funHDDC: Univariate and Multivariate Model-Based Clustering in Group-Specific Functional Subspaces

The funHDDC algorithm allows to cluster functional univariate (Bouveyron and Jacques, 2011, <doi:10.1007/s11634-011-0095-6>) or multivariate data (Schmutz et al., 2018) by modeling each group within a specific functional subspace.

Version: 2.3.1
Depends: MASS, fda, R (≥ 3.1.0)
Suggests: knitr, rmarkdown
Published: 2021-03-17
Author: A Schmutz, J. Jacques & C. Bouveyron
Maintainer: Charles Bouveyron <charles.bouveyron at gmail.com>
License: GPL-2
NeedsCompilation: no
In views: Cluster, FunctionalData
CRAN checks: funHDDC results

Documentation:

Reference manual: funHDDC.pdf
Vignettes: funHDDC

Downloads:

Package source: funHDDC_2.3.1.tar.gz
Windows binaries: r-devel: funHDDC_2.3.1.zip, r-release: funHDDC_2.3.1.zip, r-oldrel: funHDDC_2.3.1.zip
macOS binaries: r-release (arm64): funHDDC_2.3.1.tgz, r-oldrel (arm64): funHDDC_2.3.1.tgz, r-release (x86_64): funHDDC_2.3.1.tgz, r-oldrel (x86_64): funHDDC_2.3.1.tgz
Old sources: funHDDC archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=funHDDC to link to this page.