
Package ‘forrel’
February 25, 2022

Type Package

Title Forensic Pedigree Analysis and Relatedness Inference

Version 1.4.1

Description Forensic applications of pedigree analysis, including
likelihood ratios for relationship testing, general relatedness
inference, marker simulation, and power analysis. General computation
of exclusion powers is based on Egeland et al. (2014)
<doi:10.1016/j.fsigen.2013.05.001>. Several functions deal
specifically with family reunion cases, implementing and developing
ideas from Kling et al. (2017) <doi:10.1016/j.fsigen.2017.08.006>. A
novelty of 'forrel' is the ability to model background inbreeding in
forensic pedigree computations. This can have significant impact in
applications, as exemplified in Vigeland and Egeland (2019)
<doi:10.1016/j.fsigss.2019.10.175>. 'forrel' is part of the ped suite,
a collection of packages for pedigree analysis. In particular,
'forrel' imports 'pedtools' for creating and manipulating pedigrees
and markers, 'pedprobr' for likelihood computations, and 'pedmut' for
mutation modelling. Pedigree data may be created from scratch, or
loaded from text files. Data import from the 'Familias' software
(Egeland et al. (2000) <doi:10.1016/S0379-0738(00)00147-X>) is
supported.

License GPL-3

URL https://github.com/magnusdv/forrel

BugReports https://github.com/magnusdv/forrel/issues

Depends pedtools (>= 1.1.0), R (>= 4.1.0)

Imports glue, pedmut, pedprobr (>= 0.4), ribd (>= 1.3.0)

Suggests ggplot2, poibin, scales, testthat

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.1.2

1

https://doi.org/10.1016/j.fsigen.2013.05.001
https://doi.org/10.1016/j.fsigen.2017.08.006
https://doi.org/10.1016/j.fsigss.2019.10.175
https://doi.org/10.1016/S0379-0738(00)00147-X
https://github.com/magnusdv/forrel
https://github.com/magnusdv/forrel/issues

2 R topics documented:

NeedsCompilation no

Author Magnus Dehli Vigeland [aut, cre]
(<https://orcid.org/0000-0002-9134-4962>),
Thore Egeland [ctb]

Maintainer Magnus Dehli Vigeland <m.d.vigeland@medisin.uio.no>

Repository CRAN

Date/Publication 2022-02-25 20:50:02 UTC

R topics documented:

checkPairwise . 3
exclusionPower . 4
expectedLR . 8
Familias2ped . 9
findExclusions . 11
forrel . 12
ibdBootstrap . 12
ibdEstimate . 14
IBDtriangle . 16
kinshipLR . 19
LRpower . 21
markerSim . 23
markerSimParametric . 25
missingPersonEP . 27
missingPersonIP . 28
missingPersonLR . 30
missingPersonPlot . 31
MPPsims . 33
NorwegianFrequencies . 36
powerPlot . 37
profileSim . 40
profileSimParametric . 42
randomPersonEP . 43
readFam . 44
showInTriangle . 44
simpleSim . 45

Index 47

https://orcid.org/0000-0002-9134-4962

checkPairwise 3

checkPairwise Check pedigree data for relationship errors

Description

This function provides a convenient way to check for pedigree errors, given the available marker
data. The function calls ibdEstimate() to estimate IBD coefficients for all pairs of typed pedigree
members, and computes the likelihood ratio (LR) comparing each estimate to the coefficients im-
plied by the pedigree. By default, the estimates are shown in a colour-coded plot where unlikely
relationships are easy to spot.

Usage

checkPairwise(
x,
excludeInbred = TRUE,
plot = TRUE,
labels = FALSE,
LRthreshold = 1000,
...

)

Arguments

x A ped object or a list of such.
excludeInbred A logical, by default TRUE, indicating if inbred individuals should be excluded

from the analysis.
plot A logical (default: TRUE). If TRUE, a plot is produced, showing the IBD esti-

mates in the IBD triangle.
labels A logical (default: FALSE). If TRUE, labels are included in the IBD triangle

plot.
LRthreshold A positive number (default: 1000). IBD estimates whose LR exceed this, when

compared to the coefficients implied by the pedigree, are encircled in the plot.
... Further parameters passed on to ribd::ibdTriangle().

Details

By default, inbred individuals are excluded from the analysis, since pairwise relationships involving
inbred individuals have undefined kappa coefficients (and therefore no position in the triangle). In
some cases it may still be informative to include their estimates; set excludeInbred = FALSE to
achieve this.

Value

A data frame containing both the estimated and pedigree-based IBD coefficients for each pair of
typed individuals. The last column contains the likelihood ratio comparing the estimated coeffi-
cients to the pedigree-based ones.

4 exclusionPower

Author(s)

Magnus Dehli Vigeland

See Also

ibdEstimate()

Examples

Example with realistic data

x = addSon(nuclearPed(nch = 2), parent = 4)
x = setMarkers(x, locus = NorwegianFrequencies)
x = profileSim(x, N = 1, seed = 1729)[[1]]

checkPairwise(x)

Create sample swap between 1 and 3
als = getAlleles(x)
als[c(1,3),] = als[c(3,1),]
y = setAlleles(x, alleles = als)

checkPairwise(y)

Combined plot of pedigree and IBD estimates
dev.new(height = 5, width = 8, noRStudioGD = TRUE)
layout(rbind(1:2), widths = 2:3)
plot(x, margins = c(4,2,4,2))
checkPairwise(x, labels = TRUE)

exclusionPower Power of exclusion

Description

Computes the power (of a single marker, or for a collection of markers) of excluding a claimed
relationship, given the true relationship.

Usage

exclusionPower(
claimPed,
truePed,
ids,
markers = NULL,

exclusionPower 5

source = "claim",
disableMutations = NA,
exactMaxL = Inf,
nsim = 1000,
seed = NULL,
alleles = NULL,
afreq = NULL,
knownGenotypes = NULL,
Xchrom = FALSE,
plot = FALSE,
plotMarkers = NULL,
verbose = TRUE

)

Arguments

claimPed A ped object (or a list of such), describing the claimed relationship. If a list, the
sets of ID labels must be disjoint, that is, all ID labels must be unique.

truePed A ped object (or a list of such), describing the true relationship. ID labels must
be consistent with claimPed.

ids Individuals available for genotyping.

markers A vector indicating the names or indices of markers attached to the source pedi-
gree. If NULL (default), then all markers attached to the source pedigree are
used. If alleles or afreq is non-NULL, then this parameter is ignored.

source Either "claim" (default) or "true", deciding which pedigree is used as source for
marker data.

disableMutations

This parameter determines how mutation models are treated. Possible values are
as follows:

• NA (the default): Mutations are disabled only for those markers whose
known genotypes are compatible with both claimPed and truePed. This
is determined by temporarily removing all mutation models and checking
which markers have nonzero likelihood in both alternatives.

• TRUE: Mutations are disabled for all markers.
• FALSE: No action is done to disable mutations.
• A vector containing the names or indices of those markers for which muta-

tions should be disabled.

exactMaxL A positive integer, or Inf (default). Exact EPs are calculated for markers whose
number of alleles is less or equal to exactMaxL; remaining markers are handled
by simulation.

nsim A positive integer; the number of simulations used for markers whose number
of alleles exceeds exactMaxL.

seed An integer seed for the random number generator (optional).
alleles, afreq, Xchrom

If these are given, they are used (together with knownGenotypes) to create a
marker object on the fly.

6 exclusionPower

knownGenotypes A list of triplets (a, b, c), indicating that individual a has genotype b/c. Ignored
unless alleles or afreq is non-NULL.

plot Either a logical or the character "plotOnly". If the latter, a plot is drawn, but no
further computations are done.

plotMarkers A vector of marker names or indices whose genotypes are to be included in the
plot.

verbose A logical.

Details

This function implements the formula for exclusion power as defined and discussed in (Egeland et
al., 2014).

It should be noted that claimPed and truePed may be any (lists of) pedigrees, as long as they both
contain the individuals specified by ids. In particular, either alternative may have inbred founders
(with the same or different coefficients), but this must be set individually for each.

Value

If plot = "plotOnly", the function returns NULL after producing the plot.

Otherwise, the function returns an EPresult object, which is essentially a list with the following
entries:

• EPperMarker: A numeric vector containing the exclusion power of each marker. If the known
genotypes of a marker are incompatible with the true pedigree, the corresponding entry is NA.

• EPtotal: The total exclusion power, computed as 1 -prod(1 -EPperMarker,na.rm = TRUE).

• expectedMismatch: The expected number of markers giving exclusion, computed as sum(EPperMarker,na.rm
= TRUE).

• distribMismatch: The probability distribution of the number of markers giving exclusion.
This is given as a numeric vector of length n+1, where n is the number of nonzero elements of
EPperMarker. The vector has names 0:n.

• time: The total computation time.

• params: A list containing the (processed) parameters ids, markers and disableMutations.

Author(s)

Magnus Dehli Vigeland

References

T. Egeland, N. Pinto and M.D. Vigeland, A general approach to power calculation for relationship
testing. Forensic Science International: Genetics 9 (2014): 186-190. doi: 10.1016/j.fsigen.2013.05.001

https://doi.org/10.1016/j.fsigen.2013.05.001

exclusionPower 7

Examples

##
A standard case paternity case:
Compute the power of exclusion when the claimed father is in fact
unrelated to the child.
##

Claim: Individual 1 is the father of individual 3
claim = nuclearPed(nch = 1, sex = 2)

Truth: 1 and 3 are unrelated
true = list(singleton(id = 1), singleton(id = 3, sex = 2))

Attach two markers
m1 = marker(claim, alleles = 1:2)
m2 = marker(claim, alleles = 1:3)
claim = setMarkers(claim, list(m1, m2))

Compute EP when father and child is available for genotyping
exclusionPower(claim, true, ids = c(1,3))

Suppose child is already genotyped
genotype(claim, marker = 1, id = 3) = c(1, 1)
genotype(claim, marker = 2, id = 3) = c(1, 1)

exclusionPower(claim, true, ids = 1)

##
Two females claim to be mother and daughter, but are in reality sisters.
We compute the power of various markers to reject the claim.
##

mother_daughter = nuclearPed(1, sex = 2)
sisters = relabel(nuclearPed(2, sex = c(2, 2)), c(101, 102, 2, 3))
ids = 2:3

SNP with MAF = 0.1:
PE1 = exclusionPower(claimPed = mother_daughter, truePed = sisters,

ids = ids, alleles = 2, afreq = c(0.9, 0.1))

Tetra-allelic marker with one major allele:
PE2 = exclusionPower(claimPed = mother_daughter, truePed = sisters,

ids = ids, alleles = 4, afreq = c(0.7, 0.1, 0.1, 0.1))

stopifnot(all.equal(c(PE1$EPtotal, PE2$EPtotal), c(0.00405, 0.03090)))

How does the power change if the true pedigree is inbred?
sisters_LOOP = addParents(sisters, 101, father = 201, mother = 202)
sisters_LOOP = addParents(sisters_LOOP, 102, father = 201, mother = 203)

8 expectedLR

SNP with MAF = 0.1:
PE3 = exclusionPower(claimPed = mother_daughter, truePed = sisters_LOOP,

ids = ids, alleles = 2, afreq = c(0.9, 0.1))

stopifnot(all.equal(PE3$EPtotal, 0.00765))

expectedLR Expected likelihood ratio

Description

This function computes the expected LR for a single marker, in a kinship test comparing two hy-
pothesised relationships between a set of individuals. The true relationship may differ from both
hypotheses. Some individuals may already be genotyped, while others are available for typing.
The implementation uses oneMarkerDistribution() to find the joint genotype distribution for the
available individuals, conditional on the known data, in each pedigree.

Usage

expectedLR(numeratorPed, denominatorPed, truePed = numeratorPed, ids, marker)

Arguments

numeratorPed A ped object.

denominatorPed A ped object.

truePed A ped object.

ids A vector of ID labels corresponding to untyped pedigree members. (These must
be members of all three input pedigrees).

marker either a marker object compatible with numeratorPed, or the name or index of
a marker attached to numeratorPed.

Value

A positive number.

Examples

#---------
Curious example showing that ELR may decrease
by typing additional reference individuals
#---------

Numerator ped
numPed = nuclearPed(father = "fa", mother = "mo", child = "ch")

Familias2ped 9

Denominator ped: fa, mo, ch are unrelated. Ugly hack!
denomPed = nuclearPed(father = "fa", mother = "mo", nch = 1)
denomPed = addChildren(denomPed, father = "ch", mother = "mo", nch = 1)

Scenario 1: Only mother is typed; genotype 1/2
p = 0.9
m1 = marker(numPed, mo = 1:2, afreq = c("1" = p, "2" = 1-p))
expectedLR(numPed, denomPed, ids = "ch", marker = m1)

1/(8*p*(1-p)) + 1/2 # exact formula

Scenario 2: Include father, with genotype 1/1
m2 = m1
genotype(m2, id = "fa") = c(1, 1)
expectedLR(numPed, denomPed, ids = "ch", marker = m2)

1/(8*p*(1-p)) + 1/(4*p^2) # exact formula

Familias2ped Convert Familias objects to ped format

Description

Familias is a widely used software for forensic kinship computations, which also features an ac-
companying R package (also called Familias). The function documented here converts pedigrees
and marker data from the R version of Familias to pedtools::ped() format, used by forrel.
This may be of interest for specialized computations not implemented in Familias, e.g. condi-
tional simulations. Note: For importing ".fam" files created by (the stand-alone) Familias, see
readFam().

Usage

Familias2ped(familiasped, datamatrix, loci, matchLoci = FALSE)

readFamiliasLoci(loci)

Arguments

familiasped A FamiliasPedigree object or a list of such.

datamatrix A data frame with two columns per marker (one for each allele) and one row per
individual.

loci A FamiliasLocus object or a list of such.

matchLoci A logical. If TRUE, the column names of datamatrix must be found either
within names(loci) or within the name entries of loci. The column names
of datamatrix are assumed to come in pairs with suffixes ".1" and ".2", e.g.
"TH01.1", "TH01.2", etc. If FALSE (the default) it is assumed that the loci
correspond to the (pairs of) columns in datamatrix sequentially.

10 Familias2ped

Details

The Familias program represents pedigrees and marker data in a way that differs from the ped
format in several ways, mostly because of the latter’s stricter definition of a pedigree. A ped object
always represent a connected pedigree, and each member must have either 0 or 2 parents. None of
this is required by FamiliasPedigree objects. The conversion function Familias2ped takes care
of all potential differences: It converts each Familias pedigree into a list of connected ped objects,
adding missing parents where needed.

Value

A ped object, or a list of such.

Author(s)

Magnus Dehli Vigeland, Thore Egeland

References

Familias is freely available from https://familias.name.

See Also

readFam()

Examples

famPed = structure(
list(id = c('mother', 'daughter', 'AF'),

findex = c(0, 3, 0),
mindex = c(0, 1, 0),
sex = c('female', 'female', 'male')),

class = "FamiliasPedigree")

datamatrix = data.frame(
M1.1 = c(NA, 8, NA),
M1.2 = c(NA, 9.3, NA),
row.names = famPed$id)

famLoc = structure(
list(locusname = "M1",

alleles = c("8" = 0.2, "9" = 0.5, "9.3" = 0.3)),
class = "FamiliasLocus")

Familias2ped(famPed, datamatrix, loci = famLoc, matchLoci = TRUE)

https://familias.name

findExclusions 11

findExclusions Find markers excluding an identification

Description

Find markers for which the genotypes of a candidate individual is incompatible with a pedigree

Usage

findExclusions(x, id, candidate, removeMut = TRUE)

Arguments

x A ped object or a list of such.

id A character of length 1; the name of an untyped member of x.

candidate A singleton pedigree, with genotypes for the same markers as x.

removeMut A logical. If TRUE (default), all mutations models are stripped.

Value

A character vector containing the names of incompatible markers.

Examples

Pedigree with 3 siblings; simulate data for first two
x = nuclearPed(3) |>

setMarkers(locusAttributes = NorwegianFrequencies[1:5]) |>
profileSim(ids = 3:4, seed = 1)

Simulate random person
poi = singleton(1) |>

setMarkers(locusAttributes = NorwegianFrequencies[1:5]) |>
profileSim(seed = 1)

Identify incompatible markers
findExclusions(x, id = 5, candidate = poi) # D21S11

Inspect
plotPedList(c(x, poi), marker = "D21S11", frames = FALSE)

12 ibdBootstrap

forrel forrel: Forensic Pedigree Analysis and Relatedness Inference

Description

Forensic applications of pedigree analysis, including likelihood ratios for relationship testing, gen-
eral relatedness inference, marker simulation, and power analysis. General computation of exclu-
sion powers is based on Egeland et al. (2014) doi: 10.1016/j.fsigen.2013.05.001. Several functions
deal specifically with family reunion cases, implementing and developing ideas from Kling et al.
(2017) doi: 10.1016/j.fsigen.2017.08.006. A novelty of ’forrel’ is the ability to model background
inbreeding in forensic pedigree computations. This can have significant impact in applications,
as exemplified in Vigeland and Egeland (2019) doi: 10.1016/j.fsigss.2019.10.175. ’forrel’ is part
of the ped suite, a collection of packages for pedigree analysis. In particular, ’forrel’ imports ’ped-
tools’ for creating and manipulating pedigrees and markers, ’pedprobr’ for likelihood computations,
and ’pedmut’ for mutation modelling. Pedigree data may be created from scratch, or loaded from
text files. Data import from the ’Familias’ software (Egeland et al. (2000) doi: 10.1016/S0379-
0738(00)00147X) is supported.

ibdBootstrap Bootstrap estimation of IBD coefficients

Description

This function produces (parametric or nonparametric) bootstrap estimates of the IBD coefficients
between two individuals. Both kappa and delta coefficients are supported (see ibdEstimate()).

Usage

ibdBootstrap(
x = NULL,
ids = NULL,
param = NULL,
kappa = NULL,
delta = NULL,
N,
method = "parametric",
freqList = NULL,
plot = TRUE,
seed = NULL

)

https://doi.org/10.1016/j.fsigen.2013.05.001
https://doi.org/10.1016/j.fsigen.2017.08.006
https://doi.org/10.1016/j.fsigss.2019.10.175
https://doi.org/10.1016/S0379-0738(00)00147-X
https://doi.org/10.1016/S0379-0738(00)00147-X

ibdBootstrap 13

Arguments

x A ped object. If method = "parametric", this is only used to extract the allele
frequencies, and can be skipped if freqList is provided.

ids A pair of ID labels.

param Either NULL (default), "kappa" or "delta". (See below.)

kappa, delta Probability vectors of length 3 (kappa) or 9 (delta). Exactly one of param, kappa
and delta must be non-NULL. If kappa and delta are both NULL, the appro-
priate set of coefficients is computed as ibdEstimate(x,ids,param).

N The number of simulations.

method Either "parametric" (default) or "nonparametric". Abbreviations are allowed.
see Details for more information about each method.

freqList A list of probability vectors: The allele frequencies for each marker.

plot A logical, only relevant for bootstraps of kappa. If TRUE, the bootstrap esti-
mates are plotted in the IBD triangle.

seed An integer seed for the random number generator (optional).

Details

The parameter method controls how bootstrap estimates are obtained in each replication.

If method = "parametric", new profiles for two individuals are simulated from the input coeffi-
cients, followed by a re-estimation of the coefficients.

If method = "nonparametric", the original markers are sampled with replacement, before the co-
efficients are re-estimated.

Value

A data frame with N rows containing the bootstrap estimates. The last column (dist) gives the
euclidean distance to the original coefficients, viewed as a point in R^3 (kappa) or R^9 (delta).

See Also

ibdEstimate()

Examples

Frequency list of 15 standard STR markers
freqList = NorwegianFrequencies[1:15]

Number of bootstrap simulations (increase!)
N = 5

Bootstrap estimates for kappa of full siblings
boot1 = ibdBootstrap(kappa = c(0.25, .5, .25), N = N, freqList = freqList)
boot1

Mean deviation

14 ibdEstimate

mean(boot1$dist)

Same, but with the 9 identity coefficients.
delta = c(0, 0, 0, 0, 0, 0, .25, .5, .25)
boot2 = ibdBootstrap(delta = delta, N = N, freqList = freqList)

Mean deviation
mean(boot2$dist)

Non-parametric bootstrap.
Requires `x` and `ids` to be provided

x = nuclearPed(2)
x = markerSim(x, ids = 3:4, N = 50, alleles = 1:10, seed = 123)

bootNP = ibdBootstrap(x, ids = 3:4, param = "kappa", method = "non", N = N)

Parametric bootstrap can also be done with this syntax
bootP = ibdBootstrap(x, ids = 3:4, param = "kappa", method = "par", N = N)

ibdEstimate Pairwise relatedness estimation

Description

Estimate the IBD coefficients κ = (κ0, κ1, κ2) or the condensed identity coefficients ∆ = (∆1, ...,∆9)
between a pair (or several pairs) of pedigree members, using maximum likelihood methods.

Usage

ibdEstimate(
x,
ids = typedMembers(x),
param = c("kappa", "delta"),
markers = NULL,
start = NULL,
tol = sqrt(.Machine$double.eps),
beta = 0.5,
sigma = 0.5,
contourPlot = FALSE,
levels = NULL,
verbose = TRUE

)

Arguments

x A ped object or a list of such.

ibdEstimate 15

ids Either a vector with ID labels, or a data frame/matrix with two columns, where
each row contains the ID labels of two individuals. The entries are coerced to
characters, and must match uniquely against the ID labels of x. By default, all
pairs of members of x are included.

param Either "kappa" (default) or "delta"; indicating which set of coefficients should
be estimated.

markers A vector with names or indices of markers attached to x, indicating which mark-
ers to include. If NULL (default), all markers are used.

start A probability vector (i.e., with nonnegative entries and sum 1) of length 3 (if
param = "kappa") or 9 (if param = "delta"), indicating the initial value of for
the optimisation. By default, start is set to (1/3, 1/3, 1/3) if param = "kappa"
and (1/9, ..., 1/9) if param = "delta".

tol, beta, sigma

Control parameters for the optimisation routine; can usually be left untouched.

contourPlot A logical. If TRUE, contours of the log-likelihood function are plotted overlay-
ing the IBD triangle.

levels (Only relevant if contourPlot = TRUE.) A numeric vector of levels at which to
draw contour lines. If NULL (default), the levels are chosen automatically.

verbose A logical.

Details

It should be noted that this procedure estimates the realised identity coefficients of each pair, i.e.,
the actual fractions of the autosomes in each IBD state. These may deviate substantially from the
theoretical pedigree coefficients.

Maximum likelihood estimation of relatedness coefficients originates with Thompson (1975). Op-
timisation of κ is done in the (κ0, κ2)-plane and restricted to the triangle defined by

κ0 ≥ 0, κ2 ≥ 0, κ0 + κ2 ≤ 1

. Optimisation of ∆ is done in unit simplex of R^8, using the first 8 coefficients.

The implementation optimises the log-likelihood using a projected gradient descent algorithm, com-
bined with a version of Armijo line search.

Value

An object of class ibdEst, which is basically a dataframe with either 6 columns (if param =
"kappa") or 12 columns (if param = "delta"). The first three columns are id1 (label of first in-
dividual), id2 (label of second individual) and N (the number of markers with no missing alleles).
The remaining columns contain the coefficient estimates.

Author(s)

Magnus Dehli Vigeland

16 IBDtriangle

References

• E. A. Thompson (1975). The estimation of pairwise relationships. Annals of Human Genetics
39.

• E. A. Thompson (2000). Statistical Inference from Genetic Data on Pedigrees. NSF-CBMS
Regional Conference Series in Probability and Statistics. Volume 6.

See Also

ibdBootstrap()

Examples

Example 1: Siblings
x = nuclearPed(2)

Simulate 100 markers
x = markerSim(x, N = 100, alleles = 1:4, seed = 123, verbose = FALSE)

Estimate kappa (expectation: (0.25, 0.5, 0.25)
ibdEstimate(x, ids = 3:4)

Plot contours of the log-likelihood function
ibdEstimate(x, ids = 3:4, contourPlot = TRUE)

Example 2: Full sib mating
y = fullSibMating(1)

Simulate 200 SNP markers
y = markerSim(y, N = 1000, alleles = 1:10, seed = 123, verbose = FALSE)

Estimate
ibdEstimate(y, ids = 5:6, param = "delta")

IBDtriangle IBD triangle plot

Description

The IBD triangle is typically used to visualize the pairwise relatedness of non-inbred individuals.
Various annotations are available, including points marking the most common relationships, contour
lines for the kinship coefficients, and shading of the unattainable region.

IBDtriangle 17

Usage

IBDtriangle(
relationships = c("UN", "PO", "MZ", "S", "H,U,G", "FC"),
kinshipLines = numeric(),
shading = "lightgray",
pch = 16,
cex_points = 1.2,
cex_text = 1.2,
axes = FALSE,
xlim = c(0, 1),
ylim = c(0, 1),
xlab = expression(kappa[0]),
ylab = expression(kappa[2]),
cex_lab = cex_text,
mar = c(3.1, 3.1, 1, 1),
xpd = TRUE,
keep.par = TRUE

)

Arguments

relationships A character vector indicating relationships points to be included in the plot. See
Details for a list of valid entries.

kinshipLines A numeric vector (see Details).

shading The shading colour for the unattainable region.

pch Symbol used for the relationship points (see par()).

cex_points A number controlling the symbol size for the relationship points.

cex_text A number controlling the font size for the relationship labels.

axes A logical: Draw surrounding axis box?
xlim, ylim, mar, xpd

Graphical parameters; see par().

xlab, ylab Axis labels

cex_lab A number controlling the font size for the axis labels.

keep.par A logical. If TRUE, the graphical parameters are not reset after plotting, which
may be useful for adding additional annotation.

Details

For any pair of non-inbred individuals A and B, their genetic relationship can be summarized by the
IBD coefficients (κ0, κ1, κ2), where κi = P(A and B share i alleles IBD at random autosomal locus).
Since κ0 +κ1 +κ2 = 1, any relationship corresponds to a point in the triangle in the (κ0, κ2)-plane
defined by κ0 ≥ 0, κ2 ≥ 0, κ0 + κ2 ≤ 1. The choice of κ0 and κ2 as the axis variables is done for
reasons of symmetry and is not significant (other authors have used different views of the triangle).

As shown by Thompson (1976), points in the subset of the triangle defined by 4κ0κ2 > κ21 are
unattainable for pairwise relationships. By default this region is shaded in light grey colour, but this
can be modified with the shading argument.

18 IBDtriangle

The IBD coefficients are linearly related to the kinship coefficient φ by the formula

φ = 0.25κ1 + 0.5κ2.

By indicating values for φ in the kinshipLines argument, the corresponding contour lines are
shown as dashed lines in the triangle plot.

The following abbreviations are valid entries in the relationships argument:

• UN = unrelated

• PO = parent/offspring

• MZ = monozygotic twins

• S = full siblings

• H,U,G = half sibling/avuncular (uncle)/grandparent

• FC = first cousins

• SC = second cousins

• DFC = double first cousins

• Q = quadruple first half cousins

Value

None

Author(s)

Magnus Dehli Vigeland

References

• E. A. Thompson (1975). The estimation of pairwise relationships. Annals of Human Genetics
39.

• E. A. Thompson (1976). A restriction on the space of genetic relationships. Annals of Human
Genetics 40.

See Also

ibdEstimate()

Examples

opar = par(no.readonly = TRUE) # store graphical parameters

IBDtriangle()
IBDtriangle(kinshipLines = c(0.25, 0.125), shading = NULL, cex_text = 0.8)

par(opar) # reset graphical parameters

kinshipLR 19

kinshipLR Likelihood ratios for kinship testing

Description

This function computes likelihood ratios (LRs) for a list of pedigrees. One of the pedigrees (the last
one, by default) is designated as ’reference’, to be used in the denominator in all LR calculations.
To ensure that all pedigrees use the same data set, one of the pedigrees may be chosen as ’source’,
from which data is transferred to all the other pedigrees.

Usage

kinshipLR(
...,
ref = NULL,
source = NULL,
markers = NULL,
linkageMap = NULL,
verbose = FALSE

)

Arguments

... Pedigree alternatives. Each argument should be either a single ped object or a
list of such. The pedigrees may be named; otherwise they are assigned names
"H1", "H2", ... automatically.
It is also possible to pass a single list containing all the pedigrees.

ref An index or name indicating which of the input pedigrees should be used as
"reference pedigree", i.e., used in the denominator of each LR. If NULL (the
default), the last pedigree is used as reference.

source An index or name designating one of the input pedigrees as source for marker
data. If given, marker data is transferred from this to all the other pedigrees (re-
placing any existing markers). The default action (source = NULL) is as follows:
If all pedigree have attached markers, no transfers are done. If exactly one of
the pedigrees have attached markers, these are transferred to the others. all other
cases give an error.

markers A vector of marker names or indices indicating which markers should be in-
cluded. If NULL (the default) all markers are used.

linkageMap Either NULL (default), or a data frame with three columns: chromosome; marker
name; centiMorgan position. If given, it signifies to the program that the markers
are linked and invokes MERLIN for computing the likelihoods.

verbose A logical.

Details

By default, all markers are assumed to be unlinked. To accommodate linkage, a genetic map should
be supplied with the argument linkageMap. This requires the software MERLIN to be installed.

20 kinshipLR

Value

A LRresult object, which is essentially a list with entries

• LRtotal : A vector of length L, where L is the number of input pedigrees. The i’th entry is the
total LR (i.e., the product over all markers) comparing pedigree i to the reference pedigree.
The entry corresponding to the reference will always be 1.

• LRperMarker : A numerical matrix, where the i’th column contains the marker-wise LR values
comparing pedigree i to the reference. The product of all entries in a column should equal the
corresponding entry in LRtotal.

• likelihoodsPerMarker : A numerical matrix of the same dimensions as LRperMarker, but
where the entries are likelihood of each pedigree for each marker.

• time : Elapsed time

Author(s)

Magnus Dehli Vigeland and Thore Egeland

See Also

LRpower(), pedprobr::likelihoodMerlin()

Examples

Simulate 5 markers for a pair of full sibs
ids = c("A", "B")
sibs = nuclearPed(children = ids)
sibs = simpleSim(sibs, N = 5, alleles = 1:4, ids = ids, seed = 123)

Create two alternative hypotheses
halfsibs = relabel(halfSibPed(), old = 4:5, new = ids)
unrel = list(singleton("A"), singleton("B"))

Compute LRs. By default, the last ped is used as reference
kinshipLR(sibs, halfsibs, unrel)

Input pedigrees can be named, reflected in the output
kinshipLR(S = sibs, H = halfsibs, U = unrel)

Select non-default reference (by index or name)
kinshipLR(S = sibs, H = halfsibs, U = unrel, ref = "H")

Alternative syntax: List input
peds = list(S = sibs, H = halfsibs, U = unrel)
kinshipLR(peds, ref = "H", source = "S", verbose = TRUE)

Detailed results
res = kinshipLR(peds)
res$LRperMarker
res$likelihoodsPerMarker

LRpower 21

LRpower Power simulation for kinship LR

Description

This function uses simulations to estimate the likelihood ratio (LR) distribution in a given kinship
testing scenario. In the most general setting, three pedigrees are involved: the two pedigrees being
compared, and the true relationship (which may differ from the other two). A subset of individuals
are available for genotyping. Some individuals may already be genotyped; all simulations are then
conditional on these.

Usage

LRpower(
numeratorPed,
denominatorPed,
truePed = numeratorPed,
ids,
markers = NULL,
source = "true",
nsim = 1,
threshold = NULL,
disableMutations = NA,
alleles = NULL,
afreq = NULL,
Xchrom = FALSE,
knownGenotypes = NULL,
plot = FALSE,
plotMarkers = NULL,
seed = NULL,
verbose = TRUE

)

Arguments

numeratorPed, denominatorPed

ped objects (or lists of such), describing the two relationships under comparison.

truePed A ped object (or a list of such), describing the true relationship. By default equal
to numeratorPed.

ids Individuals available for genotyping.

markers A vector indicating the names or indices of markers attached to the source pedi-
gree. If NULL (default), then all markers attached to the source pedigree are
used. If alleles or afreq is non-NULL, then this parameter is ignored.

22 LRpower

source Either "true" (default), "numerator" or "denominator", indicating which pedi-
gree is used as source for marker data.

nsim A positive integer: the number of simulations.

threshold A numeric vector with one or more positive numbers used as LR thresholds.
disableMutations

Not implemented yet.
alleles, afreq, Xchrom

If these are given, they are used (together with knownGenotypes) to create a
marker object on the fly.

knownGenotypes A list of triplets (a, b, c), indicating that individual a has genotype b/c. Ignored
unless alleles or afreq is non-NULL.

plot Either a logical or the character "plotOnly". If the latter, a plot is drawn, but no
further computations are done.

plotMarkers A vector of marker names or indices whose genotypes are to be included in the
plot.

seed An integer seed for the random number generator (optional).

verbose A logical.

Value

A LRpowerResult object, which is essentially a list with the following entries:

• LRperSim: A numeric vector of length nsim containing the total LR for each simulation.

• meanLRperMarker: The mean LR per marker, over all simulations.

• meanLR: The mean total LR over all simulations.

• meanLogLR: The mean total log10(LR) over all simulations.

• IP: A named numeric of the same length as threshold. For each element of threshold, the
fraction of simulations resulting in a LR exceeding the given number.

• time: The total computation time.

• params: A list containing the input parameters missing, markers, nsim, threshold and
disableMutations

Examples

Paternity LR of siblings
claim = nuclearPed(fa = "A", mo = "NN", children = "B")
unrel = list(singleton("A"), singleton("B"))
truth = nuclearPed(children = c("A", "B"))

Simulation parameters
nsim = 10 # increase!
thresh = 1
ids = c("A", "B")

Simulation 1:

markerSim 23

als = 1:5
afr = runif(5)
afr = afr/sum(afr)

pow1 = LRpower(claim, unrel, truth, ids = ids, nsim = nsim,
threshold = thresh, alleles = als, afreq = afr,
seed = 123)

pow1

Simulation 2: Same, but using an attached marker
truth = addMarker(truth, alleles = als, afreq = afr)

pow2 = LRpower(claim, unrel, truth, ids = ids, nsim = nsim,
threshold = thresh, markers = 1, seed = 123)

stopifnot(identical(pow1$LRperSim, pow2$LRperSim))

Founder inbreeding in true pedigree
founderInbreeding(truth, founders(truth)) = 0.5
truth
pow3 = LRpower(claim, unrel, truth, ids = ids, nsim = nsim,

threshold = thresh, markers = 1, seed = 123, plot = TRUE)
pow3

markerSim Marker simulation

Description

Simulates marker genotypes conditional on the pedigree structure and known genotypes. Note:
This function simulates independent realisations at a single locus. Equivalently, it can be thought
of as independent simulations of identical, unlinked markers. For simulations of a set of markers,
see profileSim().

Usage

markerSim(
x,
N = 1,
ids = NULL,
alleles = NULL,
afreq = NULL,
mutmod = NULL,
rate = NULL,
partialmarker = NULL,
loopBreakers = NULL,

24 markerSim

eliminate = 0,
seed = NULL,
verbose = TRUE

)

Arguments

x A ped object or a list of such.

N A positive integer: the number of (independent) markers to be simulated.

ids A vector containing ID labels of those pedigree members whose genotypes
should be simulated. By default, all individuals are included.

alleles (Only if partialmarker is NULL.) A vector with allele labels. If NULL, the
following are tried in order:

• names(afreq)

• ‘seq_along(afreq)’
• 1:2 (Fallback if both alleles and afreq are NULL.)

afreq (Only if partialmarker is NULL.) A numeric vector with allele frequencies,
possibly named with allele labels.

mutmod, rate Arguments specifying a mutation model, passed on to pedtools::marker()
(see there for explanations).

partialmarker Either NULL (resulting in unconditional simulation), a marker object (on which
the simulation should be conditioned) or the name (or index) of a marker at-
tached to x.

loopBreakers A numeric containing IDs of individuals to be used as loop breakers. Relevant
only if the pedigree has loops, and only if partialmarker is non-NULL. See
pedtools::breakLoops().

eliminate A non-negative integer, indicating the number of iterations in the internal genotype-
compatibility algorithm. Positive values can save time if partialmarker is
non-NULL and the number of alleles is large.

seed An integer seed for the random number generator (optional).

verbose A logical.

Details

This implements (with various time savers) the algorithm used in SLINK of the LINKAGE/FASTLINK
suite. If partialmarker is NULL, genotypes are simulated by simple gene dropping, using simpleSim().

Value

A ped object equal to x except its MARKERS entry, which consists of the N simulated markers.

Author(s)

Magnus Dehli Vigeland

markerSimParametric 25

References

G. M. Lathrop, J.-M. Lalouel, C. Julier, and J. Ott, Strategies for Multilocus Analysis in Humans,
PNAS 81(1984), pp. 3443-3446.

See Also

profileSim(), simpleSim()

Examples

x = nuclearPed(2)

Unconditional simulation
markerSim(x, N = 2, alleles = 1:3)

Conditional on one child being homozygous 1/1
x = addMarker(x, "3" = "1/1", alleles = 1:3)
markerSim(x, N = 2, partialmarker = 1)
markerSim(x, N = 1, ids = 4, partialmarker = 1, verbose = FALSE)

markerSimParametric Simulate marker data given IBD coefficients

Description

This function simulates genotypes for two individuals given their IBD distribution, for N identical
markers.

Usage

markerSimParametric(
kappa = NULL,
delta = NULL,
states = NULL,
N = 1,
alleles = NULL,
afreq = NULL,
seed = NULL,
returnValue = c("singletons", "alleles", "genotypes", "internal")

)

Arguments

kappa A probability vector of length 3, giving a set of realised kappa coefficients (be-
tween two noninbred individuals).

delta A probability vector of length 9, giving a set of condensed identity coefficients
(Jacquard coefficients).

26 markerSimParametric

states An integer vector of length N, with entries in 1-9. Each entry gives the identity
state of the corresponding marker. (See details.)

N A positive integer: the number of independent markers to be simulated.

alleles A vector with allele labels. If NULL, the following are tried in order:

• names(afreq)

• ‘seq_along(afreq)’
• 1:2 (fallback if both alleles and afreq are NULL)

afreq A numeric vector with allele frequencies, possibly named with allele labels.

seed An integer seed for the random number generator (optional).

returnValue Either "singleton" (default) or "alleles". (see Value).

Details

Exactly one of kappa, delta and states must be given; the other two should remain NULL.

If states is given, it explicitly determines the condensed identity state at each marker. The states
are described by integers 1-9, using the tradition order introduced by Jacquard.

If kappa is given, the states are generated by the command states = sample(9:7,size = N,replace
= TRUE,prob = kappa). (Note that identity states 9, 8, 7 correspond to IBD status 0, 1, 2, respec-
tively.)

If delta is given, the states are generated by the command states = sample(1:9,size = N,replace
= TRUE,prob = delta).

Value

The output depends on the value of the returnValue parameter:

• "singletons": a list of two singletons with the simulated marker data attached.

• "alleles": a list of four vectors of length N, named a, b, c and d. These contain the simulated
alleles, where a/b and c/d are the genotypes of the to individuals.

• "genotypes": a list of two vectors of length N, containing the simulated genotypes. Identical to
paste(a,b,sep = "/") and paste(c,d,sep = "/"), where a, b, c, d are the vectors returned
when returnValue == "alleles".

• "internal": similar to "alleles", but using the index integer of each allele. (This option is mostly
for internal use.)

Examples

MZ twins
markerSimParametric(kappa = c(0,0,1), N = 5, alleles = 1:10)

Equal distribution of states 1 and 2
markerSimParametric(delta = c(.5,.5,0,0,0,0,0,0,0), N = 5, alleles = 1:10)

Force a specific sequence of states
markerSimParametric(states = c(1,2,7,8,9), N = 5, alleles = 1:10)

missingPersonEP 27

missingPersonEP Exclusion power for missing person cases

Description

This is a special case of exclusionPower() for use in missing person cases. The function computes
the probability that a random person is genetically incompatible with the typed relatives of the
missing person.

Usage

missingPersonEP(
reference,
missing,
markers = NULL,
disableMutations = NA,
verbose = TRUE

)

Arguments

reference A ped object with attached markers.

missing The ID label of the missing pedigree member.

markers A vector indicating the names or indices of markers attached to the source pedi-
gree. If NULL (default), then all markers attached to the source pedigree are
used. If alleles or afreq is non-NULL, then this parameter is ignored.

disableMutations

This parameter determines how mutation models are treated. Possible values are
as follows:

• NA (the default): Mutations are disabled only for those markers whose
known genotypes are consistent with the pedigree. This is determined
by temporarily removing all mutation models and checking which mark-
ers have nonzero likelihood.

• TRUE: Mutations are disabled for all markers. This will result in an error if
any markers are inconsistent.

• FALSE: No action is done to disable mutations.
• A vector containing the names or indices of those markers for which muta-

tions should be disabled.

verbose A logical.

Details

This function is identical to randomPersonEP(), but with different argument names. This makes it
consistent with missingPersonIP() and the other ’missing person’ functions.

28 missingPersonIP

Value

The EPresult object returned by exclusionPower().

See Also

randomPersonEP(), exclusionPower()

Examples

Four siblings; the fourth is missing
x = nuclearPed(4)

Remaining sibs typed with 4 triallelic markers
x = markerSim(x, N = 4, ids = 3:5, alleles = 1:3, seed = 577, verbose = FALSE)

Add marker with inconsistency in reference genotypes
(by default this is ignored by `missingPersonEP()`)
x = addMarker(x, "3" = "1/1", "4" = "2/2", "5" = "3/3")

Compute exclusion power statistics
missingPersonEP(x, missing = 6)

missingPersonIP Inclusion power for missing person cases

Description

Inclusion power for missing person cases

Usage

missingPersonIP(
reference,
missing,
markers,
nsim = 1,
threshold = NULL,
disableMutations = NA,
seed = NULL,
verbose = TRUE

)

missingPersonIP 29

Arguments

reference A ped object with attached markers.

missing The ID label of the missing pedigree member.

markers A vector indicating the names or indices of markers attached to the source pedi-
gree. If NULL (default), then all markers attached to the source pedigree are
used. If alleles or afreq is non-NULL, then this parameter is ignored.

nsim A positive integer: the number of simulations

threshold A numeric vector with one or more positive numbers used as the likelihood ratio
thresholds for inclusion

disableMutations

This parameter determines how mutation models are treated. Possible values are
as follows:

• NA (the default): Mutations are disabled only for those markers whose
known genotypes are consistent with the pedigree. This is determined
by temporarily removing all mutation models and checking which mark-
ers have nonzero likelihood.

• TRUE: Mutations are disabled for all markers. This will result in an error if
any markers are inconsistent.

• FALSE: No action is done to disable mutations.
• A vector containing the names or indices of those markers for which muta-

tions should be disabled.

seed An integer seed for the random number generator (optional).

verbose A logical.

Value

A mpIP object, which is essentially a list with the following entries:

• LRperSim: A numeric vector of length nsim containing the total LR for each simulation.

• meanLRperMarker: The mean LR per marker, over all simulations.

• meanLR: The mean total LR over all simulations.

• meanLogLR: The mean total log10(LR) over all simulations.

• IP: A named numeric of the same length as threshold. For each element of threshold, the
fraction of simulations resulting in a LR exceeding the given number.

• time: The total computation time.

• params: A list containing the input parameters missing, markers, nsim, threshold and
disableMutations

Examples

Four siblings; the fourth is missing
x = nuclearPed(4)

Remaining sibs typed with 5 triallelic markers

30 missingPersonLR

x = markerSim(x, N = 5, ids = 3:5, alleles = 1:3, seed = 123, verbose = FALSE)

Compute exclusion power statistics
missingPersonIP(x, missing = 6, nsim = 5, threshold = c(10, 100))

Compare with genotypes
x

missingPersonLR Likelihood ratio calculation for missing person identification

Description

This is a wrapper function for kinshipLR() for the special case of missing person identification. A
person of interest (POI) is matched against a reference dataset containing genotypes of relatives of
the missing person.

Usage

missingPersonLR(reference, missing, poi)

Arguments

reference A ped object with attached markers.

missing The ID label of the missing member of reference.

poi A singleton object with genotypes for the person of interest. The marker
names of poi must coincide with those of reference. The ID label of poi
is irrelevant.

Value

The LRresult object returned by kinshipLR(), but without the trivial H2:H2 comparison.

Examples

#--
Example: Identification of a missing grandchild
#--

set.seed(2509)

Reference pedigree with missing grandchild (MP)
x = relabel(linearPed(2), old = 5, new = "MP")

Simulate reference data for grandmother (5 STR markers)
x = setMarkers(x, locusAttributes = NorwegianFrequencies[1:5])
x = profileSim(x, N = 1, ids = 2)[[1]]

missingPersonPlot 31

Person of interest 1: Unrelated
poi1 = singleton("poi1")

Transfer (empty) markers and simulate genotypes
poi1 = transferMarkers(from = x, to = poi1)
poi1 = profileSim(poi1, N = 1)[[1]]

Compute LR
lr1 = missingPersonLR(x, missing = "MP", poi = poi1)
lr1
lr1$LRperMarker

Person of interest 2: The true MP

Simulate MP conditional on reference, and extract as singleton
poi2 = profileSim(x, N = 1, ids = "MP")[[1]]

Extract MP as singleton
poi2 = subset(poi2, "MP")

Compute LR
lr2 = missingPersonLR(x, missing = "MP", poi = poi2)
lr2
lr2$LRperMarker

missingPersonPlot Missing person plot

Description

Visualises the competing hypotheses of a family reunion case. A plot with two panels is generated.
The left panel shows a pedigree in which the person of interest (POI) is identical to the missing
person (MP). The right panel shows the situation where these two are unrelated. See Details for
further explanations.

Usage

missingPersonPlot(
reference,
missing,
labs = labels(reference),
marker = NULL,
hatched = typedMembers(reference),
MP.label = "MP",
POI.label = "POI",
POI.sex = getSex(reference, missing),
POI.col = "red",

32 missingPersonPlot

POI.hatched = FALSE,
POI.height = 8,
titles = c(expression(H[1] * ": POI = MP"), expression(H[2] * ": POI unrelated")),
width = 4,
newdev = interactive(),
...

)

Arguments

reference A pedtools::ped() object.

missing The ID label of the missing pedigree member.

labs A character vector with labels for the pedigree members. See pedtools::plot.ped().

marker Optional vector of marker indices to be included in the plot.

hatched A vector of ID labels indicating who should appear with hatched symbols in the
plot. By default, all typed members.

MP.label The label of the missing member. Default: "MP".

POI.label The label of the person of interest. Default: "POI".

POI.sex The sex of POI. This defaults to that of the missing person, but may be set
explicitly. This is particularly useful when the missing person has unknown sex.

POI.col The plot colour of POI. Default: red.

POI.hatched A logical: If TRUE (default), the POI is plotted with a hatched symbol.

POI.height A numeric controlling the vertical placement of the POI singleton (in the right
panel).

titles A character of length 2, with subtitles for the two frames.

width A positive number controlling the width of the plot. More specifically this num-
ber is the relative width of the reference pedigree, compared to a singleton. De-
fault: 4.

newdev A logical: If TRUE the plot is created in a new plot window.

... Extra parameters passed on to pedtools::plotPedList().

Details

A standard family reunification case involves the following ingredients:

• A reference family in which a single member ("MP") is missing.

• Some of the family members have been genotyped

• A person of interest ("POI") is to be matched against the reference family

After genotyping of POI, the genetic evidence is typically assessed by computing the likelihood
ratio of the following hypotheses:

• H1: POI is MP

• H2: POI is unrelated to the family

MPPsims 33

The goal of this function is to illustrate the above hypotheses, using labels, colours and shading to
visualise the different aspects of the situation.

This function cannot handle cases with more complicated hypotheses (e.g. multiple missing per-
sons, or where H2 specifies a different relationship). However, as it is basically a wrapper of
pedtools::plotPedList(), an interested user should be able to extend the source code to such
cases without too much trouble.

Value

None

Examples

x = nuclearPed(father = "fa", mother = "mo", children = c("b1", "b2"))

Default plot
missingPersonPlot(x, missing = "b2")

A bit nicer using various options
missingPersonPlot(x, missing = "b2", MP.label = "Missing", labs = NULL,

hatched = "b1", POI.hatched = TRUE,
width = 2, # adjust internal spacing (see above)
dev.width = 7, # device width (see ?plotPedList())
dev.height = 3, # device height (see ?plotPedList())
fmar = 0.02, # adjust frame margin (see ?plotPedList())
cex = 1.5, # larger symbols and label font (see ?par())
cex.main = 1.3 # larger frame titles (see ?par())
)

MPPsims Missing person power simulations

Description

Estimate the exclusion/inclusion power for various selections of available individuals.

Usage

MPPsims(
reference,
missing = "MP",
selections,
ep = TRUE,
ip = TRUE,
addBaseline = TRUE,
nProfiles = 1,
lrSims = 1,

34 MPPsims

thresholdIP = NULL,
disableMutations = NA,
numCores = 1,
seed = NULL,
verbose = TRUE

)

Arguments

reference A connected ped object, or a list of pedigrees. In the latter case, the list must
have the same length as selections.

missing The ID label of the missing pedigree member.

selections A list of pedigree member subsets. In the special case that all subsets consist of
a single individual, selections can be given as a simple vector.

ep A logical: Estimate the exclusion power? (Default: TRUE)

ip A logical: Estimate the inclusion power? (Default: TRUE)

addBaseline A logical. If TRUE (default) an empty selection, named "Baseline", is added as
the first element of selection.

nProfiles The number of profile simulations for each selection.
lrSims, thresholdIP

Parameters passed onto missingPersonIP().
disableMutations

This parameter determines how mutation models are treated. Possible values are
as follows:

• NA (the default): Mutations are disabled only for those markers whose
known genotypes are consistent with the pedigree. This is determined
by temporarily removing all mutation models and checking which mark-
ers have nonzero likelihood.

• TRUE: Mutations are disabled for all markers. This will result in an error if
any markers are inconsistent.

• FALSE: No action is done to disable mutations.
• A vector containing the names or indices of those markers for which muta-

tions should be disabled.

numCores The number of cores used for parallelisation, by default 1.

seed An integer seed for the random number generator (optional).

verbose A logical.

Value

An object of class "MPPsim", which is basically a list with one entry for each element of selections.
Each entry has elements ep and ip, each of which is a list of length nProfiles.

The output object has various attributes reflecting the input. Note that reference and selection
may differ slightly from the original input, since they may be modified during the function run. (For
instance, a "Baseline" entry is added to selection if addBaseline is TRUE.) The crucial point is
that the output attributes correspond exactly to the output data.

MPPsims 35

• reference (always a list, of the same length as the selections attribute

• selections

• nProfiles,lrSims,thresholdIP,seed (as in the input)

• totalTime (the total time used)

Examples

x = nuclearPed(fa = "Gf", mo = "Gm", children = c("Uncle", "Mother"), sex = 1:2)
x = addChildren(x, fa = "Father", mo = "Mother", nch = 3, sex = c(1,2,1),

id = c("S1", "S2", "MP"))
x = addSon(x, "Father", id = "HS")

Brother S1 is already genotyped with a marker with 4 alleles
x = addMarker(x, S1 = "1/2", alleles = 1:4)

Alternatives for additional genotyping
sel = list("Father", "S2", "HS", c("Gm", "Uncle"))

plot(x, marker = 1, hatched = sel)

Simulate
simData = MPPsims(x, selections = sel, nProfiles = 2, lrSims = 2)

Power plot
powerPlot(simData, type = 3)

With mutations
Add inconsistent marker
x = addMarker(x, S1 = "1/2", Father = "3/3", alleles = 1:4)

Set mutation models for both
mutmod(x, 1:2) = list("equal", rate = 0.1)

By default mutations are disabled for consistent markers
MPPsims(x, selections = "Father", addBaseline = FALSE)

Don't disable anything
MPPsims(x, selections = "Father", addBaseline = FALSE,

disableMutations = FALSE)

Disable all mutation models. SHOULD GIVE ERROR FOR SECOND MARKER
MPPsims(x, selections = "Father", addBaseline = FALSE,
disableMutations = TRUE)

36 NorwegianFrequencies

NorwegianFrequencies Norwegian STR frequencies

Description

A database of Norwegian allele frequencies for 35 STR markers. This database is also available in
the R package Familias.

Usage

NorwegianFrequencies

Format

A list of length 35. Each entry is a numerical vector summing to 1, named with allele labels.

The following markers are included:

• D3S1358: 12 alleles

• TH01: 10 alleles

• D21S11: 26 alleles

• D18S51 : 23 alleles

• PENTA_E: 21 alleles

• D5S818: 9 alleles

• D13S317: 9 alleles

• D7S820: 19 alleles

• D16S539: 9 alleles

• CSF1PO: 11 alleles

• PENTA_D: 24 alleles

• VWA: 12 alleles

• D8S1179: 12 alleles

• TPOX: 9 alleles

• FGA: 25 alleles

• D19S433: 17 alleles

• D2S1338: 13 alleles

• D10S1248: 9 alleles

• D1S1656: 17 alleles

• D22S1045: 9 alleles

• D2S441: 13 alleles

• D12S391: 23 alleles

• SE33: 55 alleles

powerPlot 37

• D7S1517: 11 alleles

• D3S1744: 8 alleles

• D2S1360: 10 alleles

• D6S474: 6 alleles

• D4S2366: 7 alleles

• D8S1132: 12 alleles

• D5S2500: 8 alleles

• D21S2055: 18 alleles

• D10S2325: 10 alleles

• D17S906: 78 alleles

• APOAI1: 41 alleles

• D11S554: 51 alleles

Source

Dupuy et al. (2013): Frequency data for 35 autosomal STR markers in a Norwegian, an East
African, an East Asian and Middle Asian population and simulation of adequate database size.
Forensic Science International: Genetics Supplement Series, Volume 4 (1).

powerPlot Exclusion/inclusion power plots

Description

This function offers four different visualisations of exclusion/inclusion powers, particularly for
missing person cases. Output from MPPsims() may be fed directly as input to this function. The
actual plotting is done with ggplot2.

Usage

powerPlot(
ep,
ip = NULL,
type = 1,
majorpoints = TRUE,
minorpoints = TRUE,
ellipse = FALSE,
col = NULL,
labs = NULL,
jitter = FALSE,
alpha = 1,
stroke = 1.5,
shape = "circle",
size = 1,

38 powerPlot

hline = NULL,
vline = NULL,
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL

)

Arguments

ep, ip Lists of equal length, with outputs from one or more runs of missingPersonEP()
and missingPersonIP() respectively. Alternatively, ep can be a single output
from MPPsims(), in which case ip should be NULL. See Examples.

type Plot type; either 1, 2, 3 or 4.

majorpoints A logical indicating whether "major" points should be drawn (see Details).

minorpoints A logical indicating whether "minor" points should be drawn (see Details).

ellipse A logical. If TRUE, data ellipsis are drawn for each group containing more than
1 element. NB: This fails with a warning if all points in a group fall on a line.

col A colour vector, recycle to match the top level length of ep.

labs A character of the same length as ep. If NULL, the names of ep are used, if
present.

jitter A logical (default: FALSE). If TRUE, a small jitter is added to the major points.

alpha Transparency for minor points (see Details).

stroke Border width for major points (see Details).

shape Either "circle", "square", "diamond", "triangleUp" or "triangleDown", determin-
ing the shapes of both minor and major points.

size Point size.

hline, vline Single numbers indicating positions for horizontal/vertical "threshold" lines. If
NULL (default), no lines are drawn.

xlim, ylim Axis limits; automatically chosen if NULL.

xlab, ylab Axis labels; automatically chosen if NULL.

Details

The plot types are as follows:

type = 1: x = Exclusion power; y = Inclusion power

type = 2: x = Exclusion odds ratio; y = Inclusion odds ratio

type = 3: x = Expected number of exclusions; y = average log(LR)

type = 4: x = Exclusion power; y = average LR

In the most general case ep (and similarly for ip) can be a list of lists of EPresult objects. We refer
to the inner lists as "groups". A group may consist of a single output, or several (typically many
simulations of the same situation). Points within the same group are always drawn with the same
colour and shape.

When plotting several groups, two sets of points are drawn by default:

powerPlot 39

• Major points: Group means.

• Minor points: Individual points in groups with more than one element.

The parameters majorpoints and minorpoints control which of the above points are included.

Value

A ggplot2 plot object.

See Also

MPPsims(), missingPersonEP(), missingPersonEP()

Examples

Example 1: Comparing the power of 3 reference families

Helper function for simulating a single profile
sim = function(x, id) {

y = setMarkers(x, locusAttributes = NorwegianFrequencies[1:3])
profileSim(y, ids = id)[[1]]

}

Define pedigrees and simulate data
PAR = nuclearPed(1, child = "MP") |> sim(id = 1)
SIB = nuclearPed(2) |> relabel(old = 4, new = "MP") |> sim(id = 3)
GRA = linearPed(2) |> relabel(old = 5, new = "MP") |> sim(id = 1)

Collect in list and plot
peds = list(PAR = PAR, SIB = SIB, GRA = GRA)
plotPedList(peds, marker = 1, hatched = typedMembers, frames = FALSE,

col = list(red = "MP"))

Compute exclusion/inclusion powers:
ep = lapply(peds, function(y)

missingPersonEP(y, missing = "MP", verbose = FALSE))

ip = lapply(peds, function(y) # increase nsim!
missingPersonIP(y, missing = "MP", nsim = 5, threshold = 10, verbose = FALSE))

Plot
powerPlot(ep, ip, size = 2)
powerPlot(ep, ip, size = 2, jitter = TRUE)

Different plot type, not dependent of `threshold`
powerPlot(ep, ip, size = 2, type = 3)

Example 2: Exploring powers for different sets of available relatives

Create trio pedigree
ref = nuclearPed(father = "fa", mother = "mo", child = "MP")

40 profileSim

Add empty marker with 5 alleles
ref = addMarker(ref, alleles = 1:5)

Alternatives for genotyping
sel = list("fa", c("fa", "mo"))

Simulate power for each selection
simData = MPPsims(ref, selections = sel, nProfiles = 3, lrSims = 5,

thresholdIP = 2, seed = 123, numCores = 1)

Power plot 1: EP vs IP
powerPlot(simData, type = 1)
powerPlot(simData, type = 1, minorpoints = FALSE, hline = 0.8)

Change shape, and modify legend order
powerPlot(simData[3:1], type = 1, shape = c("ci", "sq", "di"))

Zoom in, and add threshold lines
powerPlot(simData, type = 1, xlim = c(0.2, 1), ylim = c(0.5, 1),

hline = 0.8, vline = 0.8)

Power plot 3: Expected number of exclusions vs E[log LR]
powerPlot(simData, type = 3)

With horizontal/vertical lines
powerPlot(simData, type = 3, hline = log10(2), vline = 1)

Plot 4: Illustrating the general inequality ELR > 1/(1-EP)
powerPlot(simData, type = 4)

profileSim Simulation of complete DNA profiles

Description

Simulation of DNA profiles for specified pedigree members. Some pedigree members may already
be genotyped; in that case the simulation is conditional on these. The main work of this function is
done by markerSim().

Usage

profileSim(
x,
N = 1,

profileSim 41

ids = NULL,
markers = NULL,
seed = NULL,
numCores = 1,
verbose = TRUE,
...

)

Arguments

x A ped object or a list of such.

N The number of complete simulations to be performed.

ids A character (or coercible to character) with ID labels indicating whose geno-
types should be simulated.

markers A list of marker objects, or a vector containing names or indices referring to
markers attached to x. By default (NULL), all attached markers are used. The
simulations will be conditional on the locus attributes (allele frequencies, muta-
tion models a.s.o.) and any existing genotypes in the indicated markers.

seed An integer seed for the random number generator (optional).

numCores The number of cores used for parallelisation, by default 1.

verbose A logical, by default TRUE.

... Further arguments passed on to markerSim().

Value

A list of N objects similar to x, but with simulated genotypes. Any previously attached markers are
replaced by the simulated profiles. If the indicated markers contained genotypes for some pedigree
members, these are still present in the simulated profiles.

Examples

Example with two brothers
x = nuclearPed(children = c("B1", "B2"))

Attach two markers; one brother is already genotyped
x = addMarker(x, B1 = "1/2", alleles = 1:3)
x = addMarker(x, B1 = "1", alleles = 1:4, afreq = (1:4)/10, chrom = "X")

Simulate 3 profiles of B2 conditional on the above
profileSim(x, N = 3, ids = "B2")

42 profileSimParametric

profileSimParametric Simulate complete DNA profiles given IBD coefficients

Description

This function generalises markerSimParametric() in the same way that profileSim() gener-
alises markerSim().

Usage

profileSimParametric(
kappa = NULL,
delta = NULL,
states = NULL,
N = 1,
freqList = NULL,
seed = NULL,
returnValue = c("singletons", "alleles", "genotypes", "internal")

)

Arguments

kappa A probability vector of length 3, giving a set of realised kappa coefficients (be-
tween two noninbred individuals).

delta A probability vector of length 9, giving a set of condensed identity coefficients
(Jacquard coefficients).

states An integer vector of length N, with entries in 1-9. Each entry gives the identity
state of the corresponding marker. (See details.)

N A positive integer: the number of complete profiles to be simulated

freqList A list of numeric vectors. Each vector is the allele frequencies of a marker.

seed An integer seed for the random number generator (optional).

returnValue Either "singleton" (default) or "alleles". (see Value).

Value

A list of length N, whose entries are determined by returnValue, as explained in markerSimParametric().

Examples

A single profile with 9 markers, each with forced identity state
profileSimParametric(states = 1:9, freqList = NorwegianFrequencies[1:9])

randomPersonEP 43

randomPersonEP Random person exclusion power

Description

This is a special case of exclusionPower(), computing the power to exclude a random person as
a given pedigree member. More specifically, the function computes the probability of observing,
in an individual unrelated to the family individual, a genotype incompatible with the typed family
members.

Usage

randomPersonEP(x, id, markers = NULL, disableMutations = NA, verbose = TRUE)

Arguments

x A ped object with attached markers.

id The ID label of a single pedigree member.

markers A vector indicating the names or indices of markers attached to the source pedi-
gree. If NULL (default), then all markers attached to the source pedigree are
used. If alleles or afreq is non-NULL, then this parameter is ignored.

disableMutations

This parameter determines how mutation models are treated. Possible values are
as follows:

• NA (the default): Mutations are disabled only for those markers whose
known genotypes are consistent with the pedigree. This is determined
by temporarily removing all mutation models and checking which mark-
ers have nonzero likelihood.

• TRUE: Mutations are disabled for all markers. This will result in an error if
any markers are inconsistent.

• FALSE: No action is done to disable mutations.
• A vector containing the names or indices of those markers for which muta-

tions should be disabled.

verbose A logical.

Value

The EPresult object returned by exclusionPower().

Examples

Four siblings:
x = nuclearPed(4)

First 3 sibs typed with 4 triallelic markers

44 showInTriangle

x = markerSim(x, N = 4, ids = 3:5, alleles = 1:3, seed = 577, verbose = FALSE)

Probability that a random man is excluded as the fourth sibling
randomPersonEP(x, id = 6)

readFam Read Familias .fam files

Description

This function parses the content of a Familias-formatted ".fam" file, and converts it into suitable
ped objects. This function does not depend on the Familias R package.

Usage

readFam(famfile, useDVI = NA, Xchrom = FALSE, verbose = TRUE)

Arguments

famfile Path to a ".fam" file.

useDVI A logical, indicating if the DVI section of the fam file should be identified and
parsed. If NA (the default), the DVI section is included if it is present in the input
file.

Xchrom A logical. If TRUE, the chrom attribute of all markers will be set to "X". (De-
fault = FALSE.)

verbose A logical. If TRUE, various information is written to the screen during the
parsing process.

Value

If the .fam file only contains a database, the output is a list of information (name, alleles, frequen-
cies) about each locus. This list can be used as locusAttributes in e.g. setMarkers().

If the .fam file describes pedigree data, the output is a ped object or a list of such.

If useDVI = TRUE, then the families described under Reference Families are parsed and converted
to ped objects. Each family generally describes multiple pedigrees, so the output gets another layer
in this case.

showInTriangle Add points to the IBD triangle

Description

This function is re-exported from the ribd package. For documentation see ribd::showInTriangle().

simpleSim 45

simpleSim Unconditional marker simulation

Description

Unconditional simulation of unlinked markers

Usage

simpleSim(
x,
N,
alleles,
afreq,
ids,
Xchrom = FALSE,
mutmod = NULL,
seed = NULL,
verbose = TRUE

)

Arguments

x a ped object

N a positive integer: the number of markers to be simulated

alleles a vector with allele labels.

afreq a numeric vector of allele frequencies. If missing, the alleles are assumed to be
equi-frequent.

ids a vector containing ID labels of those pedigree members whose genotypes should
be simulated.

Xchrom a logical: X linked markers or not?

mutmod a pedmut::mutationModel() object, i.e., list of mutation matrices named ’fe-
male’ and ’male’.

seed An integer seed for the random number generator (optional).

verbose a logical.

Details

This simulation is done by distributing alleles randomly to all founders, followed by unconditional
gene dropping down throughout the pedigree (i.e. for each non-founder a random allele is selected
from each of the parents). Finally the genotypes of any individuals not included in ids are removed.

Value

a ped object equal to x in all respects except its MARKERS entry, which consists of the N simulated
markers.

46 simpleSim

Author(s)

Magnus Dehli Vigeland

See Also

markerSim()

Examples

x = nuclearPed(1)
simpleSim(x, N = 3, afreq = c(0.5, 0.5))

y = cousinPed(1, child = TRUE)
simpleSim(y, N = 3, alleles = LETTERS[1:10])

Index

∗ datasets
NorwegianFrequencies, 36

checkPairwise, 3

exclusionPower, 4
exclusionPower(), 27, 28, 43
expectedLR, 8

Familias2ped, 9
findExclusions, 11
forrel, 12

ibdBootstrap, 12
ibdBootstrap(), 16
ibdEstimate, 14
ibdEstimate(), 3, 4, 12, 13, 18
IBDtriangle, 16

kinshipLR, 19
kinshipLR(), 30

LRpower, 21
LRpower(), 20

markerSim, 23
markerSim(), 40–42, 46
markerSimParametric, 25
markerSimParametric(), 42
missingPersonEP, 27
missingPersonEP(), 38, 39
missingPersonIP, 28
missingPersonIP(), 27, 34, 38
missingPersonLR, 30
missingPersonPlot, 31
MPPsims, 33
MPPsims(), 37–39

NorwegianFrequencies, 36

par(), 17

pedmut::mutationModel(), 45
pedprobr::likelihoodMerlin(), 20
pedtools::breakLoops(), 24
pedtools::marker(), 24
pedtools::ped(), 9, 32
pedtools::plot.ped(), 32
pedtools::plotPedList(), 32, 33
powerPlot, 37
profileSim, 40
profileSim(), 23, 25, 42
profileSimParametric, 42

randomPersonEP, 43
randomPersonEP(), 27, 28
readFam, 44
readFam(), 9, 10
readFamiliasLoci (Familias2ped), 9
ribd::ibdTriangle(), 3
ribd::showInTriangle(), 44

setMarkers(), 44
showInTriangle, 44
simpleSim, 45
simpleSim(), 24, 25

47

	checkPairwise
	exclusionPower
	expectedLR
	Familias2ped
	findExclusions
	forrel
	ibdBootstrap
	ibdEstimate
	IBDtriangle
	kinshipLR
	LRpower
	markerSim
	markerSimParametric
	missingPersonEP
	missingPersonIP
	missingPersonLR
	missingPersonPlot
	MPPsims
	NorwegianFrequencies
	powerPlot
	profileSim
	profileSimParametric
	randomPersonEP
	readFam
	showInTriangle
	simpleSim
	Index

