Package 'fwildclusterboot'

June 10, 2022

Title Fast Wild Cluster Bootstrap Inference for Linear Models

Version 0.9

Date 2022-06-06

Description Implementation of the fast algorithm for wild cluster bootstrap inference developed in Roodman et al (2019, STATA Journal) for linear regression models <doi:10.1177/1536867X19830877>, which makes it feasible to quickly calculate bootstrap test statistics based on a large number of bootstrap draws even for large samples. Multiway clustering, regression weights, bootstrap weights, fixed effects and subcluster bootstrapping are supported. Further, both restricted (WCR) and unrestricted (WCU) bootstrap are supported. Methods are provided for a variety of fitted models, including 'lm()', 'feols()' (from package 'fixest') and 'felm()' (from package 'lfe'). Additionally implements a heteroskedasticity-robust (HC1) wild bootstrap. Further, the package provides an R binding to 'WildBootTests.jl', which provides additional speed gains and functionality, including the 'WRE' bootstrap for instrumental variable models (based on models of type 'ivreg()' from package 'ivreg') and hypotheses with q > 1.

URL https://s3alfisc.github.io/fwildclusterboot/

BugReports https://github.com/s3alfisc/fwildclusterboot/issues/

License GPL-3

Imports collapse, Formula, Rcpp, dreamerr, Matrix, Matrix.utils, generics, gtools, dqrng, JuliaConnectoR

Suggests fixest, lfe, ivreg, clubSandwich, sandwich, lmtest, data.table, fabricatr, covr, knitr, rmarkdown, broom, modelsummary, bench, testthat (>= 3.0.0), tibble

Encoding UTF-8

LazyData true

RoxygenNote 7.2.0

LinkingTo Rcpp,RcppArmadillo, RcppEigen

VignetteBuilder knitr

Language en-US

SystemRequirements Julia (>= 1.7), WildBootTests.jl (>=0.7.13)

Config/testthat/edition 3

NeedsCompilation yes

Author Alexander Fischer [aut, cre], David Roodman [aut], Achim Zeileis [ctb] (Author of included sandwich fragments), Nathaniel Graham [ctb] (Contributor to included sandwich fragments), Susanne Koell [ctb] (Contributor to included sandwich fragments), Laurent Berge [ctb] (Author of included fixest fragments), Sebastian Krantz [ctb]

Maintainer Alexander Fischer <alexander-fischer1801@t-online.de>

Repository CRAN

Date/Publication 2022-06-10 21:20:16 UTC

R topics documented:

onLoad	 . 3
poottest	 . 3
poottest.felm	 . 4
poottest.fixest	 . 9
poottest.ivreg	 . 15
poottest.lm	 . 19
boot_algo1	 . 23
000t_algo2	 . 25
boot_ssc	 . 26
pp_get_nb_threads	 . 27
reate_data	 . 27
igenMapMatMult	 . 28
get_bootstrap_pvalue	 . 29
get_seed	 . 29
yet_ssc	 . 30
lance.boottest	 . 30
nboottest	 . 31
nboottest.felm	 . 32
nboottest.fixest	 . 35
nboottest.lm	 . 39
nodel_matrix	 . 42
nodel_matrix.felm	 . 43
nodel_matrix.fixest	 . 43
nodel_matrix.lm	 . 44
lot.boottest	 . 44
preprocess2	 . 45

.onLoad

setBoottest_boot_algo	. 45
summary.boottest	. 46
summary.mboottest	. 46
tidy.boottest	. 47
tidy.mboottest	. 47
to_integer	. 48
voters	. 48
	49

Index

```
.onLoad
```

setting options for nthreads when package is loaded

Description

setting options for nthreads when package is loaded

Usage

.onLoad(libname, pkgname)

Arguments

libname	library name
pkgname	package name

Value

Changes number of threads used.

boottest

Fast wild cluster bootstrap inference

Description

boottest is a S3 method that allows for fast wild cluster bootstrap inference for objects of class lm, fixest and felm by implementing the fast wild bootstrap algorithm developed in Roodman et al., 2019.

Usage

boottest(object, ...)

Arguments

object	An object of type lm, fixest, felm or ivreg
	other arguments

3

An object of class boottest.

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - 1. the lean algorithm (via boot_algo = "R-lean"), 2) the heteroskedastic wild bootstrap
 - 2. the wild cluster bootstrap via boot_algo = "R" with Mammen weights or 4) boot_algo
 = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

See Also

boottest.lm, boottest.fixest, boottest.felm, boottest.ivreg

boottest.felm Fast wild cluster bootstrap inference for object of class felm

Description

boottest.felm is a S3 method that allows for fast wild cluster bootstrap inference for objects of class felm by implementing the fast wild bootstrap algorithm developed in Roodman et al., 2019 and implemented in the STATA package boottest.

boottest.felm

Usage

```
## S3 method for class 'felm'
boottest(
 object,
  param,
 Β,
  clustid = NULL,
 bootcluster = "max",
  fe = NULL,
  conf_int = TRUE,
  seed = NULL,
 R = NULL,
  r = 0,
  beta0 = NULL,
  sign_level = 0.05,
  type = "rademacher",
  impose_null = TRUE,
  p_val_type = "two-tailed",
  tol = 1e-06,
 maxiter = 10,
  nthreads = getBoottest_nthreads(),
  ssc = boot_ssc(adj = TRUE, fixef.K = "none", cluster.adj = TRUE, cluster.df =
    "conventional"),
  boot_algo = getBoottest_boot_algo(),
  floattype = "Float64",
 maxmatsize = FALSE,
 bootstrapc = FALSE,
  t_boot = FALSE,
 getauxweights = FALSE,
  . . .
```

```
)
```

Arguments

object	An object of class felm
param	A character vector or rhs formula. The name of the regression coefficient(s) for which the hypothesis is to be tested
В	Integer. The number of bootstrap iterations. When the number of clusters is low, increasing B adds little additional runtime.
clustid	A character vector or rhs formula containing the names of the cluster variables. If NULL, a heteroskedasticity-robust (HC1) wild bootstrap is run.
bootcluster	A character vector or rhs formula of length 1. Specifies the bootstrap clus- tering variable or variables. If more than one variable is specified, then boot- strapping is clustered by the intersections of clustering implied by the listed variables. To mimic the behavior of stata's boottest command, the default is to cluster by the intersection of all the variables specified via the clustid ar- gument, even though that is not necessarily recommended (see the paper by

	Roodman et al cited below, section 4.2). Other options include "min", where bootstrapping is clustered by the cluster variable with the fewest clusters. Fur- ther, the subcluster bootstrap (MacKinnon & Webb, 2018) is supported - see the vignette("fwildclusterboot", package = "fwildclusterboot") for details.
fe	A character vector or rhs formula of length one which contains the name of the fixed effect to be projected out in the bootstrap. Note: if regression weights are used, fe needs to be NULL.
conf_int	A logical vector. If TRUE, boottest computes confidence intervals by test inver- sion. If FALSE, only the p-value is returned.
seed	An integer. Allows to set a random seed. For details, see below.
R	Hypothesis Vector giving linear combinations of coefficients. Must be either NULL or a vector of the same length as param. If NULL, a vector of ones of length param.
r	A numeric. Shifts the null hypothesis H0: param = r vs H1: param != r
beta0	Deprecated function argument. Replaced by function argument 'r'.
sign_level	A numeric between 0 and 1 which sets the significance level of the inference procedure. E.g. sign_level = 0.05 returns 0.95% confidence intervals. By default, sign_level = 0.05 .
type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default. For the Rademacher distribution, if the number of replications B ex- ceeds the number of possible draw ombinations, 2^(#number of clusters), then boottest() will use each possible combination once (enumeration).
<pre>impose_null</pre>	Logical. Controls if the null hypothesis is imposed on the bootstrap dgp or not. Null imposed (WCR) by default. If FALSE, the null is not imposed (WCU)
p_val_type	Character vector of length 1. Type of p-value. By default "two-tailed". Other options include "equal-tailed", ">" and "<".
tol	Numeric vector of length 1. The desired accuracy (convergence tolerance) used in the root finding procedure to find the confidence interval. 1e-6 by default.
maxiter	Integer. Maximum number of iterations used in the root finding procedure to find the confidence interval. 10 by default.
nthreads	The number of threads. Can be: a) an integer lower than, or equal to, the max- imum number of threads; b) 0: meaning all available threads will be used; c) a number strictly between 0 and 1 which represents the fraction of all threads to use. The default is to use 1 core.
SSC	An object of class boot_ssc.type obtained with the function boot_ssc. Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "none", You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function.
boot_algo	Character scalar. Either "R" or "WildBootTests.jl". Controls the algorithm em- ployed by boottest. "R" is the default and implements the cluster bootstrap as in Roodman (2019). "WildBootTests.jl" executes the wild cluster bootstrap by via the WildBootTests.jl package. For it to run, Julia and WildBootTests.jl need to

	be installed. Check out the set_up functions The "fast and wild" algorithm is extremely fast for small number of clusters, but because it is fully vectorized, very memory-demanding. For large number of clusters and large number of bootstrap iterations, the fast and wild algorithm becomes infeasible. If a out- of-memory error # occurs, the "lean" algorithm is a memory friendly, but less performant rcpp-armadillo based implementation of the wild cluster bootstrap. Note that if no cluster is provided, boottest() always defaults to the "lean" al- gorithm. Note that you can set the employed algorithm globally by using the setBoottest_boot_algo() function.
floattype	Float64 by default. Other option: Float32. Should floating point numbers in Julia be represented as 32 or 64 bit? Only relevant when 'boot_algo = "Wild-BootTests.jl"'
maxmatsize	NULL by default = no limit. Else numeric scalar to set the maximum size of auxilliary weight matrix (v), in gigabytes. Only relevant when 'boot_algo = "WildBootTests.jl"'
bootstrapc	Logical scalar, FALSE by default. TRUE to request bootstrap-c instead of bootstrap-t. Only relevant when 'boot_algo = "WildBootTests.jl"'
t_boot	Logical. Should bootstrapped t-statistics be returned?
getauxweights	Logical. Whether to save auxilliary weight matrix (v)
	Further arguments passed to or from other methods.

Value

An object of class boottest

p_val	The bootstrap p-value.
conf_int	The bootstrap confidence interval.
param	The tested parameter.
Ν	Sample size. Might differ from the regression sample size if the cluster variables contain NA values.
boot_iter	Number of Bootstrap Iterations.
clustid	Names of the cluster Variables.
N_G	Dimension of the cluster variables as used in boottest.
sign_level	Significance level used in boottest.
type	Distribution of the bootstrap weights.
impose_null	Whether the null was imposed on the bootstrap dgp or not.
R	The vector "R" in the null hypothesis of interest Rbeta = r .
r	The scalar "r" in the null hypothesis of interest $Rbeta = r$.
point_estimate	R'beta. A scalar: the constraints vector times the regression coefficients.
grid_vals	All t-statistics calculated while calculating the confidence interval.
p_grid_vals	All p-values calculated while calculating the confidence interval.
t_stat	The 'original' regression test statistics.

t_boot	All bootstrap t-statistics.
regression	The regression object used in boottest.
call	Function call of boottest.
boot_algo	The employed bootstrap algorithm.
nthreads	The number of threads employed.

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - 1. the lean algorithm (via boot_algo = "R-lean") including the heteroskedastic wild bootstrap
 - 2. the wild cluster bootstrap via boot_algo = "R" with Mammen weights or
 - 3. boot_algo = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

Confidence Intervals

boottest computes confidence intervals by inverting p-values. In practice, the following procedure is used:

- Based on an initial guess for starting values, calculate p-values for 26 equal spaced points between the starting values.
- Out of the 26 calculated p-values, find the two pairs of values x for which the corresponding p-values px cross the significance level sign_level.
- Feed the two pairs of x into an numerical root finding procedure and solve for the root. boottest currently relies on stats::uniroot and sets an absolute tolerance of 1e-06 and stops the procedure after 10 iterations.

Standard Errors

boottest does not calculate standard errors.

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

boottest.fixest

Examples

```
## Not run:
if (requireNamespace("lfe")) {
  library(lfe)
  data(voters)
  felm_fit <- felm(proposition_vote ~ treatment + ideology1 + log_income |</pre>
    Q1_immigration,
  data = voters
  boot1 <- boottest(felm_fit,</pre>
    B = 9999,
    param = "treatment",
    clustid = "group_id1"
  )
  boot2 <- boottest(felm_fit,</pre>
    B = 9999,
    param = "treatment",
    clustid = c("group_id1", "group_id2")
  )
  boot3 <- boottest(felm_fit,</pre>
    B = 9999,
    param = "treatment",
    clustid = c("group_id1", "group_id2"),
    fe = "Q1_immigration"
  )
  boot4 <- boottest(felm_fit,</pre>
    B = 999,
    param = "treatment",
    clustid = c("group_id1", "group_id2"),
    fe = "Q1_immigration",
    sign_level = 0.2,
    seed = 8,
    r = 2
  )
  # test treatment + ideology1 = 2
  boot5 <- boottest(felm_fit,</pre>
    B = 9999,
    clustid = c("group_id1", "group_id2"),
    param = c("treatment", "ideology1"),
    R = c(1, 1),
    r = 2
  )
  summary(boot1)
  plot(boot1)
}
## End(Not run)
```

boottest.fixest

Fast wild cluster bootstrap inference for object of class fixest

Description

boottest.fixest is a S3 method that allows for fast wild cluster bootstrap inference for objects of class fixest by implementing the fast wild bootstrap algorithm developed in Roodman et al., 2019 and implemented in the STATA package boottest.

Usage

```
## S3 method for class 'fixest'
boottest(
 object,
  param,
 Β,
  clustid = NULL,
  bootcluster = "max",
  fe = NULL,
  sign_level = 0.05,
  conf_int = TRUE,
  seed = NULL,
 R = NULL,
  r = 0,
  beta0 = NULL,
  type = "rademacher",
  impose_null = TRUE,
  p_val_type = "two-tailed",
  tol = 1e-06,
 maxiter = 10,
 nthreads = getBoottest_nthreads(),
  ssc = boot_ssc(adj = TRUE, fixef.K = "none", cluster.adj = TRUE, cluster.df =
    "conventional"),
  boot_algo = getBoottest_boot_algo(),
  floattype = "Float64",
  maxmatsize = FALSE,
  bootstrapc = FALSE,
  t_boot = FALSE,
  getauxweights = FALSE,
  . . .
)
```

Arguments

object	An object of class fixest and estimated via fixest::feols(). Non-linear models are not supported.
param	A character vector or rhs formula. The name of the regression coefficient(s) for which the hypothesis is to be tested
В	Integer. The number of bootstrap iterations. When the number of clusters is low, increasing B adds little additional runtime.
clustid	A character vector or rhs formula containing the names of the cluster variables. If NULL, a heteroskedasticity-robust (HC1) wild bootstrap is run.

bootcluster	A character vector or rhs formula of length 1. Specifies the bootstrap clus- tering variable or variables. If more than one variable is specified, then boot- strapping is clustered by the intersections of clustering implied by the listed variables. To mimic the behavior of stata's boottest command, the default is to cluster by the intersection of all the variables specified via the clustid ar- gument, even though that is not necessarily recommended (see the paper by Roodman et al cited below, section 4.2). Other options include "min", where bootstrapping is clustered by the cluster variable with the fewest clusters. Fur- ther, the subcluster bootstrap (MacKinnon & Webb, 2018) is supported - see the vignette("fwildclusterboot", package = "fwildclusterboot") for details.
fe	A character vector or rhs formula of length one which contains the name of the fixed effect to be projected out in the bootstrap. Note: if regression weights are used, fe needs to be NULL.
sign_level	A numeric between 0 and 1 which sets the significance level of the inference procedure. E.g. sign_level = 0.05 returns 0.95% confidence intervals. By default, sign_level = 0.05 .
conf_int	A logical vector. If TRUE, boottest computes confidence intervals by test inver- sion. If FALSE, only the p-value is returned.
seed	An integer. Allows to set a random seed. For details, see below.
R	Hypothesis Vector giving linear combinations of coefficients. Must be either NULL or a vector of the same length as param. If NULL, a vector of ones of length param.
r	A numeric. Shifts the null hypothesis H0: param = r vs H1: param != r
beta0	Deprecated function argument. Replaced by function argument 'r'.
type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default. For the Rademacher distribution, if the number of replications B ex- ceeds the number of possible draw ombinations, 2^(#number of clusters), then boottest() will use each possible combination once (enumeration).
<pre>impose_null</pre>	Logical. Controls if the null hypothesis is imposed on the bootstrap dgp or not. Null imposed (WCR) by default. If FALSE, the null is not imposed (WCU)
p_val_type	Character vector of length 1. Type of p-value. By default "two-tailed". Other options include "equal-tailed", ">" and "<".
tol	Numeric vector of length 1. The desired accuracy (convergence tolerance) used in the root finding procedure to find the confidence interval. 1e-6 by default.
maxiter	Integer. Maximum number of iterations used in the root finding procedure to find the confidence interval. 10 by default.
nthreads	The number of threads. Can be: a) an integer lower than, or equal to, the max- imum number of threads; b) 0: meaning all available threads will be used; c) a number strictly between 0 and 1 which represents the fraction of all threads to use. The default is to use 1 core.
SSC	An object of class boot_ssc.type obtained with the function boot_ssc. Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "none", You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function.

boot_algo	Character scalar. Either "R" or "WildBootTests.jl". Controls the algorithm em- ployed by boottest(). "R" is the default and implements the cluster bootstrap as in Roodman (2019). "WildBootTests.jl" executes the wild cluster bootstrap via the WildBootTests.jl package. For it to run, Julia and WildBootTests.jl need to be installed. Note that if no cluster is provided, boottest() always defaults to the "lean" algorithm. You can set the employed algorithm globally by using the
	<pre>setBoottest_boot_algo() function.</pre>
floattype	Float64 by default. Other option: Float32. Should floating point numbers in Julia be represented as 32 or 64 bit? Only relevant when 'boot_algo = "Wild-BootTests.jl"'
maxmatsize	NULL by default = no limit. Else numeric scalar to set the maximum size of auxilliary weight matrix (v), in gigabytes. Only relevant when 'boot_algo = "WildBootTests.jl"'
bootstrapc	Logical scalar, FALSE by default. TRUE to request bootstrap-c instead of bootstrap-t. Only relevant when 'boot_algo = "WildBootTests.jl"'
t_boot	Logical. Should bootstrapped t-statistics be returned?
getauxweights	Logical. Whether to save auxilliary weight matrix (v)
	Further arguments passed to or from other methods.

Value

An object of class boottest

p_val	The bootstrap p-value.
conf_int	The bootstrap confidence interval.
param	The tested parameter.
Ν	Sample size. Might differ from the regression sample size if the cluster variables contain NA values.
boot_iter	Number of Bootstrap Iterations.
clustid	Names of the cluster Variables.
N_G	Dimension of the cluster variables as used in boottest.
sign_level	Significance level used in boottest.
type	Distribution of the bootstrap weights.
impose_null	Whether the null was imposed on the bootstrap dgp or not.
R	The vector "R" in the null hypothesis of interest Rbeta = r .
r	The scalar "r" in the null hypothesis of interest Rbeta = r .
<pre>point_estimate</pre>	R'beta. A scalar: the constraints vector times the regression coefficients.
grid_vals	All t-statistics calculated while calculating the confidence interval.
p_grid_vals	All p-values calculated while calculating the confidence interval.
t_stat	The 'original' regression test statistics.
t_boot	All bootstrap t-statistics.
regression	The regression object used in boottest.

boottest.fixest

call	Function call of boottest.
boot_algo	The employed bootstrap algorithm.
nthreads	The number of threads employed.
internal_seed	The integer value -inherited from set.seed() - used within boottest() to set the
	random seed in either R or Julia. If NULL, no internal seed was created.

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - the lean algorithm (via boot_algo = "R-lean") including the heteroskedastic wild bootstrap
 - 2. the wild cluster bootstrap via boot_algo = "R" with Mammen weights or
 - 3. boot_algo = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

Confidence Intervals

boottest computes confidence intervals by inverting p-values. In practice, the following procedure is used:

- Based on an initial guess for starting values, calculate p-values for 26 equal spaced points between the starting values.
- Out of the 26 calculated p-values, find the two pairs of values x for which the corresponding p-values px cross the significance sign_level sign_level.
- Feed the two pairs of x into an numerical root finding procedure and solve for the root. boottest currently relies on stats::uniroot and sets an absolute tolerance of 1e-06 and stops the procedure after 10 iterations.

Standard Errors

boottest does not calculate standard errors.

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

Examples

```
## Not run:
if (requireNamespace("fixest")) {
 library(fwildclusterboot)
 library(fixest)
 data(voters)
 feols_fit <- feols(proposition_vote ~ treatment + ideology1 + log_income,</pre>
   fixef = "Q1_immigration",
   data = voters
 )
 boot1 <- boottest(feols_fit,</pre>
   B = 9999,
   param = "treatment",
   clustid = "group_id1"
 )
 boot2 <- boottest(feols_fit,</pre>
   B = 9999,
   param = "treatment",
   clustid = c("group_id1", "group_id2")
 )
 boot3 <- boottest(feols_fit,</pre>
   B = 9999,
   param = "treatment",
   clustid = c("group_id1", "group_id2"),
   fe = "Q1_immigration"
 )
 boot4 <- boottest(feols_fit,</pre>
   B = 9999,
   param = "treatment",
   clustid = c("group_id1", "group_id2"),
   fe = "Q1_immigration",
   sign_level = 0.2,
   seed = 8,
   r = 2
 )
 # test treatment + ideology1 = 2
 boot5 <- boottest(feols_fit,</pre>
   B = 9999,
   clustid = c("group_id1", "group_id2"),
   param = c("treatment", "ideology1"),
   R = c(1, 1),
   r = 2
 )
 summary(boot1)
 plot(boot1)
}
```

End(Not run)

14

boottest.ivreg

Description

boottest.ivreg is a S3 method that allows for fast wild cluster bootstrap inference for objects of class ivreg by implementing the fast wild bootstrap algorithm developed in Roodman et al., 2019 for instrumental variable models (WRE, Davidson & McKinnon, 2010)

Usage

```
## S3 method for class 'ivreg'
boottest(
  object,
  clustid,
  param,
  Β,
  bootcluster = "max",
  conf_int = TRUE,
  seed = NULL,
  R = NULL,
  r = 0,
  sign_level = 0.05,
  type = "rademacher",
  impose_null = TRUE,
  p_val_type = "two-tailed",
  tol = 1e-06,
  floattype = "Float64",
  getauxweights = FALSE,
  t_boot = FALSE,
  maxmatsize = NULL,
  bootstrapc = FALSE,
  liml = FALSE,
  fuller = NULL,
  kappa = NULL,
  arubin = FALSE,
  ssc = boot_ssc(adj = TRUE, fixef.K = "none", cluster.adj = TRUE, cluster.df =
    "conventional"),
  . . .
```

```
)
```

Arguments

object	An object of class lm
clustid	A character vector or rhs formula containing the names of the cluster variables
param	A character vector or rhs formula of length one. The name of the regression coefficient for which the hypothesis is to be tested

В	Integer. The number of bootstrap iterations. When the number of clusters is low, increasing B adds little additional runtime
bootcluster	A character vector or rhs formula of length 1. Specifies the bootstrap clus- tering variable or variables. If more than one variable is specified, then boot- strapping is clustered by the intersections of clustering implied by the listed variables. To mimic the behavior of stata's boottest command, the default is to cluster by the intersection of all the variables specified via the clustid ar- gument, even though that is not necessarily recommended (see the paper by Roodman et al cited below, section 4.2). Other options include "min", where bootstrapping is clustered by the cluster variable with the fewest clusters. Fur- ther, the subcluster bootstrap (MacKinnon & Webb, 2018) is supported - see the vignette("fwildclusterboot", package = "fwildclusterboot") for details.
conf_int	A logical vector. If TRUE, boottest computes confidence intervals by test inver- sion. If FALSE, only the p-value is returned.
seed	An integer. Allows to set a random seed. For details, see below.
R	Hypothesis Vector giving linear combinations of coefficients. Must be either NULL or a vector of the same length as param. If NULL, a vector of ones of length param.
r	A numeric. Shifts the null hypothesis H0: param = r vs H1: param != r
sign_level	A numeric between 0 and 1 which sets the significance level of the inference procedure. E.g. sign_level = 0.05 returns 0.95% confidence intervals. By default, sign_level = 0.05 .
type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm", "gamma" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default. For the Rademacher and Mammen distribution, if the number of repli- cations B exceeds the number of possible draw ombinations, 2^(#number of clusters), then boottest() will use each possible combination once (enumera- tion).
<pre>impose_null</pre>	Logical. Controls if the null hypothesis is imposed on the bootstrap dgp or not. Null imposed (WCR) by default. If FALSE, the null is not imposed (WCU)
p_val_type	Character vector of length 1. Type of p-value. By default "two-tailed". Other options include "equal-tailed", ">" and "<".
tol	Numeric vector of length 1. The desired accuracy (convergence tolerance) used in the root finding procedure to find the confidence interval. Relative tolerance of 1e-6 by default.
floattype	Float64 by default. Other option: Float32. Should floating point numbers in Julia be represented as 32 or 64 bit?
getauxweights	Logical. FALSE by default. Whether to save auxilliary weight matrix (v)
t_boot	Logical. Should bootstrapped t-statistics be returned?
maxmatsize	NULL by default = no limit. Else numeric scalar to set the maximum size of auxilliary weight matrix (v), in gigabytes
bootstrapc	Logical scalar, FALSE by default. TRUE to request bootstrap-c instead of bootstrap-t

boottest.ivreg

liml	Logical scalar. False by default. TRUE for liml or fuller liml
fuller	NULL by default. Numeric scalar. fuller liml factor
kappa	Null by default. fixed <u+03ba> for k-class estimation</u+03ba>
arubin	False by default. Logical scalar. TRUE for Anderson-Rubin Test.
SSC	An object of class boot_ssc.type obtained with the function boot_ssc.Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "none" You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function.
	Further arguments passed to or from other methods.

Value

An object of class boottest

p_val	The bootstrap p-value.
conf_int	The bootstrap confidence interval.
param	The tested parameter.
Ν	Sample size. Might differ from the regression sample size if the cluster variables contain NA values.
boot_iter	Number of Bootstrap Iterations.
clustid	Names of the cluster Variables.
N_G	Dimension of the cluster variables as used in boottest.
sign_level	Significance level used in boottest.
type	Distribution of the bootstrap weights.
impose_null	Whether the null was imposed on the bootstrap dgp or not.
R	The vector "R" in the null hypothesis of interest Rbeta = r .
r	The scalar "r" in the null hypothesis of interest Rbeta = r .
point_estimate	R'beta. A scalar: the constraints vector times the regression coefficients.
grid_vals	All t-statistics calculated while calculating the confidence interval.
p_grid_vals	All p-values calculated while calculating the confidence interval.
t_stat	The 'original' regression test statistics.
t_boot	All bootstrap t-statistics.
regression	The regression object used in boottest.
call	Function call of boottest.
boot_algo	The employed bootstrap algorithm.
nthreads	The number of threads employed.
internal_seed	The integer value -inherited from set.seed() - used within boottest() to set the random seed in either R or Julia. If NULL, no internal seed was created.

17

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - the lean algorithm (via boot_algo = "R-lean") including the heteroskedastic wild bootstrap
 - 2. the wild cluster bootstrap via boot_algo = "R" with Mammen weights or
 - 3. boot_algo = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

Examples

```
## Not run:
library(ivreg)
library(fwildclusterboot)
# drop all NA values from SchoolingReturns
SchoolingReturns <- SchoolingReturns[rowMeans(sapply(SchoolingReturns, is.na)) == 0, ]</pre>
ivreg_fit <- ivreg(log(wage) ~ education + age +</pre>
  ethnicity + smsa + south + parents14 |
  nearcollege + age + ethnicity + smsa
    + south + parents14,
data = SchoolingReturns
)
boot_ivreg <- boottest(</pre>
  object = ivreg_fit,
  B = 999,
  param = "education",
  clustid = "kww",
  type = "mammen",
  impose_null = TRUE
)
summary(boot_ivreg)
```

boottest.lm

End(Not run)

boottest.lm

Fast wild cluster bootstrap inference for object of class lm

Description

boottest.lm is a S3 method that allows for fast wild cluster bootstrap inference for objects of class lm by implementing the fast wild bootstrap algorithm developed in Roodman et al., 2019.

Usage

```
## S3 method for class 'lm'
boottest(
 object,
  param,
 Β,
  clustid = NULL,
  bootcluster = "max",
  conf_int = TRUE,
  seed = NULL,
  R = NULL,
  r = 0,
  beta0 = NULL,
  sign_level = 0.05,
  type = "rademacher",
  impose_null = TRUE,
  p_val_type = "two-tailed",
  tol = 1e-06,
 maxiter = 10,
  nthreads = getBoottest_nthreads(),
  ssc = boot_ssc(adj = TRUE, fixef.K = "none", cluster.adj = TRUE, cluster.df =
    "conventional"),
  boot_algo = getBoottest_boot_algo(),
  floattype = "Float64",
 maxmatsize = FALSE,
  bootstrapc = FALSE,
  t_boot = FALSE,
  getauxweights = FALSE,
```

)

Arguments

object An object of class lm

param	A character vector or rhs formula. The name of the regression coefficient(s) for which the hypothesis is to be tested
В	Integer. The number of bootstrap iterations. When the number of clusters is low, increasing B adds little additional runtime.
clustid	A character vector or rhs formula containing the names of the cluster variables. If NULL, a heteroskedasticity-robust (HC1) wild bootstrap is run.
bootcluster	A character vector or rhs formula of length 1. Specifies the bootstrap clus- tering variable or variables. If more than one variable is specified, then boot- strapping is clustered by the intersections of clustering implied by the listed variables. To mimic the behavior of stata's boottest command, the default is to cluster by the intersection of all the variables specified via the clustid ar- gument, even though that is not necessarily recommended (see the paper by Roodman et al cited below, section 4.2). Other options include "min", where bootstrapping is clustered by the cluster variable with the fewest clusters. Fur- ther, the subcluster bootstrap (MacKinnon & Webb, 2018) is supported - see the vignette("fwildclusterboot", package = "fwildclusterboot") for details.
conf_int	A logical vector. If TRUE, boottest computes confidence intervals by test inver- sion. If FALSE, only the p-value is returned.
seed	An integer. Allows to set a random seed. For details, see below.
R	Hypothesis Vector giving linear combinations of coefficients. Must be either NULL or a vector of the same length as param. If NULL, a vector of ones of length param.
r	A numeric. Shifts the null hypothesis H0: param = r vs H1: param != r
beta0	Deprecated function argument. Replaced by function argument 'r'.
sign_level	A numeric between 0 and 1 which sets the significance level of the inference procedure. E.g. sign_level = 0.05 returns 0.95% confidence intervals. By default, sign_level = 0.05 .
type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default. For the Rademacher distribution, if the number of replications B ex- ceeds the number of possible draw ombinations, 2 ^(#number of clusters) , then boottest() will use each possible combination once (enumeration).
impose_null	Logical. Controls if the null hypothesis is imposed on the bootstrap dgp or not. Null imposed (WCR) by default. If FALSE, the null is not imposed (WCU)
p_val_type	Character vector of length 1. Type of p-value. By default "two-tailed". Other options include "equal-tailed", ">" and "<".
tol	Numeric vector of length 1. The desired accuracy (convergence tolerance) used in the root finding procedure to find the confidence interval. 1e-6 by default.
maxiter	Integer. Maximum number of iterations used in the root finding procedure to find the confidence interval. 10 by default.
nthreads	The number of threads. Can be: a) an integer lower than, or equal to, the max- imum number of threads; b) 0: meaning all available threads will be used; c) a number strictly between 0 and 1 which represents the fraction of all threads to use. The default is to use 1 core.

SSC	An object of class boot_ssc.type obtained with the function boot_ssc. Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "none" You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function.
boot_algo	Character scalar. Either "R" or "WildBootTests.jl". Controls the algorithm em- ployed by boottest(). "R" is the default and implements the cluster bootstrap as in Roodman (2019). "WildBootTests.jl" executes the wild cluster bootstrap via the WildBootTests.jl package. For it to run, Julia and WildBootTests.jl need to be installed. Note that if no cluster is provided, boottest() always defaults to the "lean" algorithm. You can set the employed algorithm globally by using the setBoottest_boot_algo() function.
floattype	Float64 by default. Other option: Float32. Should floating point numbers in Julia be represented as 32 or 64 bit? Only relevant when 'boot_algo = "Wild-BootTests.jl"'
maxmatsize	NULL by default = no limit. Else numeric scalar to set the maximum size of auxilliary weight matrix (v), in gigabytes. Only relevant when 'boot_algo = "WildBootTests.jl"'
bootstrapc	Logical scalar, FALSE by default. TRUE to request bootstrap-c instead of bootstrap-t. Only relevant when 'boot_algo = "WildBootTests.jl"'
t_boot	Logical. Should bootstrapped t-statistics be returned?
getauxweights	Logical. Whether to save auxilliary weight matrix (v)
	Further arguments passed to or from other methods.

Value

An object of class boottest

p_val	The bootstrap p-value.
conf_int	The bootstrap confidence interval.
param	The tested parameter.
Ν	Sample size. Might differ from the regression sample size if the cluster variables contain NA values.
boot_iter	Number of Bootstrap Iterations.
clustid	Names of the cluster Variables.
N_G	Dimension of the cluster variables as used in boottest.
sign_level	Significance level used in boottest.
type	Distribution of the bootstrap weights.
impose_null	Whether the null was imposed on the bootstrap dgp or not.
R	The vector "R" in the null hypothesis of interest Rbeta = r .
r	The scalar "r" in the null hypothesis of interest Rbeta = r.
<pre>point_estimate</pre>	R'beta. A scalar: the constraints vector times the regression coefficients.
grid_vals	All t-statistics calculated while calculating the confidence interval.

p_grid_vals	All p-values calculated while calculating the confidence interval.
t_stat	The 'original' regression test statistics.
t_boot	All bootstrap t-statistics.
regression	The regression object used in boottest.
call	Function call of boottest.
boot_algo	The employed bootstrap algorithm.
nthreads	The number of threads employed.
internal_seed	The integer value -inherited from set.seed() - used within boottest() to set the random seed in either R or Julia. If NULL, no internal seed was created.

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - 1. the lean algorithm (via boot_algo = "R-lean") including the heteroskedastic wild bootstrap
 - 2. the wild cluster bootstrap via boot_algo = "R" with Mammen weights or
 - 3. boot_algo = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

Confidence Intervals

boottest computes confidence intervals by inverting p-values. In practice, the following procedure is used:

- Based on an initial guess for starting values, calculate p-values for 26 equal spaced points between the starting values.
- Out of the 26 calculated p-values, find the two pairs of values x for which the corresponding p-values px cross the significance level sign_level.
- Feed the two pairs of x into an numerical root finding procedure and solve for the root. boottest currently relies on stats::uniroot and sets an absolute tolerance of 1e-06 and stops the procedure after 10 iterations.

Standard Errors

boottest does not calculate standard errors.

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

Examples

```
## Not run:
library(fwildclusterboot)
data(voters)
lm_fit <- lm(proposition_vote ~ treatment + ideology1 + log_income + Q1_immigration,</pre>
  data = voters
)
boot1 <- boottest(lm_fit,</pre>
  B = 9999,
  param = "treatment",
  clustid = "group_id1"
)
boot2 <- boottest(lm_fit,</pre>
  B = 9999,
  param = "treatment",
  clustid = c("group_id1", "group_id2")
)
boot3 <- boottest(lm_fit,</pre>
  B = 9999,
  param = "treatment",
  clustid = c("group_id1", "group_id2"),
  sign_level = 0.2,
  seed = 8,
  r = 2
)
# test treatment + ideology1 = 2
boot4 <- boottest(lm_fit,</pre>
  B = 9999,
  clustid = c("group_id1", "group_id2"),
  param = c("treatment", "ideology1"),
  R = c(1, 1),
  r = 2
)
summary(boot1)
plot(boot1)
## End(Not run)
```

boot_algo1

Fast wild cluster bootstrap algorithm

Description

function that implements the fast bootstrap algorithm as described in Roodman et al (2019)

Usage

```
boot_algo1(
  preprocessed_object,
 boot_iter,
  point_estimate,
  impose_null,
  r,
  sign_level,
 param,
 p_val_type,
 nthreads,
  type,
  full_enumeration,
  small_sample_correction,
 heteroskedastic,
  seed
)
```

Arguments

preprocessed_object		
	A list: output of the preprocess2 function.	
boot_iter	number of bootstrap iterations	
point_estimate	The point estimate of the test parameter from the regression model.	
impose_null	If TRUE, the null is not imposed on the bootstrap distribution. This is what Roodman et al call the "WCU" bootstrap. With impose_null = FALSE, the null is imposed ("WCR").	
r	Shifts the null hypothesis.	
sign_level	The significance level.	
param	name of the test parameter.	
p_val_type	type Type of p-value. By default "two-tailed". Other options: "equal-tailed", ">", "<" $\label{eq:constraint}$	
nthreads	The number of threads. Can be: a) an integer lower than, or equal to, the max- imum number of threads; b) 0: meaning all available threads will be used; c) a number strictly between 0 and 1 which represents the fraction of all threads to use. The default is to use 50\ set permanently the number of threads used within this package using the function	
type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default.	

24

boot_algo2

full_enumeratio	n	
	Is full enumeration employed? Full enum. is used if $N_G^2 < boot_iter$ for	
	Mammen and Rademacher weights	
<pre>small_sample_co</pre>	rrection	
	The small sample correction to be applied. See ssc().	
heteroskedastic		
	$\label{eq:logical-if-transform} Logical \mbox{if-TRUE}, run \mbox{al-ext} a \mbox{beta} bootstrap.$	
seed	Integer scalar. Either set via boottest()'s seed argument or inherited from R's global seed (set via set.seed)	

Value

A list of ...

boot_algo2	Fast wild cluster bootstrap algorithm
------------	---------------------------------------

Description

function that implements the fast bootstrap algorithm as described in Roodman et al (2019)

Usage

```
boot_algo2(
  preprocessed_object,
  boot_iter,
  point_estimate,
  impose_null,
  r,
  sign_level,
  param,
 p_val_type,
  nthreads,
  type,
  full_enumeration,
  small_sample_correction,
 conf_int,
 maxiter,
  tol
)
```

Arguments

preprocessed_object A list: output of the preprocess2 function. boot_iter number of bootstrap iterations

point_estimate	The point estimate of the test parameter from the regression model.
impose_null	If TRUE, the null is not imposed on the bootstrap distribution. This is what Roodman et al call the "WCU" bootstrap. With impose_null = FALSE, the null is imposed ("WCR").
r	Shifts the null hypothesis.
sign_level	The significance level.
param	name of the test parameter.
p_val_type	type Type of p-value. By default "two-tailed". Other options: "equal-tailed", ">", "<" $\label{eq:constraint}$
nthreads	The number of threads. Can be: a) an integer lower than, or equal to, the max- imum number of threads; b) 0: meaning all available threads will be used; c) a number strictly between 0 and 1 which represents the fraction of all threads to use. The default is to use 50\ set permanently the number of threads used within this package using the function
type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default.
full_enumeration	n
	Is full enumeration employed? Full enum. is used if $N_G^2 < boot_iter$ for Mammen and Rademacher weights
<pre>small_sample_cc</pre>	prrection
	The small sample correction to be applied. See ssc().
conf_int	Logical. Should confidence intervals be calculated (by test inversion)?
maxiter	Integer. Maximum number of iterations used in the root finding procedure to find the confidence interval. 10 by default.
tol	Numeric vector of length 1. The desired accuracy (convergence tolerance) used in the root finding procedure to find the confidence interval. 1e-6 by default.

Value

A list of ...

boot_ssc

set the small sample correction factor applied in boottest()

Description

set the small sample correction factor applied in boottest()

Usage

```
boot_ssc(
  adj = TRUE,
  fixef.K = "none",
   cluster.adj = TRUE,
   cluster.df = "conventional"
)
```

Arguments

adj	Logical scalar, defaults to TRUE. If TRUE, applies a small sample correction of $(N-1) / (N-k)$ where N is the number of observations and k is the number of estimated coefficients excluding any fixed effects projected out in either fixest::feols() or lfe::felm().
fixef.K	Character scalar, equal to 'none': the fixed effects parameters are discarded when calculating k in (N-1) / (N-k).
cluster.adj	Logical scalar, defaults to TRUE. If TRUE, a cluster correction $G/(G-1)$ is performed, with G the number of clusters.
cluster.df	Either "conventional"(the default) or "min". Controls how "G" is computed for multiway clustering if cluster.adj = TRUE. Note that the covariance matrix in the multiway clustering case is of the form $V = V_1 + V_2 - V_{12}$. If "conventional", then each summand G_i is multiplied with a small sample adjustment G_i / (G_i - 1). If "min", all summands are multiplied with the same value, min(G) / (min(G) - 1)

Examples

```
boot_ssc(adj = TRUE, cluster.adj = TRUE)
boot_ssc(adj = TRUE, cluster.adj = TRUE, cluster.df = "min")
```

cpp_get_nb_threads Get maximum number of threads on hardware for open mp support

Description

Get maximum number of threads on hardware for open mp support

Usage

cpp_get_nb_threads()

create_data Simulate Data

Description

Function simulates data for tests and examples with clustering variables and fixed-effects.

Usage

```
create_data(N, N_G1, icc1, N_G2, icc2, numb_fe1, numb_fe2, seed, weights)
```

Arguments

Ν	number of observations
N_G1	A scalar. number of clusters for clustering variable 1
icc1	A scalar between 0 and 1. intra-cluster correlation for clustering variable 1
N_G2	A scalar. number of clusters for clustering variable 2
icc2	A scalar between 0 and 1. intra-cluster correlation for clustering variable 2
numb_fe1	A scalar. Number of fixed effect for first factor variable
numb_fe2	A scalar. Number of fixed effect for second factor variable
seed	An integer. Set the random seed
weights	Possible regression weights to be used in estimation

Value

A simulated data.frame with specified numbers of clusters, intra-cluster correlations and dimensionality of fixed effects.

eigenMapMatMult Matrix Multiplication via Eigen

Description

Matrix Multiplication via Eigen

Usage

eigenMapMatMult(A, B, nthreads)

Arguments

A	A matrix.
В	A matrix.
nthreads	Integer. Number of threads to use for matrix multiplication.

Value

A matrix

get_bootstrap_pvalue get bootstrapped p-value based on bootstrapped t-stats

Description

get bootstrapped p-value based on bootstrapped t-stats

Usage

```
get_bootstrap_pvalue(p_val_type, t_stat, t_boot)
```

Arguments

p_val_type	Character vector of length 1. Type of p-value. Options include "two-tailed", 'equal-tailed", ">" and "<".
t_stat	The original t-statistic
t_boot	The bootstrapped t-statistics

Value

A bootstrapped p-value

get_seed	creates an integer based on the global random seed set via set.seed()
	for using set.seed() for controlling rcpp's seed, see this blog post
	http://rorynolan.rbind.io/2018/09/30/rcsetseed/

Description

creates an integer based on the global random seed set via set.seed() for using set.seed() for controlling rcpp's seed, see this blog post http://rorynolan.rbind.io/2018/09/30/rcsetseed/

Usage

get_seed()

get_ssc

Description

Compute small sample adjustment factors

Usage

```
get_ssc(boot_ssc_object, N, k, G, vcov_sign, heteroskedastic = FALSE)
```

Arguments

<pre>boot_ssc_object</pre>	
	An object of type 'boot_ssc.type'
Ν	The number of observations
k	The number of estimated parameters
G	The number of clusters
vcov_sign	A vector that helps create the covariance matrix
heteroskedastic	
	Heteroskedastic wild bootstrap? FALSE by default. If TRUE, cluster adjust- ments via G and vcov_sign will be ignored

Value

A small sample adjustment factor

glance.boottest S3 method to glance at objects of class boottest

Description

S3 method to glance at objects of class boottest

Usage

```
## S3 method for class 'boottest'
glance(x, ...)
```

Arguments

х	object of type boottest
	Further arguments passed to or from other methods.

mboottest

Value

A single row summary "glance" of an object of type boottest - lists characteristics of the input regression model

mboottest	Arbitrary Linear Hypothesis Testing for Regression Models via Wald-
	Tests

Description

mboottest is a S3 method that allows for arbitrary linear hypothesis testing for objects of class lm, fixest, felm

Usage

```
mboottest(object, ...)
```

Arguments

object	An object of type lm, fixest or felm
	other arguments

Value

An object of class mboottest.

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - 1. the lean algorithm (via boot_algo = "R-lean"), 2) the heteroskedastic wild bootstrap
 - 2. the wild cluster bootstrap via boot_algo = "R" with Mammen weights or 4) boot_algo
 = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

See Also

mboottest.lm mboottest.felm mboottest.fixest

<pre>mboottest.felm</pre>	Fast wild cluster bootstrap inference for joint hypotheses for object of
	class felm

Description

mboottest.felm is a S3 method that allows for fast wild cluster bootstrap inference of multivariate hypotheses for objects of class felm by implementing the fast wild bootstrap algorithm developed in Roodman et al., 2019.

Usage

```
## S3 method for class 'felm'
mboottest(
  object,
  clustid,
 Β,
 R,
  r = rep(0, nrow(R)),
 bootcluster = "max",
  fe = NULL,
  seed = NULL,
  type = "rademacher",
  impose_null = TRUE,
  p_val_type = "two-tailed",
  tol = 1e-06,
  floattype = "Float64",
  getauxweights = FALSE,
  teststat_boot = FALSE,
  maxmatsize = NULL,
  bootstrapc = FALSE,
  ssc = boot_ssc(adj = TRUE, fixef.K = "none", cluster.adj = TRUE, cluster.df =
    "conventional"),
  . . .
)
```

mboottest.felm

Arguments

object	An object of class felm
clustid	A character vector or rhs formula containing the names of the cluster variables
В	Integer. The number of bootstrap iterations. When the number of clusters is low, increasing B adds little additional runtime.
R	Hypothesis Vector or Matrix giving linear combinations of coefficients. Must be either a vector of length k or a matrix of dimension $q \ge k$, where q is the number of joint hypotheses and k the number of estimated coefficients.
r	A vector of length q, where q is the number of tested hypotheses. Shifts the null hypothesis H0: param = r vs H1: param != r . If not provided, a vector of zeros of length q.
bootcluster	A character vector or rhs formula of length 1. Specifies the bootstrap clus- tering variable or variables. If more than one variable is specified, then boot- strapping is clustered by the intersections of clustering implied by the listed variables. To mimic the behavior of stata's boottest command, the default is to cluster by the intersection of all the variables specified via the clustid ar- gument, even though that is not necessarily recommended (see the paper by Roodman et al cited below, section 4.2). Other options include "min", where bootstrapping is clustered by the cluster variable with the fewest clusters. Fur- ther, the subcluster bootstrap (MacKinnon & Webb, 2018) is supported - see the vignette("fwildclusterboot", package = "fwildclusterboot") for details.
fe	A character vector or rhs formula of length one which contains the name of the fixed effect to be projected out in the bootstrap. Note: if regression weights are used, fe needs to be NULL.
seed	An integer. Allows to set a random seed. For details, see below.
type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm", "gamma" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default. For the Rademacher and Mammen distribution, if the number of repli- cations B exceeds the number of possible draw ombinations, 2^(#number of clusters), then boottest() will use each possible combination once (enumera- tion).
impose_null	Logical. Controls if the null hypothesis is imposed on the bootstrap dgp or not. Null imposed (WCR) by default. If FALSE, the null is not imposed (WCU)
p_val_type	Character vector of length 1. Type of p-value. By default "two-tailed". Other options include "equal-tailed", ">" and "<".
tol	Numeric vector of length 1. The desired accuracy (convergence tolerance) used in the root finding procedure to find the confidence interval. Relative tolerance of 1e-6 by default.
floattype	Float64 by default. Other option: Float32. Should floating point numbers in Julia be represented as 32 or 64 bit?
getauxweights	Logical. FALSE by default. Whether to save auxilliary weight matrix (v)
teststat_boot	Logical. Should bootstrapped test statistics be returned?

<pre>bootstrapc Logical scalar, FALSE by default. TRUE to request bootstrap-c instead of bootstrap-t ssc An object of class boot_ssc.type obtained with the function boot_ssc. Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "non You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function. Further arguments passed to or from other methods.</pre>	maxmatsize	NULL by default = no limit. Else numeric scalar to set the maximum size of auxilliary weight matrix (v), in gigabytes
<pre>ssc An object of class boot_ssc.type obtained with the function boot_ssc.Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "non You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function. Further arguments passed to or from other methods.</pre>	bootstrapc	Logical scalar, FALSE by default. TRUE to request bootstrap-c instead of bootstrap-t
Further arguments passed to or from other methods.	SSC	An object of class boot_ssc.type obtained with the function boot_ssc. Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "none" You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function.
	••••	Further arguments passed to or from other methods.

Value

An object of class mboottest

p_val	The bootstrap p-value.
Ν	Sample size. Might differ from the regression sample size if the cluster variables contain NA values.
boot_iter	Number of Bootstrap Iterations.
clustid	Names of the cluster Variables.
N_G	Dimension of the cluster variables as used in boottest.
sign_level	Significance level used in boottest.
type	Distribution of the bootstrap weights.
impose_null	Whether the null was imposed on the bootstrap dgp or not.
R	The vector "R" in the null hypothesis of interest Rbeta = r .
r	The scalar "r" in the null hypothesis of interest Rbeta = r .
point_estimate	R'beta. A scalar: the constraints vector times the regression coefficients.
teststat_stat	The 'original' regression test statistics.
teststat_boot	All bootstrap t-statistics.
regression	The regression object used in boottest.
call	Function call of boottest.
boot_algo	The employed bootstrap algorithm.
nthreads	The number of threads employed.
internal_seed	The integer value -inherited from set.seed() - used within boottest() to set the random seed in either R or Julia. If NULL, no internal seed was created.

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - 1. the lean algorithm (via boot_algo = "R-lean") including the heteroskedastic wild bootstrap
 - the wild cluster bootstrap via boot_algo = "R" with Mammen weights or
 boot_algo = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

mboottest.fixest

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

Examples

```
## Not run:
library(lfe)
library(clubSandwich)
R <- clubSandwich::constrain_zero(2:3, coef(lm_fit))
wboottest <-
    mboottest(
        object = lm_fit,
        clustid = "group_id1",
        B = 999,
        R = R
    )
generics::tidy(wboottest)
## End(Not run)
```

mboottest.fixest Fast wild cluster bootstrap inference for joint hypotheses for object of class fixest

Description

mboottest.fixest is a S3 method that allows for fast wild cluster bootstrap inference of multivariate hypotheses for objects of class fixest by implementing the fast wild bootstrap algorithm developed in Roodman et al., 2019.

Usage

```
## S3 method for class 'fixest'
mboottest(
    object,
    clustid,
```

```
Β,
 R,
 r = rep(0, nrow(R)),
 bootcluster = "max",
 fe = NULL,
 seed = NULL,
  type = "rademacher",
  impose_null = TRUE,
 p_val_type = "two-tailed",
  tol = 1e-06,
 floattype = "Float64",
 getauxweights = FALSE,
  teststat_boot = FALSE,
 maxmatsize = NULL,
 bootstrapc = FALSE,
 ssc = boot_ssc(adj = TRUE, fixef.K = "none", cluster.adj = TRUE, cluster.df =
   "conventional"),
  • • •
)
```

Arguments

object	An object of class feols
clustid	A character vector or rhs formula containing the names of the cluster variables
В	Integer. The number of bootstrap iterations. When the number of clusters is low, increasing B adds little additional runtime.
R	Hypothesis Vector or Matrix giving linear combinations of coefficients. Must be either a vector of length k or a matrix of dimension $q \ge k$, where q is the number of joint hypotheses and k the number of estimated coefficients.
r	A vector of length q, where q is the number of tested hypotheses. Shifts the null hypothesis H0: param = r vs H1: param != r . If not provided, a vector of zeros of length q.
bootcluster	A character vector or rhs formula of length 1. Specifies the bootstrap clus- tering variable or variables. If more than one variable is specified, then boot- strapping is clustered by the intersections of clustering implied by the listed variables. To mimic the behavior of stata's boottest command, the default is to cluster by the intersection of all the variables specified via the clustid ar- gument, even though that is not necessarily recommended (see the paper by Roodman et al cited below, section 4.2). Other options include "min", where bootstrapping is clustered by the cluster variable with the fewest clusters. Fur- ther, the subcluster bootstrap (MacKinnon & Webb, 2018) is supported - see the vignette("fwildclusterboot", package = "fwildclusterboot") for details.
fe	A character vector or rhs formula of length one which contains the name of the fixed effect to be projected out in the bootstrap. Note: if regression weights are used, fe needs to be NULL.
seed	An integer. Allows to set a random seed. For details, see below.

36

type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm", "gamma" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default. For the Rademacher and Mammen distribution, if the number of repli- cations B exceeds the number of possible draw ombinations, 2^(#number of clusters), then boottest() will use each possible combination once (enumera- tion).
<pre>impose_null</pre>	Logical. Controls if the null hypothesis is imposed on the bootstrap dgp or not. Null imposed (WCR) by default. If FALSE, the null is not imposed (WCU)
p_val_type	Character vector of length 1. Type of p-value. By default "two-tailed". Other options include "equal-tailed", ">" and "<".
tol	Numeric vector of length 1. The desired accuracy (convergence tolerance) used in the root finding procedure to find the confidence interval. Relative tolerance of 1e-6 by default.
floattype	Float64 by default. Other option: Float32. Should floating point numbers in Julia be represented as 32 or 64 bit?
getauxweights	Logical. FALSE by default. Whether to save auxilliary weight matrix (v)
teststat_boot	Logical. Should bootstrapped test statistics be returned?
maxmatsize	NULL by default = no limit. Else numeric scalar to set the maximum size of auxilliary weight matrix (v), in gigabytes
bootstrapc	Logical scalar, FALSE by default. TRUE to request bootstrap-c instead of bootstrap-t
SSC	An object of class boot_ssc.type obtained with the function boot_ssc. Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "none", You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function.
	Further arguments passed to or from other methods.

Value

An object of class mboottest

p_val	The bootstrap p-value.
Ν	Sample size. Might differ from the regression sample size if the cluster variables contain NA values.
boot_iter	Number of Bootstrap Iterations.
clustid	Names of the cluster Variables.
N_G	Dimension of the cluster variables as used in boottest.
sign_level	Significance level used in boottest.
type	Distribution of the bootstrap weights.
impose_null	Whether the null was imposed on the bootstrap dgp or not.
R	The vector "R" in the null hypothesis of interest Rbeta = r.
r	The scalar "r" in the null hypothesis of interest Rbeta = r .

<pre>point_estimate</pre>	R'beta. A scalar: the constraints vector times the regression coefficients.
teststat_stat	The 'original' regression test statistics.
teststat_boot	All bootstrap t-statistics.
regression	The regression object used in boottest.
call	Function call of boottest.
boot_algo	The employed bootstrap algorithm.
nthreads	The number of threads employed.
internal_seed	The integer value -inherited from set.seed() - used within boottest() to set the random seed in either R or Julia. If NULL, no internal seed was created.

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - the lean algorithm (via boot_algo = "R-lean") including the heteroskedastic wild bootstrap
 - 2. the wild cluster bootstrap via boot_algo = "R" with Mammen weights or
 - 3. boot_algo = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

Examples

```
## Not run:
library(fwildclusterboot)
library(clubSandwich)
R <- clubSandwich::constrain_zero(2:3, coef(lm_fit))
wboottest <-
   mboottest(
       object = lm_fit,
       clustid = "group_id1",
       B = 999,
```

mboottest.1m

```
R = R
)
generics::tidy(wboottest)
## End(Not run)
```

mboottest.lm

Fast wild cluster bootstrap inference of joint hypotheses for object of class lm

Description

mboottest.lm is a S3 method that allows for fast wild cluster bootstrap inference of multivariate hypotheses for objects of class lm by implementing the fast wild bootstrap algorithm developed in Roodman et al., 2019.

Usage

```
## S3 method for class 'lm'
mboottest(
 object,
  clustid,
 Β,
 R,
  r = rep(0, nrow(R)),
  bootcluster = "max",
  seed = NULL,
  type = "rademacher",
  impose_null = TRUE,
  p_val_type = "two-tailed",
  tol = 1e-06,
  floattype = "Float64",
  getauxweights = FALSE,
  teststat_boot = FALSE,
 maxmatsize = NULL,
 bootstrapc = FALSE,
  ssc = boot_ssc(adj = TRUE, fixef.K = "none", cluster.adj = TRUE, cluster.df =
    "conventional"),
  . . .
```

```
)
```

Arguments

object	An object of class lm
clustid	A character vector or rhs formula containing the names of the cluster variables
В	Integer. The number of bootstrap iterations. When the number of clusters is low,
	increasing B adds little additional runtime.

R	Hypothesis Vector or Matrix giving linear combinations of coefficients. Must be either a vector of length k or a matrix of dimension $q x k$, where q is the number of joint hypotheses and k the number of estimated coefficients.
r	A vector of length q, where q is the number of tested hypotheses. Shifts the null hypothesis H0: param = $r vs H1$: param != r . If not provided, a vector of zeros of length q.
bootcluster	A character vector or rhs formula of length 1. Specifies the bootstrap clus- tering variable or variables. If more than one variable is specified, then boot- strapping is clustered by the intersections of clustering implied by the listed variables. To mimic the behavior of stata's boottest command, the default is to cluster by the intersection of all the variables specified via the clustid ar- gument, even though that is not necessarily recommended (see the paper by Roodman et al cited below, section 4.2). Other options include "min", where bootstrapping is clustered by the cluster variable with the fewest clusters. Fur- ther, the subcluster bootstrap (MacKinnon & Webb, 2018) is supported - see the vignette("fwildclusterboot", package = "fwildclusterboot") for details.
seed	An integer. Allows to set a random seed. For details, see below.
type	character or function. The character string specifies the type of boostrap to use: One of "rademacher", "mammen", "norm", "gamma" and "webb". Alternatively, type can be a function(n) for drawing wild bootstrap factors. "rademacher" by default. For the Rademacher and Mammen distribution, if the number of repli- cations B exceeds the number of possible draw ombinations, 2^(#number of clusters), then boottest() will use each possible combination once (enumera- tion).
<pre>impose_null</pre>	Logical. Controls if the null hypothesis is imposed on the bootstrap dgp or not. Null imposed (WCR) by default. If FALSE, the null is not imposed (WCU)
p_val_type	Character vector of length 1. Type of p-value. By default "two-tailed". Other options include "equal-tailed", ">" and "<".
tol	Numeric vector of length 1. The desired accuracy (convergence tolerance) used in the root finding procedure to find the confidence interval. Relative tolerance of 1e-6 by default.
floattype	Float64 by default. Other option: Float32. Should floating point numbers in Julia be represented as 32 or 64 bit?
getauxweights	Logical. FALSE by default. Whether to save auxilliary weight matrix (v)
<pre>teststat_boot</pre>	Logical. Should bootstrapped test statistics be returned?
maxmatsize	NULL by default = no limit. Else numeric scalar to set the maximum size of auxilliary weight matrix (v), in gigabytes
bootstrapc	Logical scalar, FALSE by default. TRUE to request bootstrap-c instead of bootstrap-t
SSC	An object of class boot_ssc.type obtained with the function boot_ssc. Repre- sents how the small sample adjustments are computed. The defaults are adj = TRUE, fixef.K = "none", You can find more details in the help file for boot_ssc(). The function is pur- posefully designed to mimic fixest's ssc function.
	Further arguments passed to or from other methods.

mboottest.lm

Value

An object of class mboottest

p_val	The bootstrap p-value.
Ν	Sample size. Might differ from the regression sample size if the cluster variables contain NA values.
boot_iter	Number of Bootstrap Iterations.
clustid	Names of the cluster Variables.
N_G	Dimension of the cluster variables as used in boottest.
sign_level	Significance level used in boottest.
type	Distribution of the bootstrap weights.
impose_null	Whether the null was imposed on the bootstrap dgp or not.
R	The vector "R" in the null hypothesis of interest Rbeta = r .
r	The scalar "r" in the null hypothesis of interest Rbeta = r.
<pre>point_estimate</pre>	R'beta. A scalar: the constraints vector times the regression coefficients.
teststat_stat	The 'original' regression test statistics.
teststat_boot	All bootstrap t-statistics.
regression	The regression object used in boottest.
call	Function call of boottest.
boot_algo	The employed bootstrap algorithm.
nthreads	The number of threads employed.
internal_seed	The integer value -inherited from set.seed() - used within boottest() to set the random seed in either R or Julia. If NULL, no internal seed was created.

Setting Seeds

To guarantee reproducibility, you can either use boottest()'s seed function argument, or set a global random seed via

- set.seed() when using
 - 1. the lean algorithm (via boot_algo = "R-lean") including the heteroskedastic wild bootstrap
 - 2. the wild cluster bootstrap via boot_algo = "R" with Mammen weights or
 - 3. boot_algo = "WildBootTests.jl"
- dqrng::dqset.seed() when using boot_algo = "R" for Rademacher, Webb or Normal weights

References

Roodman et al., 2019, "Fast and wild: Bootstrap inference in STATA using boottest", The STATA Journal. (https://journals.sagepub.com/doi/full/10.1177/1536867X19830877)

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. "Bootstrap-based improvements for inference with clustered errors." The Review of Economics and Statistics 90.3 (2008): 414-427.

MacKinnon, James G., and Matthew D. Webb. "The wild bootstrap for few (treated) clusters." The Econometrics Journal 21.2 (2018): 114-135.

MacKinnon, James. "Wild cluster bootstrap confidence intervals." L'Actualite economique 91.1-2 (2015): 11-33.

Webb, Matthew D. Reworking wild bootstrap based inference for clustered errors. No. 1315. Queen's Economics Department Working Paper, 2013.

Examples

```
## Not run:
library(clubSandwich)
R <- clubSandwich::constrain_zero(2:3, coef(lm_fit))
wboottest <-
    mboottest(
        object = lm_fit,
        clustid = "group_id1",
        B = 999,
        R = R
     )
generics::tidy(wboottest)
## End(Not run)
```

model_matrix

enhanced model.matrix functionalities

Description

enhanced model.matrix functionalities

Usage

```
model_matrix(object, ...)
```

Arguments

object	An object of class 1m or 'felm"
	Other arguments

42

model_matrix.felm Enhanced model.matrix for objects of type felm

Description

Enhanced model.matrix for objects of type felm

Usage

```
## S3 method for class 'felm'
model_matrix(object, type, collin.rm = TRUE, ...)
```

Arguments

object	An object of class felm
type	'rhs' for right-hand side variables, 'fixef' for fixed effects
collin.rm	Should collinear variables be dropped?
	Other arguments

model_matrix.fixest Enhanced model.matrix for objects of type fixest

Description

Enhanced model.matrix for objects of type fixest

Usage

```
## S3 method for class 'fixest'
model_matrix(object, type, collin.rm = TRUE, ...)
```

Arguments

object	An object of class fixest
type	rhs lhs or fixef
collin.rm	Should collinear variables be dropped?
	Other arguments

model_matrix.lm

Description

Enhanced model.matrix for objects of type Im

Usage

```
## S3 method for class 'lm'
model_matrix(object, collin.rm = TRUE, ...)
```

Arguments

object	An object of class lm
collin.rm	Should collinear variables be dropped?
	Other arguments

plot.boottest	Plot the bootstrap distribu	tion of t-statistics
p100.00000000	1 lot the bootsti up distitot	

Description

Plot the bootstrap distribution of t-statistics

Usage

S3 method for class 'boottest'
plot(x, ...)

Arguments

х	An object of type boottest
	Further arguments passed to or from other methods.

Value

A plot of bootstrap t-statistics under different null hypotheses

preprocess2

Description

preprocess2 is a S3 method that fetches data from several model objectects for use with boottest().

Usage

```
preprocess2(object, ...)
```

Arguments

object	An objectect of type lm, fixest, felm or ivreg
	other arguments

Value

An object of class preprocess2.

setBoottest_boot_algo Sets the bootstrap algo to be run via boottest() and
waldboottest()

Description

Sets the bootstrap algo to be run via boottest() and waldboottest()

Usage

```
setBoottest_boot_algo(boot_algo)
```

Arguments

boot_algo Character scalar. Either 'R' or 'WildBootTests.jl'. Default is 'R'

Value

No return value

summary.boottest

Description

S3 method to summarize objects of class boottest

Usage

```
## S3 method for class 'boottest'
summary(object, digits = 3, ...)
```

Arguments

object	object of type boottest
digits	rounding of output. 3 by default
	Further arguments passed to or from other methods.

Value

Returns result summaries for objects of type boottest

summary.mboottest S3 method to summarize objects of class mboottest

Description

S3 method to summarize objects of class mboottest

Usage

S3 method for class 'mboottest'
summary(object, digits = 3, ...)

Arguments

object	object of type mboottest
digits	rounding of output. 3 by default
	Further arguments passed to or from other methods.

Value

Returns result summaries for objects of type mboottest

tidy.boottest S3 method to summarize objects of class boottest into tidy data.frame

Description

S3 method to summarize objects of class boottest into tidy data.frame

Usage

```
## S3 method for class 'boottest'
tidy(object, ...)
```

Arguments

object	object of type boottest
	Further arguments passed to or from other methods

Value

A tidy data.frame with estimation results for objects of type boottest

tidy.mboottest	S3 method to summarize objects of class mboottest into tidy data.frame
----------------	--

Description

S3 method to summarize objects of class mboottest into tidy data.frame

Usage

S3 method for class 'mboottest'
tidy(object, ...)

Arguments

object	object of type mboottest
•••	Further arguments passed to or from other methods.

Value

A tidy data.frame with estimation results for objects of type mboottest

to_integer

Description

Transform vectors of all types safely to integer vectors

Usage

```
to_integer(vec)
```

Arguments

vec A vector

Value

An integer vector

voters

Random example data set

Description

Random example data set

Usage

data(voters)

Format

An object of class data.frame with 300 rows and 13 columns.

Examples

data(voters)

Index

* datasets voters, 48 .onLoad, 3 boot_algo1, 23 boot_algo2, 25 boot_ssc, 6, 11, 17, 21, 26, 34, 37, 40 boottest, 3 boottest.felm, 4, 4 boottest.fixest, 4, 9 boottest.ivreg, 4, 15 boottest.lm, 4, 19 cpp_get_nb_threads, 27 create_data, 27 eigenMapMatMult, 28 get_bootstrap_pvalue, 29 get_seed, 29 get_ssc, 30glance.boottest, 30mboottest, 31mboottest.felm, 32, 32 mboottest.fixest, 32, 35 mboottest.lm, *32*, 39 model_matrix, 42 model_matrix.felm, 43 model_matrix.fixest, 43 model_matrix.lm, 44 plot.boottest, 44 preprocess2, 45 setBoottest_boot_algo, 45 ssc, 6, 11, 17, 21, 34, 37, 40 summary.boottest, 46 summary.mboottest, 46

tidy.boottest, 47

tidy.mboottest,47
to_integer,48

voters, 48