Package ‘IsMTS’

April 26, 2022
Type Package
Title Feature Selection for Multivariate Time Series
Version 0.1.7

Description Implements feature selection routines for multivariate time series (MTS).
The list of implemented algorithms includes:
own lags (independent MTS components),
distance-
based (using external structure, e.g. Pfeifer and Deutsch (1980) <doi:10.2307/1268381>),
cross-correlation (see Schelter et al. (2006, ISBN:9783527406234)),
graphical LASSO (see Haworth and Cheng (2014) <https:
//www.gla.ac.uk/media/Media_401739_smxx.pdf>),
random forest (see Pavlyuk (2020) ““Random Forest Variable Selection for Sparse Vector Au-
toregressive Models" in Contributions to Statistics, in production),
least angle regression (see Gelper and Croux (2008) <https:
//lirias.kuleuven.be/retrieve/16024>),
mutual information (see Schel-
ter et al. (2006, ISBN:9783527406234), Liu et al. (2016) <doi:10.1109/ChiCC.2016.7554480>),
and partial spectral coherence (see Davis et al.(2016) <doi:10.1080/10618600.2015.1092978>).
In addition, the package implements functions for ensemble feature selection (using feature rank-
ing and majority voting).
The package is implemented within Dmitry Pavlyuk's re-
search project No. 1.1.1.2/VIAA/1/16/112 ™" Spatiotemporal urban traffic modelling us-
ing big data".

License GPL-3

Depends R (>=3.6)

Imports glasso,lars,mpmi,freqdom,randomForestSRC

Suggests knitr, rmarkdown, sparsevar, plot.matrix, svMisc, MTS

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Author Dmitry Pavlyuk [aut, cre] (<https://orcid.org/0000-0003-3710-9678>)

1

https://doi.org/10.2307/1268381
https://www.gla.ac.uk/media/Media_401739_smxx.pdf
https://www.gla.ac.uk/media/Media_401739_smxx.pdf
https://lirias.kuleuven.be/retrieve/16024
https://lirias.kuleuven.be/retrieve/16024
https://doi.org/10.1109/ChiCC.2016.7554480
https://doi.org/10.1080/10618600.2015.1092978
https://orcid.org/0000-0003-3710-9678

fsMTS-package

Maintainer Dmitry Pavlyuk <Dmitry.Pavlyuk@tsi.lv>
Repository CRAN

Repository/R-Forge/Project fsmts

Repository/R-Forge/Revision 24
Repository/R-Forge/DateTimeStamp 2022-04-25 17:44:07
Date/Publication 2022-04-26 09:00:07 UTC

NeedsCompilation no

R topics documented:

fsSMTS-package 2
cutoff . . L e e e e 3
fsEnsemble e e 4
fSMTS . . e e 5
fsSimilarity 8
fsSimilarityMatrix e e e 10
fsSSparsity e e 11
traffic e e e e e 12
trafficmini. L e e e 12

Index 13

fsMTS-package Feature selection for Multivariate Time Series
Description

Feature selection for Multivariate Time Series

Details

Implementation of feature selection methods for multivariate time series

Author(s)

Dmitry Pavlyuk <Dmitry.V.Pavlyuk@gmail.com>

cutoff 3

cutoff Choosing most important features

Description

cutoff chooses features of highest importance to reach the required percent of sparsity

Usage

cutoff(feature.set, threshold)

Arguments
feature.set a matrix that contains feature weights.
threshold the required sparsity of the resulting feature set
Value

returns a binary feature matrix. Columns correspond to components of the time series; rows corre-
spond to lags.

Examples

Load traffic data
data(traffic.mini)

Scaling is sometimes useful for feature selection
Exclude the first column - it contains timestamps
data <- scale(traffic.mini$datal,-1])

mCCF<-fsMTS(data, max.lag=3, method="CCF")
cutoff(mCCF, 0.3)
cutoff(mCCF, 0.1)

mIndependent<-fsMTS(data, max.lag=3, method="ownlags")
cutoff(mIndependent, 0.3)
cutoff(mIndependent, 0.1)

4 fsEnsemble

fsEnsemble Ensemble feature selection for MTS

Description

fsEnsemble implements methods for ensemble learning of features for multivariate time series

Usage

fsEnsemble(feature.sets, threshold, method = c("ranking”, "majority"))

Arguments

feature.sets alist of matrixes that contains weights for features, estimated by several feature
selection algorithms (base learners)

threshold the required sparsity of the resulting feature set
method a ensemble learning algorithm. Implemented algorithms:

* "ranking'" - individual feature sets are ranked according to their weights
and further the sum of ranks is used for feature selection (threshold share
of features is selected). The algorithm uses ranking of feature with a minor
priority to earlier lags and even smaller priority to order of MTS compo-
nents. So, if features of 1st and 2nd lags have identical weights, the feature
of the 1st lag will be preferred; if features of the same lag have identical
weights, the order of features is used as a priority.

* "majority" - base feature sets are for feature selection (threshold share of
features is selected) and further the resulting feature set is estimated using
majority voting (50 or more percent of base learners)

Value

returns a binary feature matrix. Columns correpond to components of the time series; rows corre-
spond to lags.

References
Pes, B., 2019. Ensemble feature selection for high-dimensional data: a stability analysis across mul-
tiple domains. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04082-3

Examples

Load traffic data
data(traffic.mini)

Scaling is sometimes useful for feature selection
Exclude the first column - it contains timestamps
data <- scale(traffic.mini$datal,-1])

fsMTS 5

mIndep<-fsMTS(data, max.lag=3, method="ownlags")
mCCF<-fsMTS(data, max.lag=3, method="CCF")
mDistance<-fsMTS(data, max.lag=3, method="distance"”, shortest = traffic.mini$shortest, step = 5)
mGLASSO<-fsMTS(data, max.lag=3,method="GLASSO", rho = 0.05)
mLARS<-fsMTS(data, max.lag=3,method="LARS")
mRF<-fsMTS(data, max.lag=3,method="RF")
mMI<-fsMTS(data, max.lag=3,method="MI")
mlist <- list(Independent = mIndep,

Distance = mDistance,

CCF = mCCF,

GLASSO = mGLASSO,

LARS = mLARS,

RF = mRF,

MI = mMI)

th<-0.30

mlist[["EnsembleRank”]] <- fsEnsemble(mlist, threshold = th, method="ranking")
mlist[["EnsembleMajV"]] <- fsEnsemble(mlist, threshold = th, method="majority")
(msimilarity <- fsSimilarityMatrix(mlist,threshold = th, method="Kuncheva"))

fsMTS Feature selection for multivariate time series

Description

fsMTS implements algorithms for feature selection in multivariate time series

Usage

fSMTS(
mts,
max.lag,
method = c("ownlags”, "distance"”, "CCF", "MI", "RF", "GLASSO", "LARS", "PSC"),
show.progress = F,
localized = F,

)
Arguments
mts an matrix object with values of the multivariate time series (MTS) MTS compo-
nents are by k columns, observations are by rows
max.lag the maximal lag value

method a feature selection algorithm. Implemented algorithms:

show.progress

localized

fsMTS

* "ownlags' - only own (autoregressive) lags. The method constructs the
matrix of features that represents independent AR(max.lag) processes for
every MTS component. "'distance' - distance-based feature selection. The
method uses directed distances shortest between every pair of time series
components (origin and destination). The lag / is selected as a potential rela-
tionship (feature) if the destination component is reachable from the origin
component within (/*step) time steps, rounded to integer value. All pre-
vious and next lags are not included into the resulting structure. ""CCF"' -
cross-correlation-based. The method returns values of Pearson’s correlation
coefficient between every MTS component and all other MTS components
and their lags. See Yang et al.(2005) as an example of application. Only
own lags of every MTS component are included as selected features.

e "MI" - mutual information-based. The method returns values of mutual
information between every component of the multivariate time series and
all other components and their lags. The method is localized - mutual in-
formation is independently estimated for every MTS component and lags
(1:max.lag) of all MTS components. See Liu et al. (2016) as an example of
application.

* "RF" - random forest estimation of k linear regression models. The method
returns increase of mean square error (of the multivariate time series and
all other components and their lags. The method is localized - the linear
regression is independently estimated by the random forest algorithm for
every MTS component as a dependent variable and lags (1:max.lag) of all
MTS components as explanatory variables. See Pavlyuk (2020) for more
details

* "GLASSQ" - feature selection using graphical LASSSO regularisation of
the inverse covariance matrix. The method returns values from inverse cor-
relation matrix between every MTS component and all other components
and their lags. The method is localized - the sparse inverse correlation ma-
trix is independently estimated for every time series component and lags
(1:_max.lag_) of all other components.

* "LARS" - feature selection using least angle regression. The method re-
turns values of beta proportions from the least angle regression, estimated
for every MTS component and all other components and their lags. The
method is localized - the least angle regression is independently estimated
for every MTS component and lags (1:_max.lag_) of all other components.

» "PSC" - feature selection using partial spectral coherence of MTS compo-
nents. The method returns maximal values of the partial spectral coherence
function for all MTS lags

the logical parameter to print progress of calculation. By default is FALSE.

the logical parameter to executed localized (component-wise) feature selection if
the selected method supports this ("MI", "GLASSO", "RF"). Localized versions
of algorithms are based on selection of features for independently for every MTS
component from all lagged components. Non-localised versions include simul-
teneous feature selection for all components, including potential instantaneous
effects (relationships between feature within the same lag). Leter, non-localised
algortihms ignore instantaneous effects and return only lagged features.

fsMTS 7

By default is TRUE
method-specific parameters:

 "shortest" ("distance" algorithm) matrix of externally provided shortest
distances between every pair of time series’ components.

» "step' ("distance" algorithm) distance that covered by the process during
one time step of the time series. By default is 1.

* "rho" ("GLASSO" algorithm) non-negative regularization parameter for
lasso. tho=0 means no regularization.

Details

The function implements selection of potential relationships between multivariate time series’ com-
ponents and their lags.

Value

returns a real-valued or binary (depends on the algorithm) feature matrix of k*max.lag rows and k
columns, where k is number of time series components (number of columns in the mts parameter).
Columns correpond to components of the time series; rows correspond to lags (from 1 to max.lag).

References

Distance-based feature selection for MTS

Pfeifer, P. E., & Deutsch, S. J. 1980. A Three-Stage Iterative Procedure for Space-Time Modeling.
Technometrics, 22(1), 35.

Cross-corelation-based feature selection for MTS

Netoff I., Caroll T.L., Pecora L.M., Sciff S.J. 2006. Detecting coupling in the presence of noise and
nonlinearity. In: Schelter B, Winterhalder W, Timmer J, editors. Handbook of time series analysis.

Mutual information-based feature selection for MTS

Liu, T., Wei, H., Zhang, K., Guo, W., 2016. Mutual information based feature selection for multi-
variate time series forecasting, in: 35th Chinese Control Conference (CCC). Presented at the 2016
35th Chinese Control Conference (CCC), IEEE, Chengdu, China, pp. 7110-7114.

Random forest-based feature selection for MTS

Pavlyuk, D., 2020. Random Forest Variable Selection for Sparse Vector Autoregressive Models, in:
Valenzuela, O., Rojas, F., Pomares, H., Rojas, 1. (Eds.), Theory and Applications of Time Series
Analysis. Selected Contributions from ITISE 2019., Contributions to Statistics.

Graphical LASSO-based feature selection for MTS

Haworth, J., Cheng, T., 2014. Graphical LASSO for local spatio-temporal neighbourhood selection,
in: Proceedings the GIS Research UK 22nd Annual Conference. Presented at the GIS Research UK
22nd Annual Conference, Leicester, UK, pp. 425-433.

Least angle regression for feature selection for MTS

Gelper S. and Croux C., 2008. Least angle regression for time series forecasting with many predic-
tors, Leuven, Belgium, p.37.

Partial spectral coherence for feature selection for MTS

8 fsSimilarity

Davis, R.A., Zang, P., Zheng, T., 2016. Sparse Vector Autoregressive Modeling. Journal of Com-
putational and Graphical Statistics 25, 1077-1096.

Examples

Load traffic data
data(traffic.mini)

Scaling is sometimes useful for feature selection
Exclude the first column - it contains timestamps
data <- scale(traffic.mini$datal,-1])

mIndep<-fsMTS(data, max.lag=3, method="ownlags")
mCCF<-fsMTS(data, max.lag=3, method="CCF")
mDistance<-fsMTS(data, max.lag=3, method="distance"”, shortest = traffic.mini$shortest, step = 5)
mGLASSO<-fsMTS(data, max.lag=3,method="GLASS0", rho = 0.05)
mLARS<-fsMTS(data, max.lag=3,method="LARS")
mRF<-fsMTS(data, max.lag=3,method="RF")
mMI<-fsMTS(data, max.lag=3,method="MI")
mlist <- list(Independent = mIndep,

Distance = mDistance,

CCF = mCCF,

GLASSO = mGLASSO,

LARS = mLARS,

RF = mRF,

MI = mMI)

th<-0.30
(msimilarity <- fsSimilarityMatrix(mlist,threshold = th, method="Kuncheva"))

fsSimilarity Calculating similarity of two feature sets

Description

fsSimilarity implements different methods for calculation similarity of two feature sets.

Usage

fsSimilarity(
feature.set1,
feature.set2,
cutoff = FALSE,
threshold = 1,
method = c("Kuncheva”, "Jaccard”, "Hamming")

fsSimilarity

Arguments

feature.setl
feature.set2

cutoff

threshold

method

Value

a matrix that contains feature weights.
a matrix that contains feature weights.

logical. If true, ihe input features sets are cut-off using the cutoff function with
a specified threshold. By default is FALSE.

the threshold for feature selection using the cutoff function. By defaultis 1 (no
cut-off)

a similarity metric. Implemented metrics:
» "Jaccard" - a share of matching features to maximal possible number of
matching features (Jaccard similarity)

» "Kuncheva'' - Kuncheva-like correction to the expected number of features
matched by chance. See Kuncheva (2007)

e "Hamming'' - Hamming distance, normalised to [0,1], where 1 is for iden-
tical matrices

returns a value from the [-1, 1] interval for Kuncheva and from the [0, 1] interval for other algorithms,
where 1 is for absolutely identical feature sets.

References

Kuncheva L., 2007, A stability index for feature selection. In: 25th IASTED international multi-
conference: artificial intelligence and applications, pp. 390-395

Examples

Load traffic data
data(traffic.mini)

Scaling is sometimes useful for feature selection
Exclude the first column - it contains timestamps
data <- scale(traffic.mini$datal,-11)

mCCF<-fsMTS(data, max.lag=3, method="CCF")

mLARS<-fsMTS(data, max.lag=3, method="LARS")

fsSimilarity(mCCF, mLARS, cutoff=TRUE, threshold=0.2, method="Kuncheva")
fsSimilarity(mCCF, mLARS, cutoff=TRUE, threshold=0.2, method="Jaccard")
fsSimilarity(mCCF, mLARS, cutoff=TRUE, threshold=0.2, method="Hamming")

10 fsSimilarityMatrix

fsSimilarityMatrix Constructing the similarity matrix

Description
fsSimilarityMatrix constructs a square matrix of similarity metric values between MTS feature
sets. Metrics are calculated using fsSimilarity function with cutting-off feature sets

Usage

fsSimilarityMatrix(feature.sets, threshold, method)

Arguments

feature.sets alist of matrixes that contains weights for features, estimated by several feature
selection algorithms.

threshold the required sparsity of the resulting feature set
method a similarity metric. Directly passed to fsSimilarity function
Value

returns a real-valued square matrix with pairwise similarity metric values of feature sets

See Also

fsSimilarity

Examples

Load traffic data
data(traffic.mini)

Scaling is sometimes useful for feature selection
Exclude the first column - it contains timestamps
data <- scale(traffic.mini$datal,-1])

mIndep<-fsMTS(data, max.lag=3, method="ownlags")
mCCF<-fsMTS(data, max.lag=3, method="CCF")
mDistance<-fsMTS(data, max.lag=3, method="distance"”, shortest = traffic.mini$shortest, step = 5)
mGLASSO<-fsMTS(data, max.lag=3,method="GLASS0", rho = 0.05)
mLARS<-fsMTS(data, max.lag=3,method="LARS")
mRF<-fsMTS(data, max.lag=3,method="RF")
mMI<-fsMTS(data, max.lag=3,method="MI")
mlist <- list(Independent = mIndep,

Distance = mDistance,

CCF = mCCF,

GLASSO = mGLASSO,

LARS = mLARS,

fsSparsity

RF = mRF
MI

’

mMI)

(msimilarity <- fsSimilarityMatrix(mlist,threshold = 0.3, method="Kuncheva"))

11

fsSparsity Calculating sparsity of a feature set

Description

fsSparsity calculates the sparsity (share of non-zero components) of the feature set

Usage

fsSparsity(feature.set)

Arguments

feature.set a matrix that contains feature weights.

Value

returns a share of non-zero components in the feature set

Examples

Load traffic data
data(traffic.mini)

Scaling is sometimes useful for feature selection
Exclude the first column - it contains timestamps
data <- scale(traffic.mini$datal,-1])

mCCF<-fsMTS(data, max.lag=3, method="CCF")
fsSparsity(cutoff(mCCF,0.3))

12 traffic.mini

traffic Urban traffic (pre-processed)

Description

The fsMTS package includes the dataset traffic that contains information from 30 sensors de-
ployed on arterial roads for one day with 5-minute temporal aggregation (288 observations)

Usage
data(traffic)

Format

A dataframe with 288 observations of a 30-dimensional time series

traffic.mini Urban traffic (preprocessed and reduced)

Description

The dataset traffic.mini is a reduced data set from 3 sensors deployed on arterial roads for 12
hours with 5-minute temporal aggregation (144 observations)

Usage

data(traffic.mini)

Format

A dataframe with 144 observations of a 3-dimensional time series

Index

cutoff, 3

fsEnsemble, 4

fsMTS, 5
fsMTS-package, 2
fsSimilarity, 8, 10
fsSimilarityMatrix, 10
fsSparsity, 11

traffic, 12
traffic.mini, 12

13

	fsMTS-package
	cutoff
	fsEnsemble
	fsMTS
	fsSimilarity
	fsSimilarityMatrix
	fsSparsity
	traffic
	traffic.mini
	Index

