
Package ‘frictionless’
February 16, 2022

Title Read and Write Frictionless Data Packages

Version 1.0.0

Description Read and write Frictionless Data Packages. A 'Data Package'
(<https://specs.frictionlessdata.io/data-package/>) is a simple container
format and standard to describe and package a collection of (tabular) data.
It is typically used to publish FAIR
(<https://www.go-fair.org/fair-principles/>) and open datasets.

License MIT + file LICENSE

URL https://github.com/frictionlessdata/frictionless-r,

https://docs.ropensci.org/frictionless/

BugReports https://github.com/frictionlessdata/frictionless-r/issues

Imports assertthat, dplyr, glue, httr, jsonlite, purrr, readr (>=
2.1.0), utils, yaml

Suggests hms, knitr, lubridate, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

NeedsCompilation no

Author Peter Desmet [aut, cre] (<https://orcid.org/0000-0002-8442-8025>),
Damiano Oldoni [aut] (<https://orcid.org/0000-0003-3445-7562>),
Research Institute for Nature and Forest (INBO) [cph],
Beatriz Milz [rev] (<https://orcid.org/0000-0002-3064-4486>),
João Martins [rev] (<https://orcid.org/0000-0001-7961-4280>)

Maintainer Peter Desmet <peter.desmet.work@gmail.com>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2022-02-16 20:30:05 UTC

1

https://specs.frictionlessdata.io/data-package/
https://www.go-fair.org/fair-principles/
https://github.com/frictionlessdata/frictionless-r
https://docs.ropensci.org/frictionless/
https://github.com/frictionlessdata/frictionless-r/issues
https://orcid.org/0000-0002-8442-8025
https://orcid.org/0000-0003-3445-7562
https://orcid.org/0000-0002-3064-4486
https://orcid.org/0000-0001-7961-4280

2 add_resource

R topics documented:
add_resource . 2
create_package . 3
create_schema . 4
example_package . 5
get_schema . 6
read_package . 7
read_resource . 8
remove_resource . 11
resources . 12
write_package . 12

Index 14

add_resource Add a Data Resource

Description

Adds a Tabular Data Resource to a Data Package. The resource will be a Tabular Data Resource.
The resource name can only contain lowercase alphanumeric characters plus ., - and _.

Usage

add_resource(package, resource_name, data, schema = NULL, delim = ",")

Arguments

package List describing a Data Package, created with read_package() or create_package().
resource_name Name of the Data Resource.
data Data to attach, either a data frame or path(s) to CSV file(s):

• Data frame: attached to the resource as data and written to a CSV file when
using write_package().

• One or more paths to CSV file(s) as a character (vector): added to the re-
source as path. The last file will be read with readr::read_delim() to
create or compare with schema and to set format, mediatype and encoding.
The other files are ignored, but are expected to have the same structure and
properties.

schema Either a list, or path or URL to a JSON file describing a Table Schema for the
data. If not provided, one will be created using create_schema().

delim Single character used to separate the fields in the CSV file(s), e.g. \t for tab
delimited file. Will be set as delimiter in the resource CSV dialect, so read
functions know how to read the file(s).

Value

Provided package with one additional resource.

https://specs.frictionlessdata.io/data-resource/
https://specs.frictionlessdata.io/tabular-data-resource/
https://specs.frictionlessdata.io/csv-dialect/#specification

create_package 3

See Also

Other edit functions: get_schema(), remove_resource()

Examples

Load the example Data Package
package <- example_package

List resources
resources(package)

Create a data frame
df <- data.frame(

multimedia_id = c(
"aed5fa71-3ed4-4284-a6ba-3550d1a4de8d",
"da81a501-8236-4cbd-aa95-4bc4b10a05df"

),
x = c(718, 748),
y = c(860, 900)

)

Add resource "positions" to the Data Package, from the data frame
package <- add_resource(package, "positions", data = df)

Add resource "positions_2" to the Data Package, with user-defined schema
my_schema <- create_schema(df)
package <- add_resource(package, "positions_2", data = df, schema = my_schema)

Add resource "observations_2" to the Data Package, from CSV file paths
path_1 <- system.file("extdata", "observations_1.csv", package = "frictionless")
path_2 <- system.file("extdata", "observations_2.csv", package = "frictionless")
package <- add_resource(package, "observations_2", data = c(path_1, path_2))

List resources ("positions", "positions_2", "observations_2" added)
resources(package)

create_package Create an empty Data Package

Description

Initiates a list describing a Data Package. This empty Data Package can be extended with metadata
and resources (see add_resource()). Added resources will make the Data Package meet Tabular
Data Package requirements, so profile is set to tabular-data-package.

Usage

create_package()

https://specs.frictionlessdata.io/data-package/
https://specs.frictionlessdata.io/tabular-data-package/
https://specs.frictionlessdata.io/tabular-data-package/

4 create_schema

Value

List describing a Data Package.

See Also

Other create functions: create_schema()

Examples

Create a Data Package
package <- create_package()
str(package)

create_schema Create a Table Schema for a data frame

Description

Creates a Table Schema for a data frame, listing all column names and types as field names and
(converted) types.

Usage

create_schema(data)

Arguments

data A data frame.

Value

List describing a Table Schema.

Table schema properties

The Table Schema will be created from the data frame columns:

• name: contains the column name.

• title: not set.

• description: not set.

• type: contains the converted column type (see further).

• format: not set and can thus be considered default. This is also the case for dates, times
and datetimes, since readr::write_csv() used by write_package() will format those to
ISO8601 which is considered the default. Datetimes in local or non-UTC timezones will be
converted to UTC before writing.

• constraints: not set, except for factors (see further).

https://specs.frictionlessdata.io/table-schema/

example_package 5

• missingValues: not set. write_package() will use the default "" for missing values.
• primaryKey: not set.
• foreignKeys: not set.

Field types:
The column type will determine the field type, as follows:

• character as string.
• Date as date.
• difftime as number.
• factor as string with factor levels as enum.
• hms::hms() as time.
• integer as integer.
• logical as. boolean.
• numeric as number.
• POSIXct/POSIXlt as datetime.
• Any other type as any.

See Also

Other create functions: create_package()

Examples

Create a data frame
df <- data.frame(

id = c(as.integer(1), as.integer(2)),
timestamp = c(

as.POSIXct("2020-03-01 12:00:00", tz = "EET"),
as.POSIXct("2020-03-01 18:45:00", tz = "EET")

),
life_stage = factor(c("adult", "adult"), levels = c("adult", "juvenile"))

)

Create a Table Schema from the data frame
schema <- create_schema(df)
str(schema)

example_package Example Data Package

Description

Example Tabular Data Package with dummy camera trap data organized in 3 Data Resources:

• deployments: data stored in deployments.csv.
• observations: data stored in observations_1.csv and observations_2.csv, but refer-

enced as URLs.
• media: data stored in data property.

https://specs.frictionlessdata.io/table-schema/#string
https://specs.frictionlessdata.io/table-schema/#date
https://specs.frictionlessdata.io/table-schema/#number
https://specs.frictionlessdata.io/table-schema/#string
https://specs.frictionlessdata.io/table-schema/#time
https://specs.frictionlessdata.io/table-schema/#integer
https://specs.frictionlessdata.io/table-schema/#boolean
https://specs.frictionlessdata.io/table-schema/#number
https://specs.frictionlessdata.io/table-schema/#datetime
https://specs.frictionlessdata.io/table-schema/#any
https://specs.frictionlessdata.io/data-package/

6 get_schema

Usage

example_package

Format

An object of class list of length 9.

Source

https://github.com/frictionlessdata/frictionless-r/tree/main/inst/extdata

Examples

Not run:
example_package.rda was created with the code below.
Note that it must be created using a URL, otherwise all Data Resource paths
will point to local paths that won't work for other users.
One can load locally using:
read_package(
system.file("extdata", "datapackage.json", package = "frictionless")
)
example_package <- read_package(file.path(

"https://raw.githubusercontent.com/frictionlessdata/frictionless-r",
"main/inst/extdata/datapackage.json"

))
save(example_package, file = "data/example_package.rda")

End(Not run)

get_schema Get the Table Schema of a Data Resource

Description

Returns the Table Schema of a Data Resource (in a Data Package), i.e. the content of its schema
property, describing the resource’s fields, data types, relationships, and missing values. The re-
source must be a Tabular Data Resource.

Usage

get_schema(package, resource_name)

Arguments

package List describing a Data Package, created with read_package() or create_package().

resource_name Name of the Data Resource.

https://github.com/frictionlessdata/frictionless-r/tree/main/inst/extdata
https://specs.frictionlessdata.io/table-schema/
https://specs.frictionlessdata.io/tabular-data-resource/

read_package 7

Value

List describing a Table Schema.

See Also

Other edit functions: add_resource(), remove_resource()

Examples

Load the example Data Package
package <- example_package

Get the Table Schema for the resource "observations"
schema <- get_schema(package, "observations")
str(schema)

read_package Read a Data Package descriptor file (datapackage.json)

Description

Reads information from a datapackage.json file, i.e. the descriptor file that describes the Data
Package metadata and its Data Resources.

Usage

read_package(file = "datapackage.json")

Arguments

file Path or URL to a datapackage.json file.

Value

List describing a Data Package. The function will add a custom property directory with the
directory the descriptor was read from. It is used as a base path to access resources.

See Also

Other read functions: read_resource(), resources()

https://specs.frictionlessdata.io/data-package/#descriptor

8 read_resource

Examples

Read a datapackage.json file
package <- read_package(

system.file("extdata", "datapackage.json", package = "frictionless")
)

Access the Data Package properties
package$name
package$created

List resources
resources(package)

read_resource Read data from a Data Resource into a tibble data frame

Description

Reads data from a Data Resource (in a Data Package) into a tibble (a Tidyverse data frame). The
resource must be a Tabular Data Resource. The function uses readr::read_delim() to read CSV
files, passing the resource properties path, CSV dialect, column names, data types, etc. Column
names are taken from the provided Table Schema (schema), not from the header in the CSV file(s).

Usage

read_resource(package, resource_name)

Arguments

package List describing a Data Package, created with read_package() or create_package().

resource_name Name of the Data Resource.

Value

dplyr::tibble() data frame with the Data Resource’s tabular data.

Resource properties

The Data Resource properties are handled as follows:

Path:
path is required. It can be a local path or URL, which must resolve. Absolute path (/) and relative
parent path (../) are forbidden to avoid security vulnerabilities.
When multiple paths are provided ("path": ["myfile1.csv", "myfile2.csv"]) then data are merged
into a single data frame, in the order in which the paths are listed.

Data:
If path is not present, the function will attempt to read data from the data property. schema will
be ignored.

https://specs.frictionlessdata.io/data-resource/
https://specs.frictionlessdata.io/tabular-data-resource/
https://specs.frictionlessdata.io/data-resource/
https://specs.frictionlessdata.io/data-resource/#data-location

read_resource 9

Name:
name is required. It is used to find the resource with name = resource_name.

Profile:
profile is required to have the value tabular-data-resource.

File encoding:
encoding (e.g. windows-1252) is required if the resource file(s) is not encoded as UTF-8. The
returned data frame will always be UTF-8.

CSV Dialect:
dialect properties are required if the resource file(s) deviate from the default CSV settings (see
below). It can either be a JSON object or a path or URL referencing a JSON object. Only deviating
properties need to be specified, e.g. a tab delimited file without a header row needs:

"dialect": {"delimiter": "\t", "header": "false"}

These are the CSV dialect properties. Some are ignored by the function:

• delimiter: default ,.
• lineTerminator: ignored, line terminator characters LF and CRLF are interpreted automat-

ically by readr::read_delim(), while CR (used by Classic Mac OS, final release 2001) is
not supported.

• doubleQuote: default true.
• quoteChar: default ".
• escapeChar: anything but \ is ignored and it will set doubleQuote to false as these fields

are mutually exclusive. You can thus not escape with \" and "" in the same file.
• nullSequence: ignored, use missingValues.
• skipInitialSpace: default false.
• header: default true.
• commentChar: not set by default.
• caseSensitiveHeader: ignored, header is not used for column names, see Schema.
• csvddfVersion: ignored.

File compression:
Resource file(s) with path ending in .gz, .bz2, .xz, or .zip are automatically decompressed
using default readr::read_delim() functionality. Only .gz files can be read directly from URL
paths. Only the extension in path can be used to indicate compression type, the compression
property is ignored.

Ignored resource properties:
• title

• description

• format

• mediatype

• bytes

• hash

• sources

• licenses

https://specs.frictionlessdata.io/data-resource/#name
https://specs.frictionlessdata.io/tabular-data-resource/#specification
https://specs.frictionlessdata.io/data-resource/#optional-properties
https://specs.frictionlessdata.io/csv-dialect/#specification
https://specs.frictionlessdata.io/patterns/#specification-3

10 read_resource

Table schema properties

schema is required and must follow the Table Schema specification. It can either be a JSON object
or a path or URL referencing a JSON object.

• Field names are used as column headers.

• Field types are use as column types (see further).

• missingValues are used to interpret as NA, with "" as default.

Field types:
Field type is used to set the column type, as follows:

• string as character; or factor when enum is present. format is ignored.
• number as double; or factor when enum is present. Use bareNumber: false to ignore

whitespace and non-numeric characters. decimalChar (. by default) and groupChar (unde-
fined by default) can be defined, but the most occurring value will be used as a global value
for all number fields of that resource.

• integer as double (not integer, to avoid issues with big numbers); or factor when enum is
present. Use bareNumber: false to ignore whitespace and non-numeric characters.

• boolean as logical. Non-default trueValues/falseValues are not supported.
• object as character.
• array as character.
• date as date. Supports format, with values default (ISO date), any (guess ymd) and

Python/C strptime patterns, such as %a, %d %B %Y for Sat, 23 November 2013. %x is
%m/%d/%y. %j, %U, %w and %W are not supported.

• time as hms::hms(). Supports format, with values default (ISO time), any (guess hms)
and Python/C strptime patterns, such as %I%p%M:%S.%f%z for 8AM30:00.300+0200.

• datetime as POSIXct. Supports format, with values default (ISO datetime), any (ISO date-
time) and the same patterns as for date and time. %c is not supported.

• year as date, with 01 for month and day.
• yearmonth as date, with 01 for day.
• duration as character. Can be parsed afterwards with lubridate::duration().
• geopoint as character.
• geojson as character.
• any as character.
• no type provided as type is guessed.
• unknown type as not allowed.

See Also

Other read functions: read_package(), resources()

Examples

Read a datapackage.json file
package <- read_package(

system.file("extdata", "datapackage.json", package = "frictionless")
)

https://specs.frictionlessdata.io/table-schema/
https://specs.frictionlessdata.io/table-schema/#missing-values
https://specs.frictionlessdata.io/table-schema/#string
https://specs.frictionlessdata.io/table-schema/#number
https://specs.frictionlessdata.io/table-schema/#integer
https://specs.frictionlessdata.io/table-schema/#boolean
https://specs.frictionlessdata.io/table-schema/#object
https://specs.frictionlessdata.io/table-schema/#array
https://specs.frictionlessdata.io/table-schema/#date
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://specs.frictionlessdata.io/table-schema/#time
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://specs.frictionlessdata.io/table-schema/#datetime
https://specs.frictionlessdata.io/table-schema/#year
https://specs.frictionlessdata.io/table-schema/#yearmonth
https://specs.frictionlessdata.io/table-schema/#duration
https://specs.frictionlessdata.io/table-schema/#geopoint
https://specs.frictionlessdata.io/table-schema/#geojson
https://specs.frictionlessdata.io/table-schema/#any

remove_resource 11

List resources
resources(package)

Read data from the resource "observations"
read_resource(package, "observations")

The above tibble is merged from 2 files listed in the resource path
package$resources[[2]]$path

The column names and types are derived from the resource schema
purrr::map_chr(package$resources[[2]]$schema$fields, "name")
purrr::map_chr(package$resources[[2]]$schema$fields, "type")

remove_resource Remove a Data Resource

Description

Removes a Data Resource from a Data Package, i.e. it removes one of the described resources.

Usage

remove_resource(package, resource_name)

Arguments

package List describing a Data Package, created with read_package() or create_package().
resource_name Name of the Data Resource.

Value

Provided package with one fewer resource.

See Also

Other edit functions: add_resource(), get_schema()

Examples

Load the example Data Package
package <- example_package

List resources
resources(package)

Remove the resource "observations"
package <- remove_resource(package, "observations")

List resources ("observations" removed)
resources(package)

https://specs.frictionlessdata.io/data-resource/

12 write_package

resources List Data Resources

Description

Lists the names of the Data Resources included in a Data Package.

Usage

resources(package)

Arguments

package List describing a Data Package.

Value

Character vector with the Data Resource names.

See Also

Other read functions: read_package(), read_resource()

Examples

Load the example Data Package
package <- example_package

List resources
resources(package)

write_package Write a Data Package to disk

Description

Writes a Data Package and its related Data Resources to disk as a datapackage.json and CSV
files. Already existing CSV files of the same name will not be overwritten. The function can also
be used to download a Data Package in its entirety. The Data Resources are handled as follows:

• Resource path has at least one local path (e.g. deployments.csv): CSV files are copied or
downloaded to directory and path points to new location of file(s).

• Resource path has only URL(s): resource stays as is.

• Resource has inline data originally: resource stays as is.

• Resource has inline data as result of adding data with add_resource(): data are written
to a CSV file using readr::write_csv(), path points to location of file, data property is
removed. Use compress = TRUE to gzip those CSV files.

write_package 13

Usage

write_package(package, directory = ".", compress = FALSE)

Arguments

package List describing a Data Package, created with read_package() or create_package().

directory Path to local directory to write files to.

compress If TRUE, data of added resources will be gzip compressed before being written
to disk (e.g. deployments.csv.gz).

Value

package as written to file (invisibly).

Examples

Load the example Data Package from disk
package <- read_package(

system.file("extdata", "datapackage.json", package = "frictionless")
)

List resources
resources(package)

Write the (unchanged) Data Package to disk
write_package(package, directory = "my_directory")

Check files
list.files("my_directory")

No files written for the "observations" resource, since those are all URLs.
No files written for the "media" resource, since it has inline data.

Clean up (don't do this if you want to keep your files)
unlink("my_directory", recursive = TRUE)

Index

∗ create functions
create_package, 3
create_schema, 4

∗ datasets
example_package, 5

∗ edit functions
add_resource, 2
get_schema, 6
remove_resource, 11

∗ read functions
read_package, 7
read_resource, 8
resources, 12

∗ write functions
write_package, 12

add_resource, 2, 7, 11
add_resource(), 3

create_package, 3, 5
create_package(), 2, 6, 8, 11, 13
create_schema, 4, 4
create_schema(), 2

dplyr::tibble(), 8

example_package, 5

get_schema, 3, 6, 11

hms::hms(), 5, 10

lubridate::duration(), 10

read_package, 7, 10, 12
read_package(), 2, 6, 8, 11, 13
read_resource, 7, 8, 12
readr::read_delim(), 2, 8, 9
readr::write_csv(), 4, 12
remove_resource, 3, 7, 11
resources, 7, 10, 12

write_package, 12
write_package(), 2, 4, 5

14

	add_resource
	create_package
	create_schema
	example_package
	get_schema
	read_package
	read_resource
	remove_resource
	resources
	write_package
	Index

