
Calendar
day_basis the day basis associated with the index (e.g. "act/365")

day_convention the day convention associated with the index (e.g. "mf")

Value

an object of class CashIndex that inherits from Index

Examples

library(lubridate)

library(fmdates)

RBA cash overnight rate

CashIndex("AONIA", AUD(), days(®), c(AUSYCalendar()), "act/365", "f")

Currency 7

Currency Build a Currency

Description

A currency refers to money in any form when in actual use or circulation, as a medium of ex-
change, especially circulating paper money. This package includes handy constructors for common
currencies.

Usage

Currency(iso, calendar)

Arguments
iso a three letter code representing the currency (see ISO4217)
calendar a JointCalendar

Value

an object of class Currency

References

Currency. (2014, March 3). In Wikipedia

See Also

CurrencyConstructors

Examples

library("fmdates"”)
Currency("AUD", c(AUSYCalendar()))

CurrencyConstructors Handy Currency constructors

Description

These constructors use the following conventions:

https://en.wikipedia.org/wiki/ISO_4217
http://en.wikipedia.org/w/index.php?title=Currency&oldid=598027200

8 CurrencyPair

Usage
AUD()
EUR()
GBP()
JPY()
NZD()
usb()
CHF ()
HKD ()
NOK ()
Details
Creator Joint calendars
AUD() AUSYCalendar
EUR() EUTACalendar
GBP() GBLOCalendar
JPY(O) JPTOCalendar
NZD() NZAUCalendar, NZWECalendar
usb() USNYCalendar
CHF () CHZHCalendar
HKD () HKHKCalendar
NOK () NOOSCalendar
See Also

Other constructors: CurrencyPairConstructors, iborindices, oniaindices

Examples

AUD()

CurrencyPair CurrencyPair class

CurrencyPairConstructors 9

Description

Create an object of class CurrencyPair

Usage

CurrencyPair(base_ccy, quote_ccy, calendar = NULL)

Arguments
base_ccy a Currency object
quote_ccy a Currency object
calendar a JointCalendar object. Defaults to NULL which sets this to the joint calendar
of the two currencies and removes any USNYCalendar object to allow currency
pair methods to work correctly
Value

a CurrencyPair object

Examples

CurrencyPair(AUD(), USD())

CurrencyPairConstructors
Handy CurrencyPair constructors

Description

These handy CurrencyPair constructors use their single currency counterparts in the obvious fash-
ion.

Usage
AUDUSD ()
EURUSD ()
NZDUSD ()
GBPUSD ()
USDIPY ()
GBPJPY ()

EURGBP ()

10 CurrencyPairMethods

AUDNZD ()
EURCHF ()
USDCHF ()
USDHKD ()
EURNOK ()

USDNOK ()

See Also

Other constructors: CurrencyConstructors, iborindices, oniaindices

Examples

AUDUSD ()

CurrencyPairMethods CurrencyPair methods

Description

A collection of methods related to currency pairs.
Usage

is_t1(x)

to_spot(dates, x)

to_spot_next(dates, x)

to_forward(dates, tenor, x)

to_today(dates, x)

to_tomorrow(dates, x)

to_fx_value(dates, tenor, x)

invert(x)

CurrencyPairMethods 11

Arguments
X a CurrencyPair object
dates a vector of dates from which forward dates are calculated
tenor the tenor of the value date which can be one of the following: "spot", "spot_next",
"today", "tomorrow" and the usual "forward" dates (e.g. lubridate: :months(3))
Details

The methods are summarised as follows:

e is_t1: Returns TRUE if the currency pair settles one good day after trade. This includes the
following currencies crossed with the USD: CAD, TRY, PHP, RUB, KZT and PKR

* to_spot: The spot dates are usually two non-NY good day after today. is_t1() identifies the
pairs whose spot dates are conventionally one good non-NYC day after today. In both cases,
if those dates are not a good NYC day, they are rolled to good NYC and non-NYC days using
the Following convention.

* to_spot_next: The spot next dates are one good NYC and non-NYC day after spot rolled
using the Following convention if necessary.

* to_forward: Forward dates are determined using the calendar’s shift () method rolling bad
NYC and non-NYC days using the Following convention. The end-to-end convention applies.

* to_today: Today is simply dates which are good NYC and non-NYC days. Otherwise today
is undefined and returns NA.

* to_tomorrow: Tomorrow is one good NYC and non-NYC day except where that is on or after
spot. In that case, is is undefined and returns NA.

* to_value: Determine common value dates. The supported value date tenors are: "spot",

non "non

"spot_next", "today", "tomorrow" and the usual "forward" dates (e.g. lubridate: :months(3)).
* invert: Inverts the currency pair and returns new CurrencyPair object.

e is.CurrencyPair: Returns TRUE if x inherits from the CurrencyPair class; otherwise FALSE

Examples

library(lubridate)

is_t1(AUDUSD())

dts <- lubridate::ymd(20170101) + lubridate::days(@:30)
to_spot(dts, AUDUSD())

to_spot_next(dts, AUDUSD())

to_today(dts, AUDUSD())

to_tomorrow(dts, AUDUSD())

to_fx_value(dts, months(3), AUDUSD())

12 DiscountFactor-operators

DiscountFactor DiscountFactor class

Description

The DiscountFactor class is designed to represent discount factors. Checks whether: d1 is less
than d2, elementwise, and that both are Date vectors; and value is greater than zero and is a numeric
vector. An error is thrown if any of these are not true. The elements of each argument are recycled
such that each resulting vectors have equivalent lengths.

Usage

DiscountFactor(value, d1, d2)

Arguments
value a numeric vector containing discount factor values. Must be greater than zero
d1 a Date vector containing the as of date
d2 a Date vector containing the date to which the discount factor applies

Value

a (vectorised) DiscountFactor object

Examples

library("lubridate”)
df <- DiscountFactor(c(@.95, ©.94, 0.93), ymd(20130101), ymd(20140101, 20150101))
as_InterestRate(df, 2, "act/365")

DiscountFactor-operators
DiscountFactor operations

Description

A number of different operations can be performed on or with DiscountFactor objects. Methods
have been defined for base package generic operations including arithmetic and comparison.

fmbasics 13

Details

The operations are:

* c: concatenates a vector of DiscountFactor objects

* [: extract parts of a DiscountFactor vector

e [<-: replace parts of a DiscountFactor vector

* rep: repeat a DiscountFactor object

* length: determines the length of a DiscountFactor vector

 *: multiplication of DiscountFactor objects. The end date of the first discount factor object
must be equivalent to the start date of the second (or vice versa). Arguments are recycled as
necessary.

» /: division of DiscountFactor objects. The start date date of both arguments must be the
same. Arguments are recycled as necessary.

e <, >, <=, >=, ==, |=: these operate in the standard way on the discount_factor field.
fmbasics fmbasics: Financial Market Building Blocks
Description

Implements basic financial market objects like currencies, currency pairs, interest rates and interest
rate indices. You will be able to use Benchmark instances of these objects which have been defined
using their most common conventions or those defined by International Swap Dealer Association
legal documentation.

IborIndex IborIndex class

Description

This can be used to represent IBOR like indices (e.g. LIBOR, BBSW, CDOR) and extends the
Index class.

Usage

IborIndex(name, currency, tenor, spot_lag, calendar, day_basis, day_convention,
is_eom)

14

Arguments

name
currency
tenor

spot_lag

calendar

day_basis
day_convention

is_eom

Value

iborindices

the name of the index as a string

the currency associated with the index as a Currency object

the term of the index as a period

the period between the index’s fixing and the start of the index’s term

the calendar used to determine whether the index fixes on a given date as a
Calendar

the day basis associated with the index (e.g. "act/365")
the day convention associated with the index (e.g. "mf")

a flag indicating whether or not the maturity date of the index is subject to the
end-to-end convention.

an object of class IborIndex that inherits from Index

Examples

library(lubridate)

library(fmdates)
3m AUD BBSW

IborIndex("BBSW",

AUD(), months(3), days(@), c(AUSYCalendar()),

"act/365", "ms", FALSE)

iborindices

Standard IBOR

Description

These functions create commonly used IBOR indices with standard market conventions.

Usage

AUDBBSW(tenor)

AUDBBSW1b(tenor)

EURIBOR(tenor)
GBPLIBOR(tenor)
JPYLIBOR(tenor)

JPYTIBOR(tenor)

indexcheckers

NZDBKBM(tenor)

USDLIBOR(tenor)
CHFLIBOR(tenor)
HKDHIBOR(tenor)

NOKNIBOR(tenor)

Arguments

tenor

Details

the tenor of the IBOR index (e.g. months(3))

The key conventions are tabulated below.

Creator Spot lag (days) Fixing calendars

AUDBBSW(0 AUSYCalendar

EURIBOR() 2 EUTACalendar

GBPLIBOR() O GBLOCalendar

JPYLIBOR() 2 GBLOCalendar

JPYTIBOR() 2 JPTOCalendar

NZDBKBM() 0 NZWECalendar, NZAUCalendar
USDLIBOR() 2 USNY Calendar, GBLOCalendar
CHFLIBOR() 2 GBLOCalendar

HKDHIBOR() 0 HKHKCalendar

NOKNIBOR() 2 NOOSCalendar

Day basis
act/365
act/360
act/365
act/360
act/365
act/365
act/360
act/360
act/365
act/360

15

Day convention
ms
mf
mf
mf
mf
mf
mf
mf
mf
mf

There are some nuances to this. Sub-1m LIBOR and TIBOR spot lags are zero days (excepting
spot-next rates) and use the following day convention and the overnight USDLIBOR index uses
both USNYCalendar and GBLOCalendar calendars.

References

BBSW EURIBOR ICE LIBOR BBA LIBOR TIBOR NZD BKBM OpenGamma Interest Rate In-
struments and Market Conventions Guide HKD HIBOR

See Also

Other constructors: CurrencyConstructors, CurrencyPairConstructors, oniaindices

indexcheckers

Index class checkers

EOM
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
FALSE

http://www.asx.com.au/documents/products/bbsw-conventions.pdf
http://www.emmi-benchmarks.eu/assets/files/Euribor_tech_features.pdf
https://www.theice.com/iba/libor
http://www.bbalibor.com/technical-aspects/fixing-value-and-maturity
http://www.jbatibor.or.jp/english/public/pdf/JBA%20TIBOR%20Operational%20RulesE.pdf
http://www.nzfma.org/includes/download.aspx?ID=130053
http://opnga.ma/conventions
http://opnga.ma/conventions
https://bank.hangseng.com/1/2/rates/hibor

16 indexshifters

Description

Index class checkers
Usage

is.Index(x)

is.IborIndex(x)

is.CashIndex(x)

Arguments

X an object

Value

TRUE if object inherits from tested class

Examples

is.Index(AONIA())
is.CashIndex (AONIA())
is.IborIndex(AONIA())

indexshifters Index date shifters

Description

A collection of methods that shift dates according to index conventions.
Usage

to_reset(dates, index)

to_value(dates, index)

to_maturity(dates, index)

Default S3 method:
to_reset(dates, index)

Default S3 method:
to_value(dates, index)

Default S3 method:
to_maturity(dates, index)

InterestRate 17

Arguments

dates a vector of dates to shift

index an instance of an object that inherits from the Index class.
Details

The following describes the default methods. to_reset() treats the input dates as value dates and
shifts these to the corresponding reset or fixing dates using the index’s spot lag; to_value() treats
the input dates as reset or fixing dates and shifts them to the corresponding value dates using the
index’s spot lag; and to_maturity() treats the input dates as value dates and shifts these to the
index’s corresponding maturity date using the index’s tenor.

Value

a vector of shifted dates

Examples

library(lubridate)

to_reset(ymd(20170101) + days(0:30), AUDBBSW(months(3)))
to_value(ymd(20170101) + days(@:30), AUDBBSW(months(3)))
to_maturity(ymd(20170101) + days(@:30), AUDBBSW(months(3)))

InterestRate InterestRate class

Description

The InterestRate class is designed to represent interest rates. Checks whether: the day_basis is
valid; and the compounding is valid. An error is thrown if any of these are not true. The elements
of each argument are recycled such that each resulting vectors have equivalent lengths.

Usage

InterestRate(value, compounding, day_basis)

Arguments
value a numeric vector containing interest rate values (as decimals).
compounding a numeric vector representing the compounding frequency.
day_basis a character vector representing the day basis associated with the interest rate
(see fmdates: :year_frac())
Value

a vectorised InterestRate object

18

InterestRate-operators

Examples

library("lubridate”)
InterestRate(c(0.04, 0.05), c(2, 4), 'act/365")

rate

<- InterestRate(0.04, 2, 'act/365')

as_DiscountFactor(rate, ymd(20140101), ymd(20150101))
as_InterestRate(rate, compounding = 4, day_basis = 'act/365')

InterestRate-operators

InterestRate operations

Description

A number of different operations can be performed on or with InterestRate objects. Methods
have been defined for base package generic operations including arithmetic and comparison.

Details

The operations are:

c: concatenates a vector of InterestRate objects

[: extract parts of a InterestRate vector

[<-: replace parts of a InterestRate vector

rep: repeat a InterestRate object

length: determines the length of a InterestRate vector

+, -: addition/subtraction of InterestRate objects. Where two InterestRate objects are
added/subtracted, the second is first converted to have the same compounding and day basis
frequency as the first. Numeric values can be added/subtracted to/from an InterestRate
object by performing the operation directly on the rate field. Arguments are recycled as
necessary.

*: multiplication of InterestRate objects. Where two InterestRate objects are multiplied,
the second is first converted to have the same compounding and day basis frequency as the first.
Numeric values can be multiplied to an InterestRate object by performing the operation
directly on the rate field. Arguments are recycled as necessary.

/: division of InterestRate objects. Where two InterestRate objects are divided, the
second is first converted to have the same compounding and day basis frequency as the first.
Numeric values can divide an InterestRate object by performing the operation directly on
the rate field. Arguments are recycled as necessary.

<, >, <=, >=, ==, l=: these operate in the standard way on the rate field, and if necessary,
the second InterestRate object is converted to have the same compounding and day basis
frequency as the first.

interpolate 19

interpolate Interpolate values from an object

Description

Interpolate values from an object

Usage
interpolate(x, ...)
Arguments
X the object to interpolate.
other parameters that defines how to interpolate the object
Value

an interpolated value or set of values

See Also

Other interpolate functions: interpolate.ZeroCurve, interpolate_dfs, interpolate_zeros

interpolate.ZeroCurve Interpolate a ZeroCurve

Description

There are two key interpolation schemes available in the stats package: constant and linear
interpolation via stats: :approxfun() and spline interpolation via stats::splinefun(). The
interpolate() method is a simple wrapper around these methods that are useful for the purposes
of interpolation financial market objects like zero coupon interest rate curves.

Usage
S3 method for class 'ZeroCurve'
interpolate(x, at, ...)
Arguments
X a ZeroCurve object
at a non-negative numeric vector representing the years at which to interpolate the
Zero curve

unused in this method

20 interpolate_dfs

Value

a numeric vector of zero rates (continuously compounded, act/365)

See Also

Other interpolate functions: interpolate_dfs, interpolate_zeros, interpolate

Examples

zc <- build_zero_curve(LogDFInterpolation())
interpolate(zc, c(1.5, 3))

interpolate_dfs Interpolate forward rates and discount factors

Description

This interpolates forward rates and forward discount factors from either a ZeroCurve or some other
object that contains such an object.

Usage
interpolate_dfs(x, from, to, ...)
interpolate_fwds(x, from, to, ...)

S3 method for class 'ZeroCurve'
interpolate_fwds(x, from, to, ...)

S3 method for class 'ZeroCurve'

interpolate_dfs(x, from, to, ...)
Arguments
X the object to interpolate
from a Date vector representing the start of the forward period
to a Date vector representing the end of the forward period

further arguments passed to specific methods

Value

interpolate_df's returns a DiscountFactor object of forward discount factors while interpolate_fwds
returns an InterestRate object of interpolated simply compounded forward rates.

See Also

Other interpolate functions: interpolate.ZeroCurve, interpolate_zeros, interpolate

interpolate_zeros 21

interpolate_zeros Interpolate zeros

Description

This interpolates zero rates from either a ZeroCurve or some other object that contains such an
object.

Usage
interpolate_zeros(x, at, compounding = NULL, day_basis = NULL, ...)

S3 method for class 'ZeroCurve'
interpolate_zeros(x, at, compounding = NULL,

day_basis = NULL, ...)
Arguments

X the object to interpolate

at a Date vector representing the date at which to interpolate a value

compounding a valid compounding string. Defaults to NULL which uses the curve’s native
compounding basis

day_basis a valid day basis string. Defaults to NULL which uses the curve’s native day
basis.

further arguments passed to specific methods

Value

an InterestRate object of interpolated zero rates with the compounnding and day_basis requested.

See Also

Other interpolate functions: interpolate.ZeroCurve, interpolate_dfs, interpolate

Interpolation Interpolation

Description

These are lightweight interpolation classes that are used to specify typical financial market interpo-
lation schemes. Their behaviour is dictated by the object in which they defined.

22 is.CashFlow
Usage

ConstantInterpolation()

LogDFInterpolation()

LinearInterpolation()

CubicInterpolation()

Value

an object that inherits from the Interpolation class.

Examples

ConstantInterpolation()

is.CashFlow Inherits from CashFlow

Description

Checks whether object inherits from CashFlow class

Usage

is.CashFlow(x)

Arguments

X an R object

Value

TRUE if x inherits from the CashFlow class; otherwise FALSE

See Also

Other money functions: CashFlow, MultiCurrencyMoney, SingleCurrencyMoney, is.MultiCurrencyMoney,
is.SingleCurrencyMoney

Examples

is.CashFlow(CashFlow(as.Date("2017-11-15"),
MultiCurrencyMoney(list(SingleCurrencyMoney(1, AUD())))))

is.Currency

23

is.Currency Inherits from Currency

Description

Checks whether object inherits from Currency class

Usage

is.Currency(x)

Arguments

X an R object

Value

TRUE if x inherits from the Currency class; otherwise FALSE

Examples

is.Currency(AUD())

is.CurrencyPair Inherits from CurrencyPair class

Description

Inherits from CurrencyPair class

Usage

is.CurrencyPair(x)

Arguments

X an R object

Value

TRUE if x inherits from the CurrencyPair class; otherwise FALSE

Examples

is.CurrencyPair (AUDUSD())

24 is.InterestRate

is.DiscountFactor Inherits from DiscountFactor

Description

Checks whether object inherits from DiscountFactor class

Usage

is.DiscountFactor(x)

Arguments

X an R object

Value

TRUE if x inherits from the DiscountFactor class; otherwise FALSE

Examples

is.DiscountFactor(DiscountFactor(@.97, Sys.Date(), Sys.Date() + 30))

is.InterestRate Inherits from InterestRate

Description

Checks whether object inherits from InterestRate class

Usage

is.InterestRate(x)

Arguments

X an R object

Value

TRUE if x inherits from the InterestRate class; otherwise FALSE

Examples

is.InterestRate(InterestRate(0.04, 2, "act/365"))

is.Interpolation

is.Interpolation Check Interpolation class

Description

These methods check whether an interpolation is of a particular scheme.

Usage

is.Interpolation(x)
is.ConstantInterpolation(x)
is.LogDFInterpolation(x)
is.LinearInterpolation(x)

is.CubicInterpolation(x)

Arguments

X an object

Value

a logical flag

Examples

is.Interpolation(CubicInterpolation())
is.CubicInterpolation(CubicInterpolation())

is.MultiCurrencyMoney [Inherits from MultiCurrencyMoney

Description

Checks whether object inherits from MultiCurrencyMoney class

Usage

is.MultiCurrencyMoney(x)

Arguments

X an R object

26 is.SingleCurrencyMoney

Value

TRUE if x inherits from the MultiCurrencyMoney class; otherwise FALSE

See Also
Other money functions: CashFlow, MultiCurrencyMoney, SingleCurrencyMoney, is.CashFlow,

is.SingleCurrencyMoney

Examples

is.MultiCurrencyMoney(MultiCurrencyMoney(list(SingleCurrencyMoney(1, AUD()))))

is.SingleCurrencyMoney
Inherits from SingleCurrencyMoney

Description

Checks whether object inherits from SingleCurrencyMoney class

Usage

is.SingleCurrencyMoney(x)

Arguments

X an R object

Value

TRUE if x inherits from the SingleCurrencyMoney class; otherwise FALSE

See Also
Other money functions: CashFlow, MultiCurrencyMoney, SingleCurrencyMoney, is.CashFlow,

is.MultiCurrencyMoney

Examples

is.SingleCurrencyMoney(SingleCurrencyMoney(1:5, AUD()))

is.ZeroCurve 27

is.ZeroCurve Inherits from ZeroCurve

Description

Checks whether object inherits from ZeroCurve class

Usage

is.ZeroCurve(x)

Arguments

X an R object

Value

TRUE if x inherits from the ZeroCurve class; otherwise FALSE

Examples

is.ZeroCurve(build_zero_curve())

iso.CurrencyPair Get ISO

Description

The default method assumes the ISO can be accessed as if it were an attribute with name iso (e.g.
x$iso). The method for CurrencyPair concatenates the ISOs of the constituent currencies (e.g.
iso(AUDUSD()) returns "AUDUSD") while the methods for CashIndex and IborIndex return the
ISO of the index’s currency.

Usage

S3 method for class 'CurrencyPair'
iso(x)

iso(x)

Default S3 method:
iso(x)

S3 method for class 'IborIndex'
iso(x)

S3 method for class 'CashIndex'
iso(x)

28 is_valid_compounding

Arguments

X object from which to extract an ISO

Value

a string of the ISO

Examples

library("lubridate”)
iso(AUD())
iso(AUDUSD())
iso(AUDBBSW(months(3)))
iso(AONIA())

is_valid_compounding Compounding frequencies

Description

A non-exported function that checks whether compounding values frequencies are supported.

Usage

is_valid_compounding(compounding)

Arguments

compounding a numeric vector representing the compounding frequency

Details

Valid compounding values are:

Value Frequency
-1 Simply, T-bill discounting
0 Simply
1 Annually
2 Semi-annually
3 Tri-annually
4 Quarterly
6 Bi-monthly
12 Monthly
24 Fortnightly
52 Weekly
365 Daily
Inf Continuously

MultiCurrencyMoney 29

Value

a flag (TRUE or FALSE) if all the supplied compounding frequencies are supported.

MultiCurrencyMoney MultiCurrencyMoney

Description

This class associates a vector of numeric values with a list of currencies. This can be useful for
example to store value of cash flows. Internally it represents this information as an extension to a
tibble. You are able to bind MultiCurrencyMoney objects by using rbind() (see example below).

Usage

MultiCurrencyMoney(monies)

Arguments

monies a list of SingleCurrencyMoney

Value

aMultiCurrencyMoney object that extends tibble: :tibble()

See Also

Other money functions: CashFlow, SingleCurrencyMoney, is.CashFlow, is.MultiCurrencyMoney,
is.SingleCurrencyMoney

Examples

mcm <- MultiCurrencyMoney(list(
SingleCurrencyMoney (1, AUD()),
SingleCurrencyMoney (2, USD())
)

rbind(mcm, mcm)

30 oniaindices

oniaindices Standard ONIA

Description

These functions create commonly used ONIA indices with standard market conventions.

Usage
AONIA(Q)

EONIAQ)
SONIA()
TONAR()
NZIONA()
FedFunds ()
CHFTOIS()

HONIX ()

Details

The key conventions are tabulated below. All have a zero day spot lag excepting CHFTOIS which
has a one day lag (it is a tom-next rate, per 2006 ISDA definitions).

Creator Fixing calendars Day basis Day convention
AONIA() AUSYCalendar act/365 f
EONIA() EUTACalendar act/360 f
SONIA() GBLOCalendar act/365 f
TONAR() JPTOCalendar act/365 f
NZIONA() NZWECalendar, NZAUCalendar act/365 f
FedFunds() USNYCalendar act/360 f
CHFTOIS() CHZHCalendar act/360 f
HONIX() HKHKCalendar act/365 f

Note that for some ONIA indices, the overnight rate is not published until the following date (i.e. it
has publication lag of one day).

References

AONIA EONIA SONIA TONAR NZIONA FedFunds OpenGamma Interest Rate Instruments and

http://www.rba.gov.au/mkt-operations/resources/cash-rate-methodology/
http://www.emmi-benchmarks.eu/assets/files/Eonia%20Technical%20Features.pdf
https://www.wmba.org.uk/pages/index.cfm?page_id=31
https://www.boj.or.jp/en/statistics/market/short/mutan/index.htm/
http://rbnz.govt.nz/statistics/tables/b2/
http://www.federalreserve.gov/releases/H15/Current/#fn2
http://opnga.ma/conventions

SingleCurrencyMoney 31

Market Conventions Guide

See Also

Other constructors: CurrencyConstructors, CurrencyPairConstructors, iborindices

SingleCurrencyMoney SingleCurrencyMoney

Description

This class associates a numeric vector with a currency. This is useful for example in representing
the value of a derivative. You can concatenate a set SingleCurrencyMoney objects and return a
MultiCurrencyMoney object (see example below)

Usage

SingleCurrencyMoney(value, currency)

Arguments
value a numeric vector of values
currency a single Currency object
Value

a SingleCurrencyMoney object

See Also

Other money functions: CashFlow, MultiCurrencyMoney, is.CashFlow, is.MultiCurrencyMoney,
is.SingleCurrencyMoney

Examples

SingleCurrencyMoney(1:5, AUD())
c(SingleCurrencyMoney(1, AUD()), SingleCurrencyMoney (100, USD()))

http://opnga.ma/conventions
http://opnga.ma/conventions

32 ZeroCurve

ZeroCurve ZeroCurve class

Description

A class that defines the bare bones of a zero-coupon yield curve pricing structure.

Usage

ZeroCurve(discount_factors, reference_date, interpolation)

Arguments

discount_factors
a DiscountFactor object. These are converted to continuously compounded
zero coupon interest rates with an act/365 day basis for internal storage pur-
poses

reference_date aDate object

interpolation an Interpolation object

Details

A term structure of interest rates (or yield curve) is a curve showing several yields or interest rates
across different contract lengths (2 month, 2 year, 20 year, etc...) for a similar debt contract. The
curve shows the relation between the (level of) interest rate (or cost of borrowing) and the time to
maturity, known as the "term", of the debt for a given borrower in a given currency. For example, the
U.S. dollar interest rates paid on U.S. Treasury securities for various maturities are closely watched
by many traders, and are commonly plotted on a graph. More formal mathematical descriptions
of this relation are often called the term structure of interest rates. When the effect of coupons on
yields are stripped away, one has a zero-coupon yield curve.

The following interpolation schemes are supported by ZeroCurve: ConstantInterpolation,LinearInterpolation,
LogDFInterpolation and CubicInterpolation. Points outside the calibration region use con-
stant extrapolation on the zero rate.

Value

a ZeroCurve object

See Also

Interpolation

Examples

build_zero_curve()

Index

AONIA (oniaindices), 30
as_DiscountFactor, 3
as_InterestRate, 3
as_tibble.ZeroCurve, 4

AUD (CurrencyConstructors), 7
AUDBBSW (iborindices), 14

AUDBBSW1b (iborindices), 14

AUDNZD (CurrencyPairConstructors), 9
AUDUSD (CurrencyPairConstructors), 9

build_zero_curve, 5

Calendar, 6, 14

CashFlow, 5, 22, 26, 29, 31

CashIndex, 6

CHF (CurrencyConstructors), 7

CHFLIBOR (iborindices), 14

CHFTOIS (oniaindices), 30

compounding, 4, 17,21

compounding (is_valid_compounding), 28

ConstantInterpolation (Interpolation),
21

CubicInterpolation (Interpolation), 21

Currency, 6,7, 9, 14, 31

CurrencyConstructors, 7,7, 10, 15, 31

CurrencyPair, 8

CurrencyPairConstructors, 8,9, 15, 31

CurrencyPairMethods, 10

Date, 5, 20, 21
day basis, 21
DiscountFactor, 12, 12, 20, 32
DiscountFactor-operators, 12

EONIA (oniaindices), 30

EUR (CurrencyConstructors), 7

EURCHF (CurrencyPairConstructors), 9
EURGBP (CurrencyPairConstructors), 9
EURIBOR (iborindices), 14

EURNOK (CurrencyPairConstructors), 9

33

EURUSD (CurrencyPairConstructors), 9

FedFunds (oniaindices), 30
fmbasics, 13

fmbasics-package (fmbasics), 13
fmdates: :year_frac(), 4, 17

GBP (CurrencyConstructors), 7

GBPJPY (CurrencyPairConstructors), 9
GBPLIBOR (iborindices), 14

GBPUSD (CurrencyPairConstructors), 9

HKD (CurrencyConstructors), 7
HKDHIBOR (iborindices), 14
HONIX (oniaindices), 30

IborIndex, 13
iborindices, 8, 10, 14, 31
indexcheckers, 15
indexshifters, 16
InterestRate, 17, 18, 20, 21
InterestRate-operators, 18
interpolate, 19, 20, 21
interpolate.ZeroCurve, 19, 19, 20, 21
interpolate_dfs, 19, 20, 20, 21
interpolate_fwds (interpolate_dfs), 20
interpolate_zeros, 19, 20, 21
Interpolation, 21, 32
invert (CurrencyPairMethods), 10
is.CashFlow, 6, 22, 26, 29, 31
is.CashIndex (indexcheckers), 15
is.ConstantInterpolation
(is.Interpolation), 25
is.CubicInterpolation
(is.Interpolation), 25
is.Currency, 23
is.CurrencyPair, 23
is.DiscountFactor, 24
is.IborIndex (indexcheckers), 15
is.Index (indexcheckers), 15

34

is.InterestRate, 24
is.Interpolation, 25
is.LinearInterpolation
(is.Interpolation), 25
is.LogDFInterpolation
(is.Interpolation), 25
is.MultiCurrencyMoney, 6, 22, 25, 26, 29, 31
is.SingleCurrencyMoney, 6, 22, 26, 26, 29,
31
is.ZeroCurve, 27
is_t1 (CurrencyPairMethods), 10
is_valid_compounding, 28
iso(iso.CurrencyPair), 27
iso.CurrencyPair, 27

JointCalendar, 7, 9

JPY (CurrencyConstructors), 7
JPYLIBOR (iborindices), 14
JPYTIBOR (iborindices), 14

LinearInterpolation (Interpolation), 21
LogDFInterpolation (Interpolation), 21

MultiCurrencyMoney, 5, 6, 22, 26, 29, 31

NOK (CurrencyConstructors), 7
NOKNIBOR (iborindices), 14

NZD (CurrencyConstructors), 7
NZDBKBM (iborindices), 14

NZDUSD (CurrencyPairConstructors), 9
NZIONA (oniaindices), 30

oniaindices, 8, 10, 15, 30
period, 14
rbind(), 29

single currency counterparts, 9
SingleCurrencyMoney, 6, 22, 26, 29, 31
SONIA (oniaindices), 30

stats: :approxfun(), 19

stats: :splinefun(), 19

tibble, 29

tibble: :tibble(), 4, 6, 29

to_forward (CurrencyPairMethods), 10
to_fx_value (CurrencyPairMethods), 10
to_maturity (indexshifters), 16
to_reset (indexshifters), 16

INDEX

to_spot (CurrencyPairMethods), 10
to_spot_next (CurrencyPairMethods), 10
to_today (CurrencyPairMethods), 10
to_tomorrow (CurrencyPairMethods), 10
to_value (indexshifters), 16

TONAR (oniaindices), 30

USD (CurrencyConstructors), 7

USDCHF (CurrencyPairConstructors), 9
USDHKD (CurrencyPairConstructors), 9
USDJPY (CurrencyPairConstructors), 9
USDLIBOR (iborindices), 14

USDNOK (CurrencyPairConstructors), 9
USNYCalendar, 9

ZeroCurve, 5, 20, 21, 32

	as_DiscountFactor
	as_InterestRate
	as_tibble.ZeroCurve
	build_zero_curve
	CashFlow
	CashIndex
	Currency
	CurrencyConstructors
	CurrencyPair
	CurrencyPairConstructors
	CurrencyPairMethods
	DiscountFactor
	DiscountFactor-operators
	fmbasics
	IborIndex
	iborindices
	indexcheckers
	indexshifters
	InterestRate
	InterestRate-operators
	interpolate
	interpolate.ZeroCurve
	interpolate_dfs
	interpolate_zeros
	Interpolation
	is.CashFlow
	is.Currency
	is.CurrencyPair
	is.DiscountFactor
	is.InterestRate
	is.Interpolation
	is.MultiCurrencyMoney
	is.SingleCurrencyMoney
	is.ZeroCurve
	iso.CurrencyPair
	is_valid_compounding
	MultiCurrencyMoney
	oniaindices
	SingleCurrencyMoney
	ZeroCurve
	Index

