
Package ‘fsr’
July 5, 2022

Type Package

Title Handling Fuzzy Spatial Data

Version 1.0.2

URL https://accarniel.github.io/fsr/, https://github.com/accarniel/fsr

BugReports https://github.com/accarniel/fsr/issues

Depends R (>= 3.6.0)

Imports rlang (>= 0.4.11), methods (>= 2.0.0), sf (>= 0.9.4), FuzzyR
(>= 2.3.0), dplyr (>= 1.0.6), ggplot2 (>= 3.3.5), stringr (>=
1.4.0), tibble (>= 3.0.1), pso (>= 1.0.3), e1071 (>= 1.7.3),
utils (>= 3.6.3), lwgeom (>= 0.2.6)

Description Support for fuzzy spatial objects, their operations, and fuzzy spatial inference mod-
els based on Spatial Plateau Algebra.
It employs fuzzy set theory and fuzzy logic as foundation to deal with spatial fuzziness.
It implements underlying concepts defined in the following research papers:
(i) ``Spatial Plateau Algebra: An Executable Type System for Fuzzy Spa-
tial Data Types'' <doi:10.1109/FUZZ-IEEE.2018.8491565>;
(ii) ``A Systematic Approach to Creating Fuzzy Region Objects from Real Spa-
tial Data Sets'' <doi:10.1109/FUZZ-IEEE.2019.8858878>;
(iii) ``Fuzzy Inference on Fuzzy Spatial Objects (FIFUS) for Spatial Decision Support Sys-
tems'' <doi:10.1109/FUZZ-IEEE.2017.8015707>.

License GPL-3

RoxygenNote 7.2.0

NeedsCompilation no

Encoding UTF-8

Collate 'fsr_base.R' 'builder_functions.R' 'fsi_functions.R'
'utility_functions.R' 'spa_functions.R'

Author Anderson Carniel [rth, aut, cre]
(<https://orcid.org/0000-0002-8297-9894>),

Felippe Galdino [rtm, aut] (<https://orcid.org/0000-0003-2594-9733>),
Juliana Philippsen [rtm, aut],
Markus Schneider [rth]

1

https://accarniel.github.io/fsr/
https://github.com/accarniel/fsr
https://github.com/accarniel/fsr/issues
https://doi.org/10.1109/FUZZ-IEEE.2018.8491565
https://doi.org/10.1109/FUZZ-IEEE.2019.8858878
https://doi.org/10.1109/FUZZ-IEEE.2017.8015707
https://orcid.org/0000-0002-8297-9894
https://orcid.org/0000-0003-2594-9733

2 R topics documented:

Maintainer Anderson Carniel <accarniel@ufscar.br>

Repository CRAN

Date/Publication 2022-07-05 02:50:02 UTC

R topics documented:

as_tibble.pgeometry . 3
component-class . 4
create_empty_pgeometry . 5
create_pgeometry . 6
fsi_add_cs . 7
fsi_add_fsa . 8
fsi_add_rules . 9
fsi_create . 11
fsi_eval . 12
fsi_qw_eval . 13
fsr_components . 15
fsr_diff_operators . 18
fsr_eval_modes . 19
fsr_geometric_operations . 20
fsr_is_empty . 22
fsr_numerical_operations . 23
fsr_topological_relationships . 25
pgeometry-class . 28
plot . 29
PWKT . 31
spa_add_component . 33
spa_boundary_pregion . 34
spa_contour . 36
spa_core . 37
spa_creator . 38
spa_eval . 41
spa_exact_equal . 43
spa_exact_inside . 44
spa_set_classification . 45
spa_support . 46
visitation . 48

Index 50

as_tibble.pgeometry 3

as_tibble.pgeometry Converting a pgeometry object into tabular data

Description

We can convert a pgeometry object into tabular data, such as a tibble or data.frame object,
where the components of the pgeometry object compose the rows of the table.

Usage

S3 method for class 'pgeometry'
as.data.frame(x, ...)

S3 method for class 'pgeometry'
as_tibble(x, ...)

Arguments

x A pgeometry object.

... <dynamic-dots> Unused.

Details

This function is an interface for the S3 generic as_tibble. Here, it turns a pgeometry object into
a tibble, which is a data frame with class tbl_df. This allows us to get the internal components of
the pgeometry object (i.e., spatial features objects and membership degrees) as a data frame with
two separate columns - called md (membership degree) and geometry (an sfc object).

For each component of the pgeometry object, as_tibble gets the md and geometry values and
allocates them into a row of the new created tibble, in separated columns. Therefore, each row of
this tibble represents a component of the original pgeometry object.

It is also possible to call the S3 method as.data.frame to convert a pgeometry object into tabular
data.

Value

A tibble object of size n x 2 where n is the number of components of the pgeometry object and
two columns in the format (md, geometry).

Examples

library(sf)

Creating components for our plateau point object
v1 <- rbind(c(1,2), c(3,4))
v2 <- rbind(c(1,4), c(2,3),c(4,4))

4 component-class

md1 <- 0.2
md2 <- 0.1
md3 <- 0.4
pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

comp1 <- component_from_sfg(st_multipoint(pts1), md1)
comp2 <- component_from_sfg(st_multipoint(pts2), md2)
comp3 <- component_from_sfg(st_multipoint(pts3), md3)

Creating the plateau point object as a pgeometry object with 3 components

plateau_point <- create_pgeometry(list(comp1, comp2, comp3), "PLATEAUPOINT")

Converting the pgeometry object into a tibble object
plateau_point_tibble <- as_tibble(plateau_point)

plateau_point_tibble

component-class An S4 Class for representing a component of a spatial plateau object

Description

An S4 Class for representing a component of a spatial plateau object

Details

A component object is composed of two attributes. The first one is a crisp spatial object and the
second one a membership degree in]0, 1] of this component.

Slots

obj An sfg object.

md The membership degree of the component.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

create_empty_pgeometry 5

create_empty_pgeometry

Creation of an empty pgeometry object

Description

This function builds an empty pgeometry object of a specific type.

Usage

create_empty_pgeometry(type)

Arguments

type A character value indicating the data type of the pgeometry object. It can be
either "PLATEAUPOINT", "PLATEAULINE" or "PLATEAUREGION".

Details

The create_empty_pgeometry creates a new pgeometry object with no components. To add new
components to this object, you should use spa_add_component. The components added to this
object must be of same type of the empty pgeometry object.

Value

A pgeometry object.

Examples

Creating an Empty Plateau Point object
empty_plateau_point <- create_empty_pgeometry("PLATEAUPOINT")

Creating an Empty Plateau Line object
empty_plateau_line <- create_empty_pgeometry("PLATEAULINE")

Creating an Empty Plateau Region object
empty_plateau_region <- create_empty_pgeometry("PLATEAUREGION")

6 create_pgeometry

create_pgeometry Creation of a pgeometry object with components

Description

This function creates a pgeometry object from a data.frame or a list of components.

Usage

create_pgeometry(components, type)

Arguments

components A list of component objects or a data.frame. The type of each component must
be the same for all components.

type A character value that indicates the type of the desired pgeometry object. It
should be either "PLATEAUPOINT", "PLATEAULINE", or "PLATEAUREGION". It
must be compatible with the components given in components parameter.

Details

The create_pgeometry function creates a pgeometry object of a given type. This object is built
by using either a list of component objects or a dataframe (or tibble). If a dataframe is given, it must
have two columns: the first one is a sfc object and second one indicates the membership degree of
each respective object of the sfc column.

Value

A pgeometry object.

Examples

library(sf)
Example 1 - Creating an `PLATEAUPOINT` object.

Creating components for the plateau point object
v1 <- rbind(c(1,2), c(3,4))
v2 <- rbind(c(1,4), c(2,3),c(4,4))

md1 <- 0.2
md2 <- 0.1
md3 <- 0.4
pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

comp1 <- component_from_sfg(st_multipoint(pts1), md1)
comp2 <- component_from_sfg(st_multipoint(pts2), md2)

fsi_add_cs 7

comp3 <- component_from_sfg(st_multipoint(pts3), md3)

Creating the plateau point object as a pgeometry object with 3 components

plateau_point_pgeom <- create_pgeometry(list(comp1, comp2, comp3), "PLATEAUPOINT")

Example 2 - Creating an `PLATEAULINE` object.

lpts1 <- rbind(c(0, 0), c(1, 1))
lpts2 <- rbind(c(1, 1), c(1.2, 1.9), c(2, 1))
lpts3 <- rbind(c(2, 1), c(1.5, 0.5))

comp4 <- component_from_sfg(st_linestring(lpts1), 0.4)
comp5 <- component_from_sfg(st_linestring(lpts2), 1)
comp6 <- component_from_sfg(st_linestring(lpts3), 0.7)

plateau_line <- create_pgeometry(list(comp4, comp5, comp6), "PLATEAULINE")

fsi_add_cs Adding the consequent to an FSI model

Description

This function adds the consequent to a fuzzy spatial inference (FSI) model. It consists of a set of
membership functions labeled with linguistic values.

Usage

fsi_add_cs(fsi, lvar, lvals, mfs, bounds)

Arguments

fsi The FSI model instantiated with the fsi_create function.
lvar A character value that represents a linguistic variable of the consequent.
lvals A character vector that represents linguistic values of the linguistic variable of

the consequent.
mfs A vector of functions created by the genmf of the FuzzyR package.
bounds A numeric vector that represents the lower and upper bounds of the consequent

domain.

Details

Each linguistic value defined at the lvals parameter has a membership function defined at the
mfs parameter. lvals is a character vector containing the names of linguistic values and mfs is
vector containing its corresponding membership functions. Thus, the vectors defined for these two
parameters must have the same length. For instance, the first value of lvals is the linguistic value
for the first membership function in mfs. In bounds, the lower and upper values correspond to the
first and second parameter, respectively.

8 fsi_add_fsa

Value

An FSI model populated with a consequent.

Examples

library(FuzzyR)

Create the fsi_model:
fsi <- fsi_create("To visit or not to visit, that is the question",

default_conseq = genmf("trimf", c(10, 30, 60)))

Create the vector with the linguistic values of the linguistic variable "visiting experience":
lvals_visiting_exp <- c("awful", "average", "great")

Define the membership function for each linguistic value:
awful_mf <- genmf("trimf", c(0, 0, 20))
average_mf <- genmf("trimf", c(10, 30, 60))
great_mf <- genmf("trapmf", c(40, 80, 100, 100))

Add the consequent to the FSI model:
fsi <- fsi_add_cs(fsi, "visiting experience", lvals_visiting_exp,

c(awful_mf, average_mf, great_mf), c(0, 100))

fsi_add_fsa Adding an antecedent to an FSI model

Description

This function adds a fuzzy spatial antecedent to a fuzzy spatial inference (FSI) model. A fuzzy
spatial antecedent corresponds to a layer of fuzzy spatial objects that describe the different charac-
teristics of the problem. The antecedent has a linguistic variable and its fuzzy spatial objects have
linguistic values so that they are used in the IF part of fuzzy rules.

Usage

fsi_add_fsa(fsi, lvar, tbl)

Arguments

fsi The FSI model instantiated with the fsi_create function.

lvar A character value that represents a linguistic variable of the antecedent.

tbl A tibble with spatial plateau objects annotated with linguistic values of the lin-
guistic variable specified by the above lvar parameter.

fsi_add_rules 9

Details

The fuzzy spatial antecedent added by the fsi_add_fsa function is composed of a linguistic vari-
able and its corresponding pgeometry objects annotated by linguistic values. The format of the
tbl parameter is the same as the output of the function spa_creator, allowing the user to directly
provides plateau region objects as input when designing FSI models.

Value

An FSI model populated with a fuzzy spatial antecedent.

Examples

library(FuzzyR)
library(tibble)

Create spatial plateau objects for the linguistic variable accomodation_price
lvals_accom_price <- c("cut-rate", "affordable", "expensive")
cut_rate_mf <- genmf("trapmf", c(0, 0, 10, 48))
affordable_mf <- genmf("trapmf", c(10, 48, 80, 115))
expensive_mf <- genmf("trapmf", c(80, 115, 10000, 10000))

Example of dataset
accom_price <- tibble(

`longitude` = c(-74.0, -74.0, -74.0),
`latitude` = c(40.8, 40.7, 40.7),
`price` = c(150, 76, 60)

)

accom_price_layer <- spa_creator(accom_price, classes = lvals_accom_price,
mfs = c(cut_rate_mf, affordable_mf, expensive_mf))

Create the fsi_model:
fsi <- fsi_create("To visit or not to visit, that is the question",

default_conseq = genmf("trimf", c(10, 30, 60)))

Add the fuzzy spatial antecedent to the fsi_model:
fsi <- fsi_add_fsa(fsi, "accommodation price", accom_price_layer)

fsi_add_rules Adding fuzzy rules to an FSI model

Description

This function adds the fuzzy rules set to a fuzzy spatial inference (FSI) model. A fuzzy rule must
contain only linguistic variables and values employed by the added antecedent parts and consequent.

10 fsi_add_rules

Usage

fsi_add_rules(fsi, rules, weights = rep(1, length(rules)))

Arguments

fsi An FSI model instantiated with the function fsi_create.
rules A character vector containing the rules defined by the user. It follows a specific

format, as detailed below.
weights A numeric vector of weight values for each rule. Default values are 1.

Details

The definition of a fuzzy rule is user-friendly since users can write it by using the linguistic variables
and linguistic values previously defined and added to the FSI model. A fuzzy rule has the format
IF A THEN B, where A is called the antecedent and B the consequent of the rule such that A implies
B. Further, A and B are statements that combine fuzzy propositions by using logical connectives
like AND or OR. Each fuzzy proposition has the format LVar is LVal where LVal is a linguistic
value in the scope of the linguistic variable LVar. To avoid possible contradictions keep in mind the
following items when specifying the rules:

• the order of the statements in the antecedent is not relevant;
• each linguistic variable has to appear at most one time in each fuzzy rule;

Value

An FSI model populated with fuzzy rules set.

Examples

Creating the FSI model from an example implemented with the visitation function:
fsi <- visitation()

Creating a vector of fuzzy rules;
note that we make use of the linguistic variables and linguistic values previously defined:
rules <- c(

"IF accommodation review is reasonable AND food safety is low
THEN visiting experience is awful",
"IF accommodation price is expensive AND accommodation review is reasonable
THEN visiting experience is awful",

"IF accommodation price is affordable AND accommodation review is good AND food safety is medium
THEN visiting experience is average",

"IF accommodation price is affordable AND accommodation review is excellent
AND food safety is high

THEN visiting experience is great",
"IF accommodation price is cut-rate AND accommodation review is excellent AND food safety is high

THEN visiting experience is great")

Adding these rules to the FSI model previously instantiated:
fsi <- fsi_add_rules(fsi, rules)

fsi_create 11

fsi_create Creation of an empty fuzzy spatial inference model

Description

This function builds a fuzzy spatial inference (FSI) model without elements of the data source
component (i.e., spatial plateau objects, fuzzy rules set, and fuzzy sets).

Usage

fsi_create(name, and_method = "min", or_method = "max",
imp_method = "min", agg_method = "max",
defuzz_method = "centroid", default_conseq = NULL)

Arguments

name A character value that specifies the name of the FSI model.

and_method A character value that defines the operator name for the logical connective AND.
Default value is "min".

or_method A character value that defines the operator for the logical connective OR. Default
value is "max".

imp_method A character value that defines the operator for the implication operator. Default
value is "min".

agg_method A character value that defines the operator for the aggregation operator. Default
value is "max".

defuzz_method A character value that determines the defuzzification technique. Default value
is the centroid technique.

default_conseq This parameter is a membership function generated by the function genmf of the
FuzzyR package.

Details

The FSI model created with the function fsi_create and its default parameter values will imple-
ment a model using Mamdani’s method. The possible values for the parameters and_method and
imp_method are: "min", "prod". Other t-norms from the FuzzyR package are also conceivable.
The possible value for the parameters or_method and agg_method is: "max". Other t-conorms from
the FuzzyR package are also conceivable. The possible values for the parameter defuzz_method in-
clude other defuzzification techniques from the FuzzyR package. The parameter default_conseq
defines the default behavior of the FSI model when there is no fuzzy rule with a degree of fulfillment
greater than 0 returned by the FSI model.

After creating an empty FSI model, you have to call the functions fsi_add_fsa, fsi_add_cs, and
fsi_add_rules to fulfill the FSI model.

12 fsi_eval

Value

An empty named FSI model that is ready to be populated with fuzzy rules representing the an-
tecedents and the consequent.

Examples

library(FuzzyR)
Creating the FSI model
fsi <- fsi_create("To visit or not to visit, that is the question",

default_conseq = genmf("trimf", c(10, 30, 60)))

fsi_eval Evaluating an FSI model for a given point location

Description

This function executes the reasoning process of a fuzzy spatial inference (FSI) model for a given
point location (i.e., sfg object of the type POINT).

Usage

fsi_eval(fsi, point, ...)

Arguments

fsi An FSI model built with the function fsi_create and populated by the func-
tions fsi_add_fsa, fsi_add_cs, and fsi_add_rules.

point An sfg object of geometry type point, which is created through the function
st_point of the sf package.

... <dynamic-dots> Informs the fsi_eval how the elements of the resulting fuzzy
set should be discretized if the user does not want the default configuration (see
below). Default values: discret_by is 0.5 and discret_length is NULL.

Details

This function evaluates an FSI model populated with its fuzzy spatial antecedent, consequent, and
fuzzy rules set on a specific point location. This evaluation is based on the algorithm specified by
FIFUS.

The default behavior of the function fsi_eval in the parameter ... is to consider a discrete interval
of values with an increment of 0.5 between lower and upper values for the consequent domain (i.e.,
defined at fsi_add_cs function with the parameter bounds).

The user can modify the default behavior by using one of the following two ways:

• define a value for the parameter discret_by by changing the incremental value.

• define a desired length for the sequence of values domain of the consequent discret_length.

https://ieeexplore.ieee.org/document/8015707

fsi_qw_eval 13

Value

A numeric value that belongs to the domain of the consequent (i.e., as specified by fsi_add_cs)
and represents the result of the reasoning process in a particular point location.

References

Carniel, A. C.; Schneider, M. Fuzzy inference on fuzzy spatial objects (FIFUS) for spatial decision
support systems. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2017), pp. 1-6, 2017.

Examples

library(sf)
Creating the FSI model from an example implemented with the visitation function:
fsi <- visitation()

Creating a vector of fuzzy rules;
note that we make use of the linguistic variables and linguistic values previously defined:
rules <- c(

"IF accommodation review is reasonable AND food safety is low
THEN visiting experience is awful",
"IF accommodation price is expensive AND accommodation review is reasonable
THEN visiting experience is awful",

"IF accommodation price is affordable AND accommodation review is good AND food safety is medium
THEN visiting experience is average",

"IF accommodation price is affordable AND accommodation review is excellent
AND food safety is high

THEN visiting experience is great",
"IF accommodation price is cut-rate AND accommodation review is excellent AND food safety is high

THEN visiting experience is great")

Adding these rules to the FSI model previously instantiated:
fsi <- fsi_add_rules(fsi, rules)

Using the default configuration:
res <- fsi_eval(fsi, st_point(c(-74.0, 40.7)))

Change the default discretization by modifying the default step value:
res <- fsi_eval(fsi, st_point(c(-74.0, 40.7)), discret_by=0.8)

Change the default discretization by choosing the quantity of values
between the lower and upper values for the consequent domain:
res <- fsi_eval(fsi, st_point(c(-74.0, 40.7)), discret_length=200)

fsi_qw_eval Evaluating a query window inference

https://ieeexplore.ieee.org/document/8015707
https://ieeexplore.ieee.org/document/8015707
https://ieeexplore.ieee.org/document/8015707

14 fsi_qw_eval

Description

This function implements two approaches for evaluating the query window inference on a fuzzy
spatial inference (FSI) model. Given a query window (i.e., a rectangular object), it returns a set of
inferred points inside this window that satisfy a specific condition (e.g., target linguistic value, or
maximum/minimum inferred values).

Usage

fsi_qw_eval(fsi, qw, approach = "discretization", ...)

Arguments

fsi An FSI model built with the fsi_create function that is populated by the fol-
lowing functions fsi_add_fsa, fsi_add_cs, and fsi_add_rules.

qw An sfg object storing the query window that is supposed to be used as input
for the inference. It has to be an axis-aligned rectangle represented by a simple
polygon object of 5 points (since the last coordinate pair closes the external ring
of the rectangle).

approach Defines which approach is employed to perform the query window inference:
“discretization” or “pso”. Default value is ‘"discretization"“

... <dynamic-dots> Different set of parameters required depending on the chosen
approach (see more in details below).

Details

For the discretization approach, two additional parameters are needed and they have to be informed
by using the three-dots parameter ...:

• target_lval: A character value that indicates the target linguistic value from the linguistic
variable of the consequent.

• k: A numeric value that defines the number of points that will be captured from the query
window and evaluated by the function fsi_eval. Its square root has to an integer value.
Alternatively, you can inform the number of columns and rows of the regular grid to be per-
formed on the query window by informing numeric values for n_col and n_row, respectively.
Thus, these parameters can be given instead of the number k.

For the pso approach, it is necessary to set the following parameters:

• what: A character value that defines the user’s goal, which can be either maximize or mini-
mize inferred values. Thus, this parameter can be “max” and “min”, respectively. The default
value is “max”.

• max_depth: A numeric value that refers to the number of times the user wants to split the
query window. The default value is equal to 2. For instance, a max_depth = 2 results in
the query window split into four sub quadrants, where the particle swarm optimization (PSO)
algorithm will be applied to each one as its search space. In addition, the PSO algorithm has
its own set of parameters:

• maxit: A numeric value that defines the maximum number of iterations. Default value is 50.

• population: A numeric value that defines the number of particles. Default value is 10.

fsr_components 15

Value

A tibble in the format (points, inferred_values), where points is an sfc object (i.e., a list of
sfg objects of geometry type POINT) and inferred_values are inferred values in the domain of
the consequent of the FSI model.

Examples

library(sf)
Creating the FSI model from an example implemented with the visitation function:
fsi <- visitation()

Creating a vector of fuzzy rules;
note that we make use of the linguistic variables and linguistic values previously defined:
rules <- c(

"IF accommodation review is reasonable AND food safety is low
THEN visiting experience is awful",
"IF accommodation price is expensive AND accommodation review is reasonable
THEN visiting experience is awful",

"IF accommodation price is affordable AND accommodation review is good AND food safety is medium
THEN visiting experience is average",

"IF accommodation price is affordable AND accommodation review is excellent
AND food safety is high

THEN visiting experience is great",
"IF accommodation price is cut-rate AND accommodation review is excellent AND food safety is high

THEN visiting experience is great")

Adding these rules to the FSI model previously instantiated:
fsi <- fsi_add_rules(fsi, rules)

Defining the query window that is defined over an application domain
pts_qw1 <- rbind(c(-73.92, 40.68527), c(-73.75, 40.68527),

c(-73.75, 40.75), c(-73.92, 40.75), c(-73.92, 40.68527))
qw1 <- st_polygon(list(pts_qw1))

Example using the discretization approach:
dis_res <- fsi_qw_eval(fsi, qw1, approach = "discretization", target_lval = "great", k = 25)

Example using the pso approach in two levels:
Not run:
pso_res <- fsi_qw_eval(fsi, qw1, approach = "pso", max_depth = 2)

End(Not run)

fsr_components Creation of a component

16 fsr_components

Description

There are two functions that build a component from coordinate pairs or a single sfg object labeled
with a membership degree. This component can be added to a spatial plateau object. A component
consists of an sfg object and an associated membership degree. A component can be built in two
different ways. By using the function create_component, the component is formed by the means
of a numeric vector, list or matrix that represents a pair of coordinates. By using the function
component_from_sfg, the component is created from an sfg object.

Usage

create_component(raw_obj, md, type)

component_from_sfg(sfg, md)

Arguments

raw_obj A vector, list or matrix containing the pairs of coordinates to create the sfg
object of the component.

md A numeric value indicating the membership degree of the component. It has to
be a value in]0, 1].

type A character value that indicates the type of the desired sfg object. It should be
either "POINT", "LINE", or "REGION".

sfg An sfg object. It should be either POINT, MULTIPOINT, LINESTRING, MULTILINESTRING,
POLYGON or MULTIPOLYGON type. Other types of spatial objects are not allowed.

Details

These functions create a component object, which is a pair of an sfg object and a membership
degree in]0, 1].

The function create_component receives three parameters: raw_obj, md and type. The use of
raw_obj is similar to the parameter of the family of functions of the sf package (st family)
that creates spatial objects from a numeric vector, matrix or list (e.g., the functions st_point,
st_multipoint, etc.). The spatial data type (i.e., the type of the sfg object) indicated by the pa-
rameter type represents simple and complex objects. For instance, "POINT" may refer to simple or
complex point objects (internally, we can create a POINT or MULTIPOINT object).

The component_from_sfg builds a component object by using the specification of two parameters
that directly represents the pair of an sfg object and its corresponding membership degree (i.e., md
value).

Value

A component object that can be added to a spatial plateau object (i.e., a pgeometry object).

Examples

Creating two components of the type POINT
v1 = rbind(c(1,2), c(3,4))

fsr_components 17

v2 = rbind(c(1,4), c(2,3),c(4,4))

md1 = 0.2
md2 = 0.1

comp1 <- create_component(v1, md1, type="POINT")
comp2 <- create_component(v2, md2, type="POINT")

Creating two components of the type LINE

md3 = 0.45
md4 = 0.32

v3 = rbind(c(2,2), c(3,3))
v4 = rbind(c(1,1), c(3,2))

comp3 <- create_component(v3, md3, type="LINE")
comp4 <- create_component(v4, md4, type="LINE")

Creating two components of the type REGION

p1 <- rbind(c(0,0), c(1,0), c(3,2), c(2,4), c(1,4), c(0,0))
p2 <- rbind(c(1,1), c(1,2), c(2,2), c(1,1))
list_pols_1 <- list(p1,p2)

p3 <- rbind(c(1,0), c(2,0), c(4,2), c(3,4), c(2,4), c(1,0))
p4 <- rbind(c(2,2), c(2,3), c(3,4), c(2,2))
list_pols_2 <- list(p3,p4)

comp_pol1 <- create_component(list_pols_1, 0.4, "REGION")
comp_pol2 <- create_component(list_pols_2, 0.6, "REGION")

Creating components with an sfg object
library(sf)

POINT
md1 <- 0.2
pts1 <- rbind(c(1, 2), c(3, 2))
comp1 <- component_from_sfg(st_multipoint(pts1), md1)

LINE
md2 <- 0.1
pts2 <- rbind(c(2, 2), c(3, 3))
comp2 <- component_from_sfg(st_linestring(pts2), md2)

REGION
md3 <- 0.4
matrix_object = matrix(c(1,1,8,1,8,8,1,8,1,1),ncol=2, byrow=TRUE)
pts3 = list(matrix_object)
comp3 = component_from_sfg(st_polygon(pts3), md3)

18 fsr_diff_operators

fsr_diff_operators Fuzzy difference operators

Description

Fuzzy difference operations are set operations that generalize Boolean difference operations. This
family of functions implements some operators that help us to define different fuzzy difference
operations. These operators receive two numerical values in [0, 1] as input and calculates another
numerical value in [0, 1] as output.

Usage

f_diff(x, y)

f_bound_diff(x, y)

f_symm_diff(x, y)

f_abs_diff(x, y)

Arguments

x A numerical vector whose values are in [0, 1].

y A numerical vector whose values are in [0, 1].

Details

These functions calculate the resulting membership degree of a fuzzy difference operator applied on
two numerical values in the interval [0, 1]. The following fuzzy difference operators are available:

• f_diff: The standard fuzzy set difference operator defined as the intersection of x and the
complement of y, that is, min(x, 1 - y).

• f_bound_diff: The fuzzy bounded difference operator defined as x minus y with upper bound
equal to 0, that is, max(0, x - y).

• f_symm_diff: The fuzzy symmetric difference operator defined as the union of the difference
of x and y and the difference of y and x, that is, max(f_diff(x, y), f_diff(y, x)).

• f_abs_diff: The fuzzy absolute difference operator defined as the absolute difference of x
and y, that is, abs(x - y).

These operators are useful to process the function spa_difference since one of them can be in-
formed as a parameter for this function.

Value

A numerical vector.

fsr_eval_modes 19

Examples

x <- c(0.1, 0.3, 0.6, 0.8)
y <- c(0.9, 0.7, 0.4, 0.2)

f_diff(x, y)
f_bound_diff(x, y)
f_symm_diff(x, y)
f_abs_diff(x, y)

fsr_eval_modes Evaluation modes

Description

This family of functions implements evaluation modes that returns a Boolean value for a given
degree in [0, 1] obtained from a membership function of a linguistic value.

Usage

soft_eval(degree)

strict_eval(degree)

alpha_eval(degree, alpha)

soft_alpha_eval(degree, alpha)

Arguments

degree A numerical vector whose values are in [0, 1].

alpha A single numeric value in [0, 1].

Details

These functions yield a Boolean value that express the meaning of a degree returning from an
evaluation of a membership function. That is, the parameter degree is a value in [0, 1] resulting
from evaluation a value in a membership degree. Then, an evaluation mode "translate" the meaning
of this degree of truth as a Boolean value.

There some different ways to make this kind of translation:

• soft_eval: It returns TRUE if degree is greater than 0.

• strict_eval: It returns TRUE if degree is equal to 0.

• alpha_eval: It returns TRUE if degree is greater than or equal to another value (named
alpha).

20 fsr_geometric_operations

• soft_alpha_eval: It returns TRUE if degree is greater than another value (named alpha).

These operators are employed to process the evaluation modes of fuzzy topological relationships
that are processed as Boolean predicates.

Value

A Boolean vector.

Examples

x <- c(0.1, 0.3, 0.6, 0.8)

soft_eval(x)
strict_eval(x)
alpha_eval(x, 0.3)
soft_alpha_eval(x, 0.3)

fsr_geometric_operations

Fuzzy geometric set operations

Description

Fuzzy geometric set operations are given as a family of functions that implements spatial plateau
set operations. These functions yield a spatial plateau object from a specific combination of other
two spatial plateau objects, such as the intersection of two plateau region objects.

Usage

spa_intersection(pgo1, pgo2, itype = "min")

spa_union(pgo1, pgo2, utype = "max")

spa_difference(pgo1, pgo2, dtype = "f_diff")

spa_common_points(pline1, pline2, itype = "min")

Arguments

pgo1 A pgeometry object of any type.

pgo2 A pgeometry object of the same type of pgo1.

itype A character value that indicates the name of a function implementing a t-norm.
The default value is "min", which is the standard operator of the intersection.

utype A character value that refers to a t-conorm. The default value is "max", which is
the standard operator of the union.

fsr_geometric_operations 21

dtype A character value that indicates the name of a difference operator. The default
value is "f_diff", which implements the standard fuzzy difference.

pline1 A pgeometry object of the type PLATEAULINE.

pline2 A pgeometry object of the type PLATEAULINE.

Details

These functions implement geometric operations of the spatial plateau algebra. They receive two
pgeometry objects of the same type together with an operation as inputs and yield another pgeometry
object as output. The output object has the same type of the inputs. The family of fuzzy geometric
set operations consists of the following functions:

• spa_intersection computes the geometric intersection of two spatial plateau objects. The
membership degree of common points are calculated by using a t-norm operator given by the
parameter itype. Currently, it can assume "min" (default) or "prod".

• spa_union computes the geometric union of two spatial plateau objects. The membership
degree of common points are calculated by using a t-conorm operator given by the parameter
utype. Currently, it can assume "max" (default).

• spa_difference computes the geometric difference of two spatial plateau objects. The mem-
bership degree of common points are calculated by using a diff operator given by the parameter
dtype. Currently, it can assume "f_diff" (default fuzzy difference), "f_bound_diff" (fuzzy
bounded difference), "f_symm_diff" (fuzzy symmetric difference), and "f_abs_diff" (fuzzy
absolute difference).

Another related geometric function is:

• spa_common_points which gets the common points of two plateau line objects by using a
t-norm to compute their membership degrees. It is different from the other functions since it
gets two plateau line objects as input and yields a plateau point object as output.

Other t-norms, t-conorms, and diff operators can be implemented and given as values for the
"itype", "utype", and "dtype", respectively. For this, the following steps should be performed:

1 - implement your function that accepts two numeric values as inputs and yields another numeric
value as output. All values should be between 0 and 1. Recall that t-norms and t-conorms must
have some specific properties according to the fuzzy set theory. 2 - use the name of your function
as the character value of the corresponding "itype", "utype", or "dtype".

An example of operator is the source code of f_bound_diff:

f_bound_diff <- function(x, y) { max(0, (x - y)) }

Value

A pgeometry object that is the result of the geometric manipulation between two spatial plateau
objects.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

22 fsr_is_empty

Examples

library(sf)

pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

cp1 <- component_from_sfg(st_multipoint(pts1), 0.3)
cp2 <- component_from_sfg(st_multipoint(pts2), 0.6)
cp3 <- component_from_sfg(st_multipoint(pts3), 1)

pp1 <- create_pgeometry(list(cp1, cp2, cp3), "PLATEAUPOINT")

pts4 <- rbind(c(0, 0), c(1, 1))
pts5 <- rbind(c(2, 3), c(1.2, 1.9), c(2, 1))
pts6 <- rbind(c(3, 1), c(1.5, 0.5))

cp4 <- component_from_sfg(st_multipoint(pts4), 0.4)
cp5 <- component_from_sfg(st_multipoint(pts5), 1)
cp6 <- component_from_sfg(st_multipoint(pts6), 0.7)

pp2 <- create_pgeometry(list(cp4, cp5, cp6), "PLATEAUPOINT")

pp1
pp2

spa_intersection(pp1, pp2)
spa_intersection(pp1, pp2, itype = "prod") #changing the t-norm
spa_union(pp1, pp2)
spa_difference(pp1, pp2)

fsr_is_empty Checking whether a pgeometry object is empty

Description

This function checks whether a pgeometry object is empty (i.e., if it does not contain components).

Usage

fsr_is_empty(pgo)

Arguments

pgo A pgeometry object.

fsr_numerical_operations 23

Details

It checks if a pgeometry object has any component or not. If the number of components of a
pgeometry object is equal to 0, then it returns TRUE. Otherwise, it returns FALSE.

Value

A Boolean value that indicates if a pgeometry is empty.

Examples

Creating an empty pgeometry object
pgo1 <- create_empty_pgeometry("PLATEAULINE")

Checking if it is empty
fsr_is_empty(pgo1)

Creating a component to populate the pgeometry object

library(sf)
md <- 0.4
pts <- rbind(c(1, 1), c(2, 3), c(2, 1))

comp <- component_from_sfg(st_multipoint(pts), md)

Adding the component to the pgeometry object
pgo1 <- spa_add_component(pgo1, comp)

Checking if it is still empty
fsr_is_empty(pgo1)

fsr_numerical_operations

Fuzzy numerical operations

Description

Fuzzy numerical operations are given as a family of functions that implements spatial plateau metric
operations. These functions extract metric properties from spatial plateau objects, such as the area
of a plateau region object and the length of a plateau line object.

Usage

spa_avg_degree(pgo)

spa_ncomp(pgo)

24 fsr_numerical_operations

spa_area(pr)

spa_perimeter(pr)

spa_length(pl)

Arguments

pgo A pgeometry object of any type.

pr A pgeometry object of the type PLATEAUREGION. It throws an error if a different
type is given.

pl A pgeometry object of the type PLATEAULINE. It throws an error if a different
type is given.

Details

These functions calculate numerical properties from spatial plateau objects (i.e., pgeometry ob-
jects). Some of them are type-independent. This means that the parameter can be a pgeometry
object of any type. The type-independent functions are:

• spa_avg_degree calculates the average membership degree of a spatial plateau object.

• spa_ncomp returns the number of components of a spatial plateau object.

The remaining functions are type-dependent. This means that the parameter have to be of a specific
type. The type-dependent functions are:

• spa_area computes the area of a plateau region object. Thus, its parameter has to be a
PLATEAUREGION object.

• spa_perimeter computes the perimeter of a plateau region object. Thus, its parameter has to
be a PLATEAUREGION object.

• spa_length computes the length of a plateau line object. Thus, its parameter has to be a
PLATEAULINE object.

Value

A numerical value.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

Examples

library(sf)
library(tibble)

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

fsr_topological_relationships 25

pts1 <- rbind(c(1, 2), c(3, 2))
comp1 <- component_from_sfg(st_multipoint(pts1), 0.2)
comp2 <- component_from_sfg(st_point(c(1, 5)), 0.8)

pp <- create_pgeometry(list(comp1, comp2), "PLATEAUPOINT")

calculating the average degree and number of components of pp

spa_avg_degree(pp)
spa_ncomp(pp)

calculating the area and perimeter

set.seed(345)

some random points to create plateau region objects by using the function spa_creator
tbl = tibble(x = runif(10, min= 0, max = 20),

y = runif(10, min = 0, max = 30),
z = runif(10, min = 0, max = 100))

#getting the convex hull on the points to clip the construction of plateau region objects
pts <- st_as_sf(tbl, coords = c(1, 2))
ch <- st_convex_hull(do.call(c, st_geometry(pts)))

pregions <- spa_creator(tbl, fuzz_policy = "fcp", k = 2, base_poly = ch)

spa_area(pregions$pgeometry[[1]])
spa_area(pregions$pgeometry[[2]])

spa_perimeter(pregions$pgeometry[[1]])
spa_perimeter(pregions$pgeometry[[2]])

calculating the length of a plateau line object

lpts1 <- rbind(c(0, 0), c(1, 1))
lpts2 <- rbind(c(1, 1), c(1.2, 1.9), c(2, 1))
lpts3 <- rbind(c(2, 1), c(1.5, 0.5))

cp1 <- component_from_sfg(st_linestring(lpts1), 0.4)
cp2 <- component_from_sfg(st_linestring(lpts2), 1)
cp3 <- component_from_sfg(st_linestring(lpts3), 0.7)

pline <- create_pgeometry(list(cp1, cp2, cp3), "PLATEAULINE")

spa_length(pline)

fsr_topological_relationships

Fuzzy topological relationships

26 fsr_topological_relationships

Description

Fuzzy topological relationships are given as a family of functions that implements spatial plateau
topological relationships. A fuzzy topological relationship expresses a particular relative position
of two spatial plateau objects. Since the spatial objects are fuzzy, their topological relationships
are also fuzzy. Hence, a fuzzy topological relationship determines the degree to which a relation
holds for any two spatial plateau objects by a real value in the interval [0, 1]. The key idea of
these relationships is to consider point subsets resulting from the combination of spatial plateau set
operations and spatial plateau metric operations on the spatial plateau objects for computing the
resulting degree. The resulting degree can be also interpreted as a linguistic value.

Usage

spa_overlap(pgo1, pgo2, itype = "min", ret = "degree", ...)

spa_meet(pgo1, pgo2, itype = "min", ret = "degree", ...)

spa_disjoint(pgo1, pgo2, itype = "min", ret = "degree", ...)

spa_equal(pgo1, pgo2, utype = "max", ret = 'degree', ...)

spa_inside(pgo1, pgo2, utype = "max", ret = 'degree', ...)

spa_contains(pgo1, pgo2, utype = "max", ret = 'degree', ...)

Arguments

pgo1 A pgeometry object of the type PLATEAUREGION.

pgo2 A pgeometry object of the type PLATEAUREGION.

itype A character value that indicates the name of a function implementing a t-norm.
The default value is "min", which is the standard operator of the intersection.

ret A character value that indicates the return type of the fuzzy topological relation-
ship. The default value is "degree" and other possible values are "list" and
"bool".

... <dynamic-dots> If ret = "bool", two additional parameters have to be in-
formed, as described below.

utype A character value that indicates the name of a function implementing a t-conorm.
The default value is "max", which is the standard operator of the union.

Details

These functions implement topological relationships of the spatial plateau algebra. They receive
two pgeometry objects of the type PLATEAUREGION together with some additional parameters (as
detailed below). The family of fuzzy topological relationships consists of the following functions:

• spa_overlap computes the overlapping degree of two plateau region objects. Since it uses
the intersection operation, a t-norm operator can be given by the parameter itype. Currently,
it can assume "min" (default) or "prod".

fsr_topological_relationships 27

• spa_meet computes the meeting degree of two plateau region objects. Similarly to spa_overlap,
a t-norm operator can be given by the parameter itype.

• spa_disjoint computes the disjointedness degree of two plateau region objects. Similarly to
spa_overlap and spa_meet, a t-norm operator can be given by the parameter itype.

• spa_equal - computes how equal are two plateau region objects. Since it uses the union
operation, a t-conorm operator can be given by the parameter utype. Currently, it can assume
"max" (default).

• spa_inside - computes the containment degree of pgo1 in pgo2. Similarly to spa_equal, a
t-conorm operator can be given by the parameter utype.

• spa_contains - it is the same of spa_inside but changing the order of the operands pgo1
and pgo2.

The parameter ret determines the returning value of a fuzzy topological relationship. The default
value is the following:

• "degree" (default) - it indicates that the function will return a value in [0, 1] that represents
the degree of truth of a given topological relationships.

For the remainder possible values, the functions make use of a set of linguistic values that charac-
terize the different situations of topological relationships. Each linguistic value has an associated
membership function defined in the domain [0, 1]. The fsr package has a default set of linguistic
values. You can use the function spa_set_classification to change this set of linguistic values.

The remainder possible values for the parameter ret are:

• "list" - it indicates that the function will return a named list containing how much the result
of the predicate belongs to each linguistic value (i.e., it employs the membership functions of
the linguistic values).

• "bool" - it indicates that the function will return a Boolean value indicating whether the
degree returned by the topological relationship matches a given linguistic value according to
an evaluation mode. The evaluation mode and the linguistic values have to be informed by
using the parameters eval_mode and lval, respectively. The possible values for eval_mode
are: "soft_eval", "strict_eval", "alpha_eval", and "soft_alpha_eval". They have
different behavior in how computing the Boolean value from the membership function of a
linguistic value. See their documentations for more details. Note that the parameter lval only
accept a character value belonging to the set of linguistic values that characterize the different
situations of topological relationships.

Value

The returning value is determined by the parameter ret, as described above.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

28 pgeometry-class

Examples

library(tibble)
library(sf)
library(FuzzyR)

set.seed(456)

some random points to create pgeometry objects by using the function spa_creator
tbl = tibble(x = runif(10, min= 0, max = 30),

y = runif(10, min = 0, max = 30),
z = runif(10, min = 0, max = 50))

#getting the convex hull on the points to clipping the construction of plateau region objects
pts <- st_as_sf(tbl, coords = c(1, 2))
ch <- st_convex_hull(do.call(c, st_geometry(pts)))

pregions <- spa_creator(tbl, base_poly = ch, fuzz_policy = "fcp", k = 2)

Showing the different types of returning values
spa_overlap(pregions$pgeometry[[1]], pregions$pgeometry[[2]])
spa_overlap(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_overlap(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "bool",

eval_mode = "soft_eval", lval = "mostly")

Examples for evaluating the other fuzzy topological relationships
Not run:
spa_meet(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_disjoint(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_equal(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_inside(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_contains(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")

End(Not run)

pgeometry-class An S4 Class for representing a spatial plateau object

Description

An S4 Class for representing a spatial plateau object

Details

A pgeometry object is composed of a list of component objects, an sfg object that represents the
union of all crisp spatial objects of its components (i.e., the support), and its data type, which can
be either PLATEAUPOINT, PLATEAULINE, or PLATEAUREGION.

plot 29

Slots

component A list of components.

supp An sfg object that stores the union of the spatial objects of the components of the spatial
plateau object.

type The data type of the spatial plateau object.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

plot Visualization of pgeometry objects

Description

This function plots a pgeometry object.

Usage

S4 method for signature 'pgeometry,missing'
plot(x, y, ...)

fsr_plot(pgo, base_poly = NULL, add_base_poly = TRUE,
low = "white", high = "black", crs = NA, ...)

Arguments

x A pgeometry object of any type.

y Not applicable.

... <dynamic-dots> Optional parameters. They can be the same as the parameters
of geom_sf function.

pgo A pgeometry object of any type.

base_poly An sfg object of the type POLYGON or MULTIPOLYGON. It can also be an sfc
object with only one element of the type POLYGON or MULTIPOLYGON.

add_base_poly A Boolean value that indicates whether base_poly will added to the visualiza-
tion.

low A character value that indicates the color for the lower mds limit value (0). De-
fault is "white".

high A character value that indicates the color for the higher mds limit value (1).
Default is "black".

crs A numerical value that denotes the coordinate reference system (i.e., EPSG
code) of the visualization. Default is NA.

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

30 plot

Details

The fsr_plot uses a ggplot method to construct the plot. It receives a pgeometry object (if it is
empty, an empty graphics in obtained).

The low and high parameters are the colors for the minimum and maximum limits of the member-
ship degrees. The default colors are "white" and "black", respectively. Other colors can be given in
the same way that colors are informed to visualizations produced by the ggplot package.

It is possible to clip the geometric format of the components by using the parameter base_poly. The
boundaries of this object can also be included in the visualization if the parameter add_base_poly
is TRUE.

Value

A ggplot object.

Examples

library(sf)

Example 1

Creating components for the plateau point object
v1 <- rbind(c(1,2), c(3,4))
v2 <- rbind(c(1,4), c(2,3),c(4,4))

md1 <- 0.2
md2 <- 0.1
md3 <- 0.4
pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

comp1 <- component_from_sfg(st_multipoint(pts1), md1)
comp2 <- component_from_sfg(st_multipoint(pts2), md2)
comp3 <- component_from_sfg(st_multipoint(pts3), md3)

Creating the plateau point object as a pgeometry object with 3 components

ppoint <- create_pgeometry(list(comp1, comp2, comp3), "PLATEAUPOINT")

fsr_plot(ppoint) # with default colors
fsr_plot(ppoint, low="blue",high = "red") # with custom limit colors

Example 2 - PLATEAULINE PLOT

lpts1 <- rbind(c(0, 0), c(1, 1))
lpts2 <- rbind(c(1, 1), c(1.2, 1.9), c(2, 1))
lpts3 <- rbind(c(2, 1), c(1.5, 0.5))

comp4 <- component_from_sfg(st_linestring(lpts1), 0.4)
comp5 <- component_from_sfg(st_linestring(lpts2), 1)

PWKT 31

comp6 <- component_from_sfg(st_linestring(lpts3), 0.7)

pline <- create_pgeometry(list(comp4, comp5, comp6), "PLATEAULINE")

fsr_plot(pline) # Default values
fsr_plot(pline, low="green", high="blue") # Custom colors ...

Example 3 - PLATEAUREGION PLOT

p1 <- rbind(c(0,0), c(1,0), c(3,2), c(2,4), c(1,4), c(0,0))
p2 <- rbind(c(1,1), c(1,2), c(2,2), c(1,1))
pol1 <-st_polygon(list(p1,p2))
p3 <- rbind(c(3,0), c(4,0), c(4,1), c(3,1), c(3,0))
p4 <- rbind(c(3.3,0.3), c(3.8,0.3), c(3.8,0.8), c(3.3,0.8), c(3.3,0.3))[5:1,]
pol2 <- st_polygon(list(p3,p4))
pol3 <- st_polygon(list(rbind(c(3,3), c(4,2), c(4,3), c(3,3))))

comp1 <- component_from_sfg(pol1, 0.2)
comp2 <- component_from_sfg(pol2, 0.4)
comp3 <- component_from_sfg(pol3, 0.7)

pregion <- create_pgeometry(list(comp1, comp2, comp3), "PLATEAUREGION")
fsr_plot(pregion)
fsr_plot(pregion, low = "blue", high = "red")

PWKT The PWKT of a spatial plateau object

Description

This function gives the Plateau Well-Known Text (PWKT) representation of a pgeometry object.

Usage

spa_pwkt(pgo)

S3 method for class 'pgeometry'
format(x, ...)

S4 method for signature 'pgeometry'
show(object)

S4 method for signature 'pgeometry'
as.character(x, ...)

32 PWKT

Arguments

pgo A pgeometry object of any type.

x A pgeometry object of any type.

... <dynamic-dots> Unused.

object A pgeometry object of any type.

Details

It gives the textual representation for a pgeometry object, combining the Well-Known Text (WKT)
representation for crisp vector geometry objects and the formal definitions of the tree spatial plateau
data types. (i.e. PLATEAUPOINT, PLATEAULINE, PLATEAUREGION).

Value

A character value with the textual representation of a given pgeometry object.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

Examples

library(sf)

For a `PLATEAUPOINT` object.
pts1 <- rbind(c(1, 2), c(3, 2))
comp1 <- component_from_sfg(st_multipoint(pts1), 0.2)
comp2 <- component_from_sfg(st_point(c(1, 5)), 0.8)

ppoint <- create_pgeometry(list(comp1, comp2), "PLATEAUPOINT")

spa_pwkt(ppoint)

For a `PLATEAULINE` object.

lpts1 <- rbind(c(0, 0), c(1, 1))
lpts2 <- rbind(c(1, 1), c(1.2, 1.9), c(2, 1))
lpts3 <- rbind(c(2, 1), c(1.5, 0.5))

comp4 <- component_from_sfg(st_linestring(lpts1), 0.4)
comp5 <- component_from_sfg(st_linestring(lpts2), 1)
comp6 <- component_from_sfg(st_linestring(lpts3), 0.7)

pline <- create_pgeometry(list(comp4, comp5, comp6), "PLATEAULINE")

spa_pwkt(pline)

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

spa_add_component 33

For a `PLATEAUREGION` object.

p1 <- rbind(c(0,0), c(1,0), c(3,2), c(2,4), c(1,4), c(0,0))
p2 <- rbind(c(1,1), c(1,2), c(2,2), c(1,1))
pol1 <-st_polygon(list(p1,p2))

comp1 <- component_from_sfg(pol1, 0.2)

pregion <- create_pgeometry(list(comp1), "PLATEAUREGION")

spa_pwkt(pregion)

spa_add_component Adding components to a pgeometry object

Description

This function adds components to a spatial plateau object (i.e., pgeometry object). The crisp spatial
object of the component must be compatible with the type of the plateau spatial object. For instance,
a pgeometry object of the type PLATEAUREGION accepts only components containing polygons (e.g.,
POLYGON or MULTIPOLYGON).

Usage

spa_add_component(pgo, components)

Arguments

pgo A pgeometry object of any type.

components A component object or a list of component objects.

Details

This function implements the � operator defined by Spatial Plateau Algebra. The goal of this
function is to insert a component or a list of components into a pgeometry object. This insertion
is based on the membership degree of the component (e.g., created by component_from_sfg).
Thus, it preserves the properties of a spatial plateau object. However, this function assumes that a
component is compatible with the pgeometry object and its geometric format is valid (i.e., it does
not overlap with existing components).

Value

A pgeometry object containing the component objects.

34 spa_boundary_pregion

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

Examples

library(sf)

pts1 <- rbind(c(1, 2), c(3, 2))
comp1 <- component_from_sfg(st_multipoint(pts1), 0.2)
comp2 <- component_from_sfg(st_point(c(1, 5)), 0.8)

appending these components into an empty pgeometry object

pp <- create_empty_pgeometry("PLATEAUPOINT")
pp <- spa_add_component(pp, list(comp1, comp2))
pp

spa_boundary_pregion Capturing the fuzzy boundary of a plateau region object

Description

This function yields a specific part of the fuzzy boundary of a plateau region object.

Usage

spa_boundary_pregion(pregion, bound_part = "region")

Arguments

pregion A pgeometry object of the type PLATEAUREGION. It throws an error if a different
type is given.

bound_part A character value that indicates the part of the fuzzy boundary to be returned. It
can be "region" or "line". See below for more details.

Details

It employs the definition of fuzzy boundary of a fuzzy region object in the context of spatial plateau
algebra (as defined in the references). The fuzzy boundary of a fuzzy region object A has a hetero-
geneous nature since it consists of two parts:

• a fuzzy line object that corresponds to the boundary of the core of A.

• a fuzzy region object that comprises all points of A with a membership degree greater than 0
and less than 1.

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

spa_boundary_pregion 35

This means that the function spa_boundary_pregion can yield one specific part of the fuzzy
boundary of a plateau region object (the argument pgeometry). If boundary = "line", then the
function returns the boundary plateau line of pgeometry (i.e., returns a pgeometry object of the
type PLATEAULINE). Else if boundary = "region" (the default value), then the function returns the
boundary plateau region of pgeometry (i.e., returns a pgeometry object of the type PLATEAUREGION).

Value

A pgeometry object that represents a specific part of the fuzzy boundary of pgeometry object given
as input.

References

• Carniel, A. C.; Schneider, M. A Conceptual Model of Fuzzy Topological Relationships for
Fuzzy Regions. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2016), pp. 2271-2278, 2016.

• Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2018), pp. 1-8, 2018.

Examples

library(tibble)
library(FuzzyR)

set.seed(123)

some random points to create pgeometry objects by using the function spa_creator
tbl = tibble(x = runif(10, min= 0, max = 30),

y = runif(10, min = 0, max = 50),
z = runif(10, min = 0, max = 100))

classes <- c("category-1", "category-2")
mf1 <- genmf("trapmf", c(0, 5, 20, 35))
mf2 <- genmf("trimf", c(20, 80, 100))

pregions <- spa_creator(tbl, classes = classes, mfs = c(mf1, mf2))
pregions$pgeometry[[1]]
pregions$pgeometry[[2]]

capturing and showing the boundary plateau line of each pgeometry object previously created
(spa_boundary_pregion(pregions$pgeometry[[1]], bound_part = "line"))
(spa_boundary_pregion(pregions$pgeometry[[2]], bound_part = "line"))
the last boundary is empty because there is no core!

capturing and showing the boundary plateau region (this is the default behavior)
(spa_boundary_pregion(pregions$pgeometry[[1]]))
(spa_boundary_pregion(pregions$pgeometry[[2]]))

https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

36 spa_contour

spa_contour Capturing the frontier of a plateau region object

Description

This function extracts the frontier (i.e., linear boundary) of a plateau region object by maintaining
its membership degrees.

Usage

spa_contour(pregion)

Arguments

pregion A pgeometry object of the type PLATEAUREGION. It throws an error if a different
type is given.

Details

It employs the definition of fuzzy frontier of a fuzzy region object in the context of spatial plateau
algebra (as defined in the references). The fuzzy frontier of a fuzzy region object A collects all single
points of A, preserving its membership degrees, that are not in the interior of its support.

IMPORTANT NOTE: Fuzzy frontier is different from fuzzy boundary (see spa_boundary_region).

Value

A pgeometry object of the type PLATEAULINE that represents the contour (i.e. frontier) of a plateau
region object given as input.

References

• Carniel, A. C.; Schneider, M. A Conceptual Model of Fuzzy Topological Relationships for
Fuzzy Regions. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2016), pp. 2271-2278, 2016.

• Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2018), pp. 1-8, 2018.

Examples

library(tibble)
library(sf)
library(FuzzyR)

set.seed(123)

some random points to create pgeometry objects by using the function spa_creator

https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

spa_core 37

tbl = tibble(x = runif(10, min= 0, max = 30),
y = runif(10, min = 0, max = 50),
z = runif(10, min = 0, max = 100))

classes <- c("category-1", "category-2")
mf1 <- genmf("trapmf", c(0, 5, 20, 35))
mf2 <- genmf("trimf", c(35, 80, 100))

#getting the convex hull on the points to clipping the construction of plateau region objects
pts <- st_as_sf(tbl, coords = c(1, 2))
ch <- st_convex_hull(do.call(c, st_geometry(pts)))

pregions <- spa_creator(tbl, classes = classes, mfs = c(mf1, mf2), base_poly = ch)

capturing and showing the frontier of each pgeometry object previously created
frontier_pregion1 <- spa_contour(pregions$pgeometry[[1]])
frontier_pregion2 <- spa_contour(pregions$pgeometry[[2]])

plot(pregions$pgeometry[[1]])
plot(frontier_pregion1)

plot(pregions$pgeometry[[2]])
plot(frontier_pregion2)

spa_core Capturing the core of a pgeometry object

Description

This function yields a crisp spatial object (as an sfg object) that corresponds to the core of a
pgeometry object given as input.

Usage

spa_core(pgo)

Arguments

pgo A pgeometry object of any type.

Details

It employs the classical definition of core from the fuzzy set theory in the context of spatial plateau
algebra. The core only comprises the points with membership degree equal to 1. Hence, this
operation returns the sfg object that represents the component labeled with membership degree
equal to 1 of the pgeometry object given as input. If the pgeometry object has no core, then an
empty sfg object is returned (i.e., a crisp spatial object without points).

38 spa_creator

Value

An sfg object that represents the core of pgo. It can be an empty object if pgo does not have a
component with membership degree 1.

References

Carniel, A. C.; Schneider, M. A Conceptual Model of Fuzzy Topological Relationships for Fuzzy
Regions. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE 2016), pp. 2271-2278, 2016.

Examples

library(sf)

pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

cp1 <- component_from_sfg(st_multipoint(pts1), 0.3)
cp2 <- component_from_sfg(st_multipoint(pts2), 0.6)
cp3 <- component_from_sfg(st_multipoint(pts3), 1.0)

pp <- create_pgeometry(list(cp1, cp2, cp3), "PLATEAUPOINT")
pp

pp_core <- spa_core(pp)
pp_core

#Creating a pgeometry object without core
pp2 <- create_pgeometry(list(cp1, cp2), "PLATEAUPOINT")
pp2

spa_core(pp2)

spa_creator Building pgeometry objects from a point dataset

Description

This function builds a set of spatial plateau objects from a given point dataset assigned with domain-
specific numerical values.

Usage

spa_creator(tbl, fuzz_policy = "fsp", const_policy = "voronoi", ...)

https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/7737976

spa_creator 39

Arguments

tbl A data.frame or tibble with the following format: (x, y, z).

fuzz_policy The fuzzification policy to be employed by the algorithm. See details below.

const_policy The construction policy to be used by the algorithm. See details below.

... <dynamic-dots> Parameters for the chosen policies. See details below.

Details

It follows the two-stage construction method described in the research paper of reference.

The input tbl is a point dataset where each point represents the location of a phenomenon treated
by the application. Further, each point is annotated with numerical data that describe its meaning in
the application. Therefore, tbl must have three columns: (x, y, z). The columns x, y are the pair of
coordinates, and z is the column containing domain-specific numeric values.

fuzz_policy refers to the method used by the fuzzification stage. This stage aims to assign mem-
bership degrees to each point of the dataset. It accepts three possible values only: "fsp" (default),
or "fcp".

"fsp" stands for fuzzy set policy and requires two parameters that should be informed in ...:

• classes: A character vector containing the name of classes

• mfs: A vector of membership functions generated by the function genmf of FuzzyR package.
Each membership function i represents the class i, where i in length(classes)

"fcp" stands for fuzzy clustering policy and requires the e1071 package. Its possible parameters,
informed in ..., are:

• k: A numeric value that refers to the number of groups to be created

• method: A fuzzy clustering method of the package e1071, which can be either "cmeans"
(default) or "cshell"

• use_coords: A Boolean value to indicate whether the columns (x, y) should be used in the
clustering algorithm (default is FALSE)

• iter: A numeric indicating the number of maximum iterations of the clustering algorithm
(default is 100)

An optional and common parameter for both fuzzification stages is the "digits". This is an integer
value that indicates the number of decimal digits of the membership degrees calculated by the
fuzzification stage. That is, it is used to round membership degrees to the specified number of
decimal places. Be careful with this optional parameter! If you specify a low value for "digits"
some membership degrees could be rounded to 0 and thus, some components would not be created.

const_policy refers to the method used by the construction stage. This stage aims to create
polygons from the labeled point dataset and use them to build spatial plateau objects. It accepts two
possible values only: either "voronoi" (default) or "delaunay".

"voronoi" stands for Voronoi diagram policy and has one optional parameter that can be provided
in ...:

• base_poly: An sfg object that will be used to clip the generated polygons (optional argu-
ment). If this parameter is not provided, the Voronoi is created by using a bounding box
(standard behavior of sf).

40 spa_creator

• d_tolerance: It refers to the parameter dTolerance employed by the function st_voronoi
of the package sf.

"delaunay" stands for Delaunay triangulation policy, which accepts the following parameters in
...:

• base_poly: An sfg object that will be used to clip the generated triangles (optional argument).

• tnorm: A t-norm used to calculate the membership degree of the triangle. It should be the
name of a vector function. Possible values are "min" (default), and "prod". Note that it is
possible to use your own t-norms. A t-norm should has the following signature: FUN(x) where
x is a numeric vector. Such a function should return a single numeric value.

• d_tolerance: It refers to the parameter dTolerance employed by the function st_triangulate
of the package sf.

"convex_hull" stands for Convex hull policy, which accepts the following parameters in ...:

• M: A numeric vector containing the membership degrees that will be used to create the com-
ponents. The default is defined by seq(0.05, 1, by = 0.05).

• d: A numeric value representing the tolerance distance to compute the membership degree
between the elements of M and the membership degrees of the points. The default is 0.05.

• base_poly: An sfg object that will be used to clip the generated polygons (optional argu-
ment).

Value

A tibble in the format (class, pgeometry), where class is a character column and pgeometry
is a list of pgeometry objects. This means that a spatial plateau object is created for representing a
specific class of the point dataset.

References

Carniel, A. C.; Schneider, M. A Systematic Approach to Creating Fuzzy Region Objects from Real
Spatial Data Sets. In Proceedings of the 2019 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2019), pp. 1-6, 2019.

Examples

library(tibble)
library(FuzzyR)

set.seed(7)
tbl = tibble(x = runif(10, min= 0, max = 30),

y = runif(10, min = 0, max = 50),
z = runif(10, min = 0, max = 100))

classes <- c("cold", "hot")
cold_mf <- genmf("trapmf", c(0, 10, 20, 35))
hot_mf <- genmf("trimf", c(35, 50, 100))

spa_creator(tbl, classes = classes, mfs = c(cold_mf, hot_mf))

https://ieeexplore.ieee.org/document/8858878/
https://ieeexplore.ieee.org/document/8858878/
https://ieeexplore.ieee.org/document/8858878/

spa_eval 41

spa_creator(tbl, fuzz_policy = "fcp", k = 4)

spa_creator(tbl, fuzz_policy = "fcp", k = 4, digits = 2)

spa_creator(tbl, fuzz_policy = "fcp", k = 3, const_policy = "delaunay")

spa_creator(tbl, fuzz_policy = "fcp", const_policy = "delaunay", k = 3, tnorm = "prod")

spa_creator(tbl, fuzz_policy = "fcp", k = 2, digits = 2,
M = seq(0.1, 1, by = 0.1), d = 0.05, const_policy = "convex_hull")

spa_creator(tbl, classes = classes, mfs = c(cold_mf, hot_mf),
digits = 2, const_policy = "convex_hull")

spa_eval Capturing the membership degree of a point

Description

This function evaluates the membership degree of a given point in a spatial plateau object of any
type. It returns a value in [0, 1] that indicates to which extent the point belongs to the pgeometry
object.

Usage

spa_eval(pgo, point)

Arguments

pgo A pgeometry object of any type.

point An sfg object of the type POINT.

Details

The goal of this function is to return the membership degree of a simple point object (i.e., sfg
object) in a given spatial plateau object (i.e., pgeometry object). This evaluation depends on the
following basic cases:

• if the simple point object belongs to the interior or boundary of one component of the spatial
plateau object, it returns the membership degree of that component.

• if the simple point object intersects more components (e.g., boundaries of region components,
or different line components), it returns the maximum membership degree of all intersected
components.

• if the simple point object is disjoint to the support of the spatial plateau object, it returns 0.

42 spa_eval

Value

A numeric value between 0 and 1 that indicates the membership degree of a point (i.e., sfg object)
in a spatial plateau object (i.e., pgeometry object).

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

Examples

library(tibble)
library(sf)
library(FuzzyR)

some basic examples

pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

cp1 <- component_from_sfg(st_multipoint(pts1), 0.3)
cp2 <- component_from_sfg(st_multipoint(pts2), 0.6)
cp3 <- component_from_sfg(st_multipoint(pts3), 1.0)

pp <- create_pgeometry(list(cp1, cp2, cp3), "PLATEAUPOINT")

spa_eval(pp, st_point(c(1, 2)))
spa_eval(pp, st_point(c(1, 3)))

other examples with plateau regions

set.seed(345)

some random points to create plateau region objects by using the function spa_creator
tbl = tibble(x = runif(10, min= 0, max = 20),

y = runif(10, min = 0, max = 30),
z = runif(10, min = 0, max = 100))

#getting the convex hull on the points to clipping the construction of plateau region objects
pts <- st_as_sf(tbl, coords = c(1, 2))
ch <- st_convex_hull(do.call(c, st_geometry(pts)))

pregions <- spa_creator(tbl, fuzz_policy = "fcp", k = 2, base_poly = ch)

capturing the membership degree of a specific point in each object
spa_eval(pregions$pgeometry[[1]], st_point(c(5, 15)))
spa_eval(pregions$pgeometry[[2]], st_point(c(5, 15)))

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

spa_exact_equal 43

spa_exact_equal Check exact equality

Description

This function checks whether two spatial plateau objects are exactly equal.

Usage

spa_exact_equal(pgo1, pgo2)

Arguments

pgo1 A pgeometry object of any type.

pgo2 A pgeometry object of any type.

Details

It is a Boolean function that checks fuzzy equality in the spatial plateau context. Two pgeometry
objects are exactly equal if their components are equal. Two components are equal if they have
the same membership degree and they are (spatially) equal (i.e., their sfg objects have the same
geometric format - this means that the order of the points can be different).

Value

A Boolean value that indicates if two pgeometry objects are exactly equal.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

Examples

library(sf)

pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

cp1 <- component_from_sfg(st_multipoint(pts1), 0.3)
cp2 <- component_from_sfg(st_multipoint(pts2), 0.6)
cp3 <- component_from_sfg(st_multipoint(pts3), 1.0)

pp1 <- create_pgeometry(list(cp1, cp2, cp3), "PLATEAUPOINT")
pp2 <- create_pgeometry(list(cp2, cp1), "PLATEAUPOINT")

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

44 spa_exact_inside

spa_exact_equal(pp1, pp2)

spa_exact_equal(pp1, pp1)

spa_exact_inside Check exact containment

Description

This function checks whether a pgeometry object is completely inside of another pgeometry object.

Usage

spa_exact_inside(pgo1, pgo2)

Arguments

pgo1 A pgeometry object of any type.

pgo2 A pgeometry object of any type.

Details

It is a Boolean function that checks fuzzy containment in the spatial plateau context.

This Boolean function checks whether the components of pgo1 are contained in the components of
pgo2 by considering their membership degrees and geographic positions. That is, it is follows the
classical definition of fuzzy containment of the fuzzy set theory.

In other words, this function checks if the (standard) intersection of pgo1 and pgo2 is exactly equal
to pgo1. The other of operands affects the result.

Value

A Boolean value that indicates if a pgeometry is completely and certainly inside pgo2.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

spa_set_classification 45

Examples

library(sf)

pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

cp1 <- component_from_sfg(st_multipoint(pts1), 0.3)
cp2 <- component_from_sfg(st_multipoint(pts2), 0.6)
cp3 <- component_from_sfg(st_multipoint(pts3), 1.0)

Creating two spatial plateau objects
pp1 <- create_pgeometry(list(cp1, cp2, cp3), "PLATEAUPOINT")
pp2 <- create_pgeometry(list(cp2, cp1), "PLATEAUPOINT")

The other of operands after the result
pp1 is not inside pp2 since it has one point that is not included in pp2
spa_exact_inside(pp1, pp2)

on the other hand, pp2 is inside pp1
spa_exact_inside(pp2, pp1)

spa_set_classification

Setting a new classification for fuzzy topological relationships

Description

This functions configures a new set of linguistic values and their corresponding membership func-
tions to be used by fuzzy topological relationships.

Usage

spa_set_classification(classes, mfs)

Arguments

classes A character vector containing linguistic values that characterizes different situ-
ations of fuzzy topological relationships.

mfs A vector containing membership functions generated by the function genmf of
the FuzzyR package. Their domain have to be in [0, 1].

Details

This function replaces the default linguistic values employed by fuzzy topological relationships.
Each membership function i of the parameter mfs represents the class i of the parameter classes.
The length of these parameters have to be same.

46 spa_support

Value

No return values, called for side effects.

References

Carniel, A. C.; Schneider, M. Spatial Plateau Algebra: An Executable Type System for Fuzzy
Spatial Data Types. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2018), pp. 1-8, 2018.

Examples

library(tibble)
library(sf)
library(FuzzyR)

set.seed(456)

some random points to create pgeometry objects by using the function spa_creator
tbl = tibble(x = runif(10, min= 0, max = 30),

y = runif(10, min = 0, max = 30),
z = runif(10, min = 0, max = 50))

#getting the convex hull on the points to clipping the construction of plateau region objects
pts <- st_as_sf(tbl, coords = c(1, 2))
ch <- st_convex_hull(do.call(c, st_geometry(pts)))

pregions <- spa_creator(tbl, base_poly = ch, fuzz_policy = "fcp", k = 2)

Showing the default list of classes
spa_overlap(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")

Changing the default classification

classes <- c("small", "medium", "large")
small <- genmf("trapmf", c(0, 0.3, 0.4, 0.6))
medium <- genmf("trapmf", c(0.4, 0.6, 0.8, 1))
large <- genmf("trapmf", c(0.6, 0.8, 1, 1))

spa_set_classification(classes, c(small, medium, large))

spa_overlap(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")

spa_support Capturing the support of a pgeometry object

https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565
https://ieeexplore.ieee.org/document/8491565

spa_support 47

Description

This function yields a crisp spatial object (as an sfg object) that corresponds to the support of a
pgeometry object given as input.

Usage

spa_support(pgo)

Arguments

pgo A pgeometry object of any type.

Details

It employs the classical definition of support from the fuzzy set theory in the context of spatial
plateau algebra. The support only comprises the points with membership degree greater than or
equal to 1. Hence, this operation returns the sfg object that represents the total extent of the
pgeometry given as input. If the pgeometry object has no components, then an empty sfg ob-
ject is returned (i.e., a crisp spatial object without points).

Value

An sfg object that represents the support of pgeometry. It can be an empty object if pgeometry is
empty.

References

Carniel, A. C.; Schneider, M. A Conceptual Model of Fuzzy Topological Relationships for Fuzzy
Regions. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE 2016), pp. 2271-2278, 2016.

Examples

library(sf)

pts1 <- rbind(c(1, 2), c(3, 2))
pts2 <- rbind(c(1, 1), c(2, 3), c(2, 1))
pts3 <- rbind(c(2, 2), c(3, 3))

cp1 <- component_from_sfg(st_multipoint(pts1), 0.3)
cp2 <- component_from_sfg(st_multipoint(pts2), 0.6)
cp3 <- component_from_sfg(st_multipoint(pts3), 1.0)

pp <- create_pgeometry(list(cp1, cp2, cp3), "PLATEAUPOINT")
pp

pp_supp <- spa_support(pp)
pp_supp

pp_empty <- create_empty_pgeometry("PLATEAUPOINT")

https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/7737976
https://ieeexplore.ieee.org/document/7737976

48 visitation

pp_empty_supp <- spa_support(pp_empty)
pp_empty_supp

visitation Visitation: An example of FSI model

Description

This function provides an example, without rules, of a fuzzy spatial inference (FSI) model.

Usage

visitation()

Details

The FSI model provided by this function represents an FSI model to estimate the visiting experience
based on prices and overall ratings of accommodations as well as sanitary conditions of restaurants.
The output of such a model infers a value between 0 and 100 that indicates how attractive it is to
visit a specific location. For this, the experience can be classified as awful, average, and great.
The linguistic variables and their linguistic values of this FSI model are listed below:

• accommodation price, with cut-rate, affordable, and expensive as linguistic values;
• accommodation review with bad, good, and excellent as linguistic values;
• food safety with low, medium, and high as linguistic values, which represent levels of sanitary

conditions.

The usage of FSI models is subdivided into a preparation phase and an evaluation phase. The prepa-
ration phase is responsible for instantiating a new FSI model with the elements of the data source
component of FIFUS. For this, the fsr package provides the following functions: fsi_create,
fsi_add_fsa, and fsi_add_cs. These functions are employed by visitation so that users can
add their own fuzzy set rules (by using fsi_add_rules) and perform the evaluation phase (by using
the functions fsi_eval and/or fsi_qw_eval). In this sense, visitation performs the following
internal actions to return an FSI model:

1. specify the linguistic variables and their corresponding linguistic values, which are in turn
represented by membership functions generated by the function genmf of the FuzzyR package.
These items are specified according to the context of the running example.

2. define small point datasets that represent each linguistic variable. Such datasets are tibble
objects.

3. build spatial plateau objects by using the function spa_creator on the datasets. As a result,
we get spatial plateau objects that represent each linguistic value.

4. create an FSI model with fsi_create function.
5. add fuzzy spatial antecedents with the fsi_add_fsa function. Recall that the antecedents are

spatial plateau objects previously built.
6. define the linguistic variable and its linguistic values with membership functions for the con-

sequent.
7. add the consequent to the FSI model by using the function fsi_add_cs.

visitation 49

Value

An example of an FSI model implemented without fuzzy rules set.

Examples

fsi <- visitation()

Index

alpha_eval (fsr_eval_modes), 19
as.character,pgeometry-method (PWKT), 31
as.data.frame.pgeometry

(as_tibble.pgeometry), 3
as_tibble.pgeometry, 3

component-class, 4
component_from_sfg (fsr_components), 15
create_component (fsr_components), 15
create_empty_pgeometry, 5
create_pgeometry, 6

f_abs_diff (fsr_diff_operators), 18
f_bound_diff (fsr_diff_operators), 18
f_diff (fsr_diff_operators), 18
f_symm_diff (fsr_diff_operators), 18
format.pgeometry (PWKT), 31
fsi_add_cs, 7
fsi_add_fsa, 8
fsi_add_rules, 9
fsi_create, 11
fsi_eval, 12
fsi_qw_eval, 13
fsr_components, 15
fsr_diff_operators, 18
fsr_eval_modes, 19
fsr_geometric_operations, 20
fsr_is_empty, 22
fsr_numerical_operations, 23
fsr_plot (plot), 29
fsr_topological_relationships, 25

pgeometry-class, 28
plot, 29
plot,pgeometry,missing-method (plot), 29
PWKT, 31

show,pgeometry-method (PWKT), 31
soft_alpha_eval (fsr_eval_modes), 19
soft_eval (fsr_eval_modes), 19

spa_add_component, 33
spa_area (fsr_numerical_operations), 23
spa_avg_degree

(fsr_numerical_operations), 23
spa_boundary_pregion, 34
spa_common_points

(fsr_geometric_operations), 20
spa_contains

(fsr_topological_relationships),
25

spa_contour, 36
spa_core, 37
spa_creator, 38
spa_difference

(fsr_geometric_operations), 20
spa_disjoint

(fsr_topological_relationships),
25

spa_equal
(fsr_topological_relationships),
25

spa_eval, 41
spa_exact_equal, 43
spa_exact_inside, 44
spa_inside

(fsr_topological_relationships),
25

spa_intersection
(fsr_geometric_operations), 20

spa_length (fsr_numerical_operations),
23

spa_meet
(fsr_topological_relationships),
25

spa_ncomp (fsr_numerical_operations), 23
spa_overlap

(fsr_topological_relationships),
25

spa_perimeter

50

INDEX 51

(fsr_numerical_operations), 23
spa_pwkt (PWKT), 31
spa_set_classification, 45
spa_support, 46
spa_union (fsr_geometric_operations), 20
strict_eval (fsr_eval_modes), 19

visitation, 48

	as_tibble.pgeometry
	component-class
	create_empty_pgeometry
	create_pgeometry
	fsi_add_cs
	fsi_add_fsa
	fsi_add_rules
	fsi_create
	fsi_eval
	fsi_qw_eval
	fsr_components
	fsr_diff_operators
	fsr_eval_modes
	fsr_geometric_operations
	fsr_is_empty
	fsr_numerical_operations
	fsr_topological_relationships
	pgeometry-class
	plot
	PWKT
	spa_add_component
	spa_boundary_pregion
	spa_contour
	spa_core
	spa_creator
	spa_eval
	spa_exact_equal
	spa_exact_inside
	spa_set_classification
	spa_support
	visitation
	Index

