
Package ‘foster’
March 30, 2021

Type Package

Title Forest Structure Extrapolation with R

Version 0.1.1

Description Set of tools to streamline the modeling of the relationship between
satellite imagery time series or any other environmental information,
such as terrain elevation, with forest structural attributes derived from
3D point cloud data and their subsequent imputation over the broader
landscape.

Encoding UTF-8

LazyData false

RoxygenNote 7.1.1

Imports raster, reshape2, dplyr, stats, RStoolbox, yaImpute, sp,
tools, spatstat.geom, spatstat (>= 2.0-0), randomForest, rgdal,
caret, trend, data.table

Suggests ggplot2, knitr, rmarkdown

VignetteBuilder knitr

License GPL-3

Depends R (>= 3.5.0)

BugReports https://github.com/mqueinnec/foster/issues

NeedsCompilation no

Author Martin Queinnec [cre, aut],
Piotr Tompalski [aut],
Douglas Bolton [aut],
Nicholas Coops [aut]

Maintainer Martin Queinnec <queinnec@mail.ubc.ca>

Repository CRAN

Date/Publication 2021-03-30 11:40:05 UTC

1

https://github.com/mqueinnec/foster/issues

2 accuracy

R topics documented:

accuracy . 2
calcIndices . 4
defaultTemporalSummary . 6
edges . 7
focalMultiBand . 8
getSample . 9
getSampleValues . 11
matchExtent . 12
matchResolution . 14
partition . 15
predictTrgs . 16
scatter . 17
temporalMetrics . 18
theilSen . 20
tile . 20
trainNN . 21
varImp . 23

Index 25

accuracy Calculate accuracy metrics

Description

Calculate coefficient of determination (R2), root-mean square error (RMSE) and bias between pre-
dictions and observations of continuous variables.

Usage

accuracy(obs, preds, vars = NULL, folds = NULL)

Arguments

obs A vector of observed values

preds A vector of predicted values

vars Optional vector indicating different variables

folds Optional vector indicating the folds

accuracy 3

Details

R2 is calculated with the following formula:

R2 = 1 −
∑

(yi − ŷi)
2∑

(yi − ȳi)2

RMSE is calculated with the following formula:

RMSE =

√
1

n

∑
(ŷi − yi)2

Bias is calculated with the following formula:

Bias =

∑
(ŷi − yi)

n

Relative RMSE and bias are also calculated by dividing their value by the mean of observations.

If accuracy assessment was performed using k-fold cross-validation the accuracy metrics are cal-
culated for each fold separately. The mean value of the accuracy metrics across all folds is also
returned.

Value

Data frame with following columns:

vars Response variable

R2 R2

RMSE RMSE

RMSE_rel Relative RMSE

bias bias

bias_rel Relative bias

count Number of observations

Examples

kNN_preds is a data frame obtained from foster::trainNN
It contains predictions and observations of the trained kNN model
load(system.file("extdata/examples/kNN_preds.RData",package="foster"))

accuracy(obs = kNN_preds$obs,
preds = kNN_preds$preds,
vars = kNN_preds$variable,
folds = kNN_preds$Fold)

4 calcIndices

calcIndices Calculate spectral indices from multispectral data

Description

Calculate spectral indices (e.g. NDVI, tasseled cap coefficients etc.) from multispectral data. Calcu-
lations are based on the functions spectralIndices and tasseledCap. Refer to the documentation
of these functions for more details.

Usage

calcIndices(
x,
indices = "NDVI",
sat = NULL,
blue = NULL,
green = NULL,
red = NULL,
nir = NULL,
swir1 = NULL,
swir2 = NULL,
swir3 = NULL,
coefs = list(L = 0.5, G = 2.5, L_evi = 1, C1 = 6, C2 = 7.5, s = 1, swir2ccc = NULL,

swir2coc = NULL),
filename = "",
par = FALSE,
threads = 2,
m = 2,
progress = TRUE,
...

)

Arguments

x Raster* or SpatialPointsDataFrame object or list of Raster* or SpatialPoints-
DataFrame objects.

indices Character vector indicating Which indices are calculated. Tasseled Cap indices
are abbreviated as TCB, TCW, TCG, TCA, TCD. For a list of other supported indices
see spectralIndices

sat Character. If calculating tasseled cap indices, name of the sensor needs to be
provided. One of: c("Landsat4TM", "Landsat5TM", "Landsat7ETM", "Land-
sat8OLI", "MODIS", "QuickBird", "Spot5", "RapidEye"). See tasseledCap.

blue Integer. Blue band.

green Integer. Green band.

red Integer. Red band.

calcIndices 5

nir Integer. Near infrared band (700-1100 nm).

swir1 temporarily deprecated

swir2 Integer. Shortwave infrared band (1400-1800 nm)

swir3 Integer. Shortwave infrared band (2000-2500 nm)

coefs Coefficients necessary to calculate some of the spectral indices (e.g. EVI). See
spectralIndices.

filename Character. Output file name including path to directory and eventually exten-
sion. If x is a list, filename must be a vector of characters with one file name
for each element of x. Default is "" (output not written to disk).

par Logical. Should the function be executed on parallel threads

threads Number of parallel threads used if par = TRUE

m tuning parameter to determine how many blocks will be used (m blocks will be
processed by each cluster)

progress Logical. If TRUE (default) a progress bar is displayed when using parallel pro-
cessing.

... Other arguments passed to writeRaster or writeOGR.

Details

If x is a Raster* or list of Raster* objects, each layer should be one of the spectral bands used
to calculate the indices. If x is a SpatialPointsDataFrame or list of spatialPointsDataFrame, each
column should be a spectral band. When calculating tasseledCap indices, bands should be provided
in a specific order specified in tasseledCap.

Tasseled Cap Angle (TCA) and Distance (TCD) are calculated from greenness (TCG) and bright-
ness (TCB) as follows:

TCA = arctan(
TCG

TCB
)

TCD =
√
TCB2 + TCG2

If x is a list of Raster* objects, the processing can be parallelized using cluster. In that case the
user has to set par = TRUE and provide the number of parallel threads threads. You can control
how many blocks will be processed by each thread by setting m (see cluster).

Value

Raster* or SpatialPointsDataFrame object or list of Raster* or SpatialPointsDataFrame objects.

See Also

spectralIndices, tasseledCap, cluster

6 defaultTemporalSummary

Examples

library(raster)

Open Landsat BAP image
BAP_2006 <- stack(system.file("extdata/examples/Landsat_BAP_2006.tif",package =

"foster"))

Calculate NDVI
VI_2006 <- calcIndices(BAP_2006,

indices = "NDVI",
red=3,
nir=4)

defaultTemporalSummary

Default temporal summary

Description

Calculates median, IQR and Theil Sen slope (sens.slope). This function is usually called within
temporalMetrics

Usage

defaultTemporalSummary(x)

Arguments

x Vector of numeric values

Value

Named vector with median, IQR and slope

See Also

temporalMetrics, sens.slope

Examples

x <- rnorm(100)
defaultTemporalSummary(x)

edges 7

edges Assign NA values to the neighborhood of a boundary cell

Description

Assigns NA value to all cells having a NA values within their w x w neighborhood.

Usage

edges(x, w, filename = "", ...)

Arguments

x A Raster* object

w Numeric. Size of the window around each cell. Must be an odd number.

filename Character. Output file name including path to directory and eventually exten-
sion. Default is "" (output not written to disk).

... Additional arguments passed to writeRaster

Value

Raster* object

See Also

focal

Examples

Load raster package
library(raster)

Open and stack ALS metrics
elev_p95 <- raster(system.file("extdata/examples/ALS_metrics_p95.tif",package="foster"))
cover <- raster(system.file("extdata/examples/ALS_metrics_cov_mean.tif",package="foster"))
Y_vars <- stack(elev_p95,cover)

Remove edges in a 3 x 3 neighborhood
Y_vars_edges <- edges(Y_vars, w=3)

8 focalMultiBand

focalMultiBand Apply a spatial filter to a Raster* object

Description

Apply a spatial filter to a RasterLayer or all layers of a RasterStack or RasterBrick object. The
mathematical operation applied within the neighborhood can be done by using a function (fun) or
by setting the weights of the matrix w.

Usage

focalMultiBand(
x,
w,
fun,
filename = "",
na.rm = FALSE,
pad = FALSE,
padValue = NA,
NAonly = FALSE,
keepNA = TRUE,
...

)

Arguments

x Raster* object or list of Raster* objects.

w Matrix of weights (moving window). A 3x3 windows with weights of 1 would
be w=matrix(1,nr=3,nc=3) for example.

fun Function (optional). The function should accept a vector of values and return a
single number (e.g. mean). It should also accept a na.rm argument.

filename Character. Output file name including path to directory and eventually exten-
sion. If x is a list, filename must be a vector of characters with one file name
for each element of x. Default is "" (output not written to disk).

na.rm Logical. If TRUE (default), NAs are removed from computation

pad Logical. IF TRUE, rows and columns are added around x to avoid removing
border cells.

padValue Numeric. Value of pad cells. Usually set to NA and used in combination with
na.rm=TRUE

NAonly Logical. If TRUE only cell values that are NA are replaced with the computed
focal values.

keepNA Logical. If TRUE (default), NA cells of x are unchanged

... Additional arguments passed to writeRaster

getSample 9

Details

If x contains NA values and na.rm = TRUE is used , using fun or w with weights adjusted to apply
equivalent mathematical operation might not produce the same outputs (in that case using weights
would give wrong results). See the documentation of focal for more information.

Also, cells of x with NA values might get a non-NA value assigned when located in the neigh-
borhood of non-NA cells and na.rm = TRUE is used. In that case, setting keepNA = TRUE (default)
ensures that NA cells of x still have NA values in the output raster.

Value

Raster* object or list of Raster* objects.

See Also

focal

Examples

Load raster package
library(raster)

Open and stack ALS metrics
elev_p95 <- raster(system.file("extdata/examples/ALS_metrics_p95.tif",package="foster"))
cover <- raster(system.file("extdata/examples/ALS_metrics_cov_mean.tif",package="foster"))
Y_vars <- stack(elev_p95,cover)

#Define 3x3 filter with weights of 1
filt <- matrix(1, nrow = 3, ncol = 3)

Smoothing
Y_vars_smooth <- focalMultiBand(x = Y_vars,

w=filt,
fun=mean,
pad=TRUE,
padValue=NA,
na.rm=TRUE,
keepNA = TRUE)

getSample Stratified random sampling

Description

Performs kmeans clustering to stratify x and randomly samples within the strata until n samples are
selected. The number of samples selected in each strata is proportional to the occurrence of those
strata across the classified raster.

10 getSample

Usage

getSample(
x,
strata = 5,
layers,
norm = TRUE,
n,
mindist = 0,
maxIter = 30,
xy = TRUE,
filename_cluster = "",
filename_sample = "",
...

)

Arguments

x A Raster* object used to generate random sample

strata Number of strata (kmeans clusters). Default is 5.

layers Vector indicating the bands of x used in stratification (as integer or names). By
default, all layers of x are used.

norm Logical. If TRUE (default), x is normalized before k-means clustering. This is
useful if layers have different scales.

n Sample size

mindist Minimum distance between samples (in units of x). Default is 0.

maxIter Numeric. This number is multiplied to the number of samples to select per strata.
If the number of iterations to select samples exceeds maxIter x the number of
samples to select then the loop will break and a warning message be returned.
Default is 30.

xy Logical indicating if X and Y coordinates of samples should be included in the
fields of the returned SpatialPoints object.

filename_cluster

Character. Output filename of the clustered x raster including path to directory
and eventually extension

filename_sample

Character. Output filename of the sample points including path to directory.
File will be automatically saved as an ESRI Shapefile and any extension in
filename_sample will be overwritten

... Further arguments passed to unsuperClass, writeRaster or writeOGR to con-
trol the kmeans algorithm or writing parameters

Details

x is stratified using kmeans clustering from unsuperClass. By default, clustering is performed on
a random subset of x (10000 cells) and run with multiple starting configurations in order to find
a convergent solution from the multiple starts. The parameters controlling the number of random

getSampleValues 11

samples used to perform kmeans clustering and the number of starting configurations can be pro-
vided as additional ... arguments. More information on the behavior of the kmeans clustering can
be found in unsuperClass. The default kmeans clustering method is Hartigan-Wong algorithm.
The algorithm might not converge and output "Quick Transfer" warning. If this is the case, we
suggest decreasing strata. Also, if mindist is too large, it might not be possible to select enough
samples per strata. In that case, the warning "Exceeded maximum number of runs for strata" is
displayed. In that case you can decrease the number of samples n or increase maxIter to control
the number of maximum iterations allowed until the required number of samples are selected.

Value

A list with the following objects:

sample A SpatialPoints object containing sampled points

clusterMap The clustered x raster, output of unsuperClass

model The kmeans model, output of unsuperClass

See Also

unsuperClass

Examples

Load raster package
library(raster)

Open and stack ALS metrics
elev_p95 <- raster(system.file("extdata/examples/ALS_metrics_p95.tif",package="foster"))
cover <- raster(system.file("extdata/examples/ALS_metrics_cov_mean.tif",package="foster"))
Y_vars <- stack(elev_p95,cover)
names(Y_vars) <- c("p95","cover")

Sample 5 cells in 3 strata (kmeans clusters). Sampled points should be at least 30 m apart.
set.seed(1234) #for example reproducibility
sample_strata <- getSample(Y_vars,

n = 5,
strata = 3,
mindist = 30)

getSampleValues Extract raster values at sample points

Description

Given a Raster* object and a SpatialPointsDataFrame object, the functions returns a SpatialPoints-
DataFrame objects with the values of the raster at sample points.

12 matchExtent

Usage

getSampleValues(x, s, keepCols = FALSE, filename = "", ...)

Arguments

x A Raster* object

s Location of the sample points. Object of class SpatialPointsDataFrame gen-
erated with getSample

keepCols Should the columns of s be retained? Default is FALSE

filename Character. Output filename including path to directory. File will be automati-
cally saved as an ESRI Shapefile and any extension in filename will be over-
written

... Additional arguments passed to writeOGR

Value

SpatialPointsDataFrame object

See Also

extract

Examples

Load raster package
library(raster)

Open and stack ALS metrics
elev_p95 <- raster(system.file("extdata/examples/ALS_metrics_p95.tif",package="foster"))
cover <- raster(system.file("extdata/examples/ALS_metrics_cov_mean.tif",package="foster"))
Y_vars <- stack(elev_p95,cover)
names(Y_vars) <- c("p95","cover")

sample_points is a SpatialPointsDataFrame calculated and saved from getSample
Load it into memory
load(system.file("extdata/examples/sample_points.RData",package="foster"))

getSampleValues(Y_vars, sample_points)

matchExtent Match the extent of a reference raster

Description

This function crops or extends the extent of a raster to the extent of a reference. Some cells of the
reference raster can optionally be masked based on their values.

matchExtent 13

Usage

matchExtent(
x,
ref,
mask = FALSE,
inverse = FALSE,
maskValue = NA,
filename = "",
...

)

Arguments

x Raster* object or list of Raster* objects.

ref Raster* object. x extent will be matched to ref extent.

mask Logical. Should x be masked by ref cells that have the value maskValue

inverse Logical. If TRUE, cells of ref that are not maskvalue are masked

maskValue Value of ref cells that should be masked in x. Default is NA.

filename Character. Output file name including path to directory and eventually exten-
sion. If x is a list, filename must be a vector of characters with one file name
for each element of x. Default is "" (output not written to disk).

... Other arguments passed to writeRaster

Details

x and ref need to have the same CRS, spatial resolution and origin. If this is not the case, you can
use matchResolution before matchExtent.

Value

Raster* object or list of Raster* objects.

See Also

crop, extend, mask

Examples

Load raster package
library(raster)

Open ALS p95 and mask of forested areas as Raster objects
BAP_2006 <- stack(system.file("extdata/examples/Landsat_BAP_2006.tif",package="foster"))
mask_forest <- raster(system.file("extdata/examples/VLCE_forest_2008.tif",package="foster"))

matchExtent(BAP_2006, mask_forest, mask = TRUE)

14 matchResolution

matchResolution Match the resolution of two Raster* objects

Description

Successively projects (if necessary) and resamples a raster coordinate system and spatial resolution
to the reference

Usage

matchResolution(x, ref, method = "bilinear", filename = "", ...)

Arguments

x Raster* object or list of Raster* objects.

ref Reference Raster* object with parameters that x should be resampled to.

method Character. Method used to compute values for the resampled raster. Can be
'bilinear' for bilinear interpolation or 'ngb' for nearest neighbor interpola-
tion. See resample.

filename Character. Output file name including path to directory and eventually exten-
sion. If x is a list, filename must be a vector of characters with one file name
for each element of x. Default is "" (output not written to disk).

... Other arguments passed to writeRaster

Details

x and ref must have defined CRS (can be assigned using projection). If the CRS don’t match, x
is projected to ref CRS prior to resampling. x doesn’t inherit the extent of ref.

Value

Raster* object or list of Raster* objects.

See Also

resample, projectRaster, projection

Examples

Load raster package
library(raster)

Open ALS metric and Landsat BAP imagery
elev_p95 <- raster(system.file("extdata/examples/ALS_metrics_p95.tif",package="foster"))
BAP_2006 <- stack(system.file("extdata/examples/Landsat_BAP_2006.tif",package="foster"))

matchResolution(x = elev_p95,ref = BAP_2006,method='bilinear')

partition 15

partition Split data into training and testing sets

Description

Returns the row indices of x that should go to training or validation.

Usage

partition(
x,
type = "group holdout",
p = 0.75,
kfold = 5,
groups = min(5, length(x)),
returnTrain = TRUE

)

Arguments

x A vector used for splitting data

type Character. Type of partition. Valid values are "random holdout", "group
holdout" or "kfold"

p percentage of data that goes to training set (holdout). Only relevant if type =
"random holdout" or type = "group holdout"

kfold Number of folds for cross-validation. Only relevant if type = "kfold".

groups For "group holdout" and when x is numeric, this is the number of breaks in
the quantiles

returnTrain Logical indicating whether training or validation indices should be returned.
Default is TRUE.

Details

Three types of splits are currently implemented. "random holdout" randomly selects p percents of
x for the training set. "group holdout" first groups x into groups quantiles and randomly samples
within them (see createDataPartition) . "kfold" creates k folds where p percent of the data is
used for training in each fold (see createFolds). This function is a wrapper around two functions
of caret package: createDataPartition and createFolds

Value

List containing training or validation indices

See Also

createDataPartition

16 predictTrgs

Examples

sample_points is a SpatialPointsDataFrame calculated and saved from getSample
Load it into memory
load(system.file("extdata/examples/sample_points.RData",package="foster"))

partition(sample_points$cluster, type = "kfold", kfold = 5)

predictTrgs Impute response variables across the landscape

Description

This function finds the k-NN of target observations and imputes response variables. X is a raster
object where each layer correspond to one of the predictor variable used to train the k-NN model
model obtained from trainNN.

Usage

predictTrgs(
model = NULL,
x = NULL,
nrows = 200,
nnID = TRUE,
nnDist = TRUE,
filename = "",
par = FALSE,
threads = 2,
progress = TRUE,
...

)

Arguments

model A trained kNN model obtained from trainNN

x Raster object where each layer corresponds to a predictor variable calculated at
targets

nrows number of rows processed at a time. Default is 200 .
nnID Logical. Should the ID of each target’s nearest neighbor used for imputation be

returned?
nnDist Logical. Should the distance to each target’s nearest neighbor used for imputa-

tion be returned?
filename Character. Output file name including path to directory and eventually exten-

sion.Default is "" (output not written to disk).
par Logical. Should imputation be performed on parallel threads?
threads Integer. Number of parallel threads (relevant only if par=TRUE)
progress Logical. If TRUE (default) a progress bar is displayed.
... Other arguments passed to writeRaster

scatter 17

Details

The method used to impute the NN is set from the kNN model trained by trainNN. If k=1 the
value of the single closest NN is imputed. If k>1, the closest, mean, median or weighted distance
mean (default) of all k NN values is imputed. This is set using the impute.cont and impute.fac
arguments of trainNN.

The raster x is processed as blocks of nrows to avoid creating very large objects (several Gb) that
couldn’t be stored in memory. However, low values of nrows slow down processing. Depending on
the amount of RAM available on your computer and on the size of the area where k-NN need to be
calculated, it is possible to process more rows at the same time and considerably reduce processing
time.

Value

A RasterStack object where the first layers correspond to the imputed response variables and the
remaining layers to the nearest neighbor(s) ID (if nnID = TRUE) and nearest neighbor(s) distance (if
nnDist = TRUE)

See Also

newtargets, impute.yai

Examples

Load data
kNN_model: trained kNN model (from trainNN)
X_vars: RasterStack of predictor variables
load(system.file("extdata/examples/example_predictTrgs.RData", package =
"foster"))

Y_imputed <- predictTrgs(model=kNN_model, x = X_vars, nnID = TRUE,
nnDist = TRUE)

scatter Scatterplot with information on the errors between x and y.

Description

Scatterplot between a vector of observed data and a vector of predicted data with information on
the errors between them.

Usage

scatter(obs, preds, vars, info = TRUE)

18 temporalMetrics

Arguments

obs A vector of observed values
preds A vector of predicted values
vars Optional vector indicating different variables
info A logical value indicating whether information on count, R2, bias and RMSE

should be added to the plot

Details

Accuracy metrics are calculated from accuracy

Value

A ggplot2 object or a list of ggplot2 objects (one per variable)

See Also

accuracy

Examples

kNN_preds is a data frame obtained from foster::trainNN
It contains predictions and observations of the trained kNN model
load(system.file("extdata/examples/kNN_preds.RData",package="foster"))

scatter(obs = kNN_preds$obs,
preds = kNN_preds$preds,
vars = kNN_preds$variable)

temporalMetrics Calculate temporal summary metrics

Description

This function calculates a set of user-defined or default statistics from spectral indices time series.

Usage

temporalMetrics(
x,
metrics = "defaultTemporalSummary",
filename = "",
stack = TRUE,
par = FALSE,
threads = 2,
progress = TRUE,
m = 2,
...

)

temporalMetrics 19

Arguments

x List of Raster* or SpatialPointsDataFrame objects.Input Raster or SpatialPoints-
DataFrame object containing a time series (may be generated with calcIndices)

metrics Name of a function used to process the time series provided as a character.

filename Character. Single output filename including path to directory and eventually
extension. Each spectral index is written separately and the name of the spectral
index is automatically appended to the file name.

stack Logical. Should the output be returned as a single RasterStack (TRUE) or as a
list containing one Raster per vegetation index (FALSE)

par Logical. Should the function be executed in parallel threads

threads Number of parallel threads used if par = TRUE

progress Logical. If TRUE (default) a progress bar is displayed.

m tuning parameter to determine how many blocks will be used (m blocks will be
processed by each cluster)

... Other arguments passed to writeRaster or writeOGR.

Details

Spectral indices can be calculated with calcIndices. The input to TemporalMetrics is a list where
each element is a Raster* or a SpatialPointsDataFrame object with layers or columns being spectral
indices. Each element should be one step in the time series and elements should be ordered in the
time series ascending order. The argument fun defines which metrics will be calculated. It has to
be the name of a function that takes a vector as input and returns a named vector corresponding to
the summary metrics. The function defaultTemporalSummary is used by default and returns the
median, IQR and Theil-Sen slope of the time series.

If x is a list of Raster* objects, the processing can be parallelized using cluster. In that case the
user has to set par = TRUE and provide the number of parallel threads threads. You can control
how many blocks will be processed by each thread by setting m (see cluster).

See Also

calc, cluster

Examples

VI_ts is a list of Raster* calculated and saved from calcIndices
Load it into memory
load(system.file("extdata/examples/VI_ts.RData",package="foster"))

temporalMetrics(VI_ts, metrics = "defaultTemporalSummary")

User-defined temporal summary metrics can also be used
funSummary <- function(x) {

c(
mean = mean(x, na.rm = TRUE),
median = median(x, na.rm = TRUE),
std = sd(x, na.rm = TRUE)

20 tile

)
}

theilSen Theil-Sen slope

Description

Calculate the Theil-Sen slope from a time series. This is a wrapper around sens.slope

Usage

theilSen(x)

Arguments

x A numeric vector

Value

numeric; Theil-Sen slope

See Also

sens.slope

Examples

x <- rnorm(100)
theilSen(x)

tile Split a raster into tiles

Description

This function is used to split a raster into smaller tiles. The raster is split in a grid pattern with nx
columns and ny rows.

Usage

tile(x, nx, ny, filename = "", suffix = NULL, ...)

trainNN 21

Arguments

x Raster* object to split

nx Number of horizontal cells in the splitting grid

ny Number of vertical cells in the splitting grid

filename Character. Output file name including path to directory and eventually exten-
sion.Default is "" (output not written to disk).

suffix Character appended to filename to differentiate tiles (must have length nx x ny).
If left NULL, tiles will be numbered by columns and rows

... Additional parameters passed to writeRaster

Value

A list of Raster* objects

See Also

crop

Examples

Load raster package
library(raster)

elev_p95 <- stack(system.file("extdata/examples/ALS_metrics_p95.tif",package="foster"))

Split elev_p95 into a 1 x 2 grid
tile(elev_p95, nx = 1, ny = 2)

trainNN Train and assess accuracy of a k-NN model

Description

This function trains a k-NN model from response variables (Y) and predictors (X) at reference
observations using the package yaImpute (see yai). By default, the distance between observations
is obtained from the proximity matrix of random forest regression or classification trees. Optionally,
training and testing sets can be provided to return the accuracy of the trained k-NN model.

Usage

trainNN(
x,
y,
inTrain = NULL,
inTest = NULL,
k = 1,

22 trainNN

method = "randomForest",
impute.cont = NULL,
impute.fac = NULL,
ntree = 500,
mtry = NULL,
rfMode = "",
...

)

Arguments

x A dataframe or SpatialPointsDataFrame of predictors variables X for reference
observations. Row names of X are used as identification of reference observa-
tions.

y A dataframe or SpatialPointsDataFrame of response variables Y for the refer-
ence observations. Row names of Y are used as identification of reference ob-
servations.

inTrain Optional. A list obtained from partitionindicating which rows of x and y go
to training.

inTest Optional list indicating which rows of x and y go to validation. If left NULL, all
rows that are not in inTrain are used for validation.

k Integer. Number of nearest neighbors

method Character. Which nearness metrics is used to compute the nearest neighbors.
Default is "randomForest". Other methods are listed in yai

impute.cont Character. The method used to compute the imputed continuous variables. Can
be "closest", "mean", "median" or "dstWeighted". Default is "closest" if
k = 1 and "dstWeighted" if k > 1. See impute.yai for more details.

impute.fac Character. The method used to compute the imputed values for factors. Default
value is the same as impute.cont. See impute.yai for more details.

ntree Number of classification or regression trees drawn for each response variable.
Default is 500

mtry Number of X variables picked randomly to split each node. Default is sqrt(number
of X variables)

rfMode By default, rfMode is set to "" which forces yai to create random forest regres-
sion trees instead of classification trees for continuous variables. Can be set to
"buildClasses" if wanting continuous variables to be converted to classes and
forcing random forest to build classification trees. (See yai)

... Other arguments passed to yai (e.g. "rfXsubsets")

Details

If performing model validation, the function trains a kNN model from the training set, finds the
k NN of the validation set and imputes the response variables from the k NN. If k = 1, only the
closest NN value is imputed. If k > 1, the imputed value can be either the closest NN value, the
mean, median or distance weighted mean of the k NN values.This is controlled by the arguments
impute.cont or impute.fac.

varImp 23

If inTest = NULL, all rows that are not in inTrain will be used for model testing. If inTrain = NULL,
all rows that are not in inTest will be used for model training. If both inTrain and inTest are NULL,
all rows of x and y will be used for training and no testing is performed.

The final model returned by findNN is trained from all observations of x and y.

Value

A list containing the following objects:

model A yai object, the trained k-NN model

preds A data.frame with observed and predicted values of the testing set for each response vari-
ables

See Also

yai, newtargets, impute.yai, accuracy

Examples

Load data in memory
X_vars_sample: Predictor variables at sample (from getSample)
Y_vars_sample: Response variables at sample (from getSample)
train_idx: Rows of X_vars_sample and Y_vars_sample that are used for
training (from (partition))
load(system.file("extdata/examples/example_trainNN.RData",package="foster"))

set.seed(1234) #for example reproducibility
kNN <- trainNN(x = X_vars_sample,

y=Y_vars_sample,
inTrain = train_idx,
k = 1,
method = "randomForest",
ntree = 200)

varImp Returns variable importance

Description

When RF is used to find nearest neighbors, the importance of each variable in the RF trees is
calculated. This function returns the importance of each variable and a ggplot2 object

Usage

varImp(model, scaled = TRUE, plot = TRUE, plotType = "boxplot")

24 varImp

Arguments

model A yai object

scaled Logical. Should importance values be centered and scaled?

plot Logical. If TRUE, returns a ggplot2 object based on plotType value

plotType Either of "boxplot" or "grid"

Details

If scaled = TRUE, importance values are centered by subtracting their mean and scaled by dividing
the centered importance by their standard deviation.

Value

A list containing the following objects:

importance A data.frame object containing the importance of each response variable and the mean
importance of all variables combined

plot A ggplot object showing a plot of the importance values according to plotType

See Also

importance, yaiVarImp

Examples

Load data
kNN_model: trained kNN model (from trainNN)
load(system.file("extdata/examples/example_predictTrgs.RData", package = "foster"))

varImp(kNN_model,scaled=FALSE,plot=TRUE,plotType="boxplot")

Index

accuracy, 2, 18, 23

calc, 19
calcIndices, 4, 19
cluster, 5, 19
createDataPartition, 15
crop, 13, 21

defaultTemporalSummary, 6

edges, 7
extend, 13
extract, 12

focal, 7, 9
focalMultiBand, 8

getSample, 9, 12
getSampleValues, 11

importance, 24
impute.yai, 17, 22, 23

mask, 13
matchExtent, 12
matchResolution, 13, 14

newtargets, 17, 23

partition, 15, 22
predictTrgs, 16
projection, 14
projectRaster, 14

resample, 14

scatter, 17
sens.slope, 6, 20
SpatialPoints, 10, 11
spectralIndices, 4, 5

tasseledCap, 4, 5

temporalMetrics, 6, 18
theilSen, 20
tile, 20
trainNN, 16, 17, 21

unsuperClass, 10, 11

varImp, 23

writeOGR, 5, 10, 12, 19
writeRaster, 5, 7, 8, 10, 14, 16, 19, 21

yai, 21–23
yaiVarImp, 24

25

	accuracy
	calcIndices
	defaultTemporalSummary
	edges
	focalMultiBand
	getSample
	getSampleValues
	matchExtent
	matchResolution
	partition
	predictTrgs
	scatter
	temporalMetrics
	theilSen
	tile
	trainNN
	varImp
	Index

