
On the usage of the gRim package

Søren Højsgaard

gRim version 0.2.9 as of 2022-05-12

Contents

1 Introduction 2

2 Introductory examples 2

2.1 A Discrete Model . 2
2.2 Model specification shortcuts . 4
2.3 Plotting models . 5
2.4 A Continuous Model . 5
2.5 A Mixed Model . 6

3 Model editing - update() 7

4 Testing for conditional independence 8

5 Fundamental methods for inference 10

5.1 Testing for addition and deletion of edges 10
5.2 Finding edges . 12
5.3 Testing several edges . 13

6 Stepwise model selection 13

6.1 Backward search . 13
6.2 Forward search . 14
6.3 Fixing edges/terms in model as part of model selection 15

7 Further topics on models for contingency tables 16

7.1 Adjusting for sparsity . 16
7.2 Dimension of a log–linear model . 17

8 Miscellaneous 17

8.1 The Model Object . 17

1

1 Introduction

The gRim package is an R package for gRaphical interaction models (hence the name). gRim
implements 1) graphical log–linear models for discrete data, that is for contingency tables
and 2) Gaussian graphical models for continuous data (multivariate normal data) and 3)
mixed homogeneous interaction models for mixed data (data consisiting of both discrete
and continuous variables).

The package is at an early stage of development and so is this document.

2 Introductory examples

The main functions for creating models of the various types are:

• Discrete data: The dmod() function creates a hierarchical log–linear model.

• Continuous data: The cmod() function creates a Gaussian graphical model.

• Mixed data: The mmod() function creates a mixed interaction model.

The arguments to the model functions are:

> args(dmod)

function (formula, data, marginal = NULL, interactions = NULL,

fit = TRUE, details = 0, ...)

NULL

> args(cmod)

function (formula, data, marginal = NULL, fit = TRUE, details = 0)

NULL

> args(mmod)

function (formula, data, marginal = NULL, fit = TRUE, details = 0)

NULL

The model objects created by these functions are of the respective classes dModel, cModel
and mModel. All models are also of the class iModel. We focus the presentation on models
for discrete data, but most of the topics we discuss apply to all types of models.

2.1 A Discrete Model

The reinis data from gRbase is a 26 contingency table.

2

> data(reinis)

> str(reinis)

'table' num [1:2, 1:2, 1:2, 1:2, 1:2, 1:2] 44 40 112 67 129 145 12 23 35 12 ...

- attr(*, "dimnames")=List of 6

..$ smoke : chr [1:2] "y" "n"

..$ mental : chr [1:2] "y" "n"

..$ phys : chr [1:2] "y" "n"

..$ systol : chr [1:2] "y" "n"

..$ protein: chr [1:2] "y" "n"

..$ family : chr [1:2] "y" "n"

Models are specified as generating classes. A generating class can be a list or a right–hand–
sided formula. In addition, various model specification shortcuts are available. Some of
these are described in Section 2.2.

The following two specifications of a log–linear model are equivalent:

> data(reinis)

> dm1<-dmod(list(c("smoke","systol"),c("smoke","mental","phys")), data=reinis)

> dm1<-dmod(~smoke:systol + smoke:mental:phys, data=reinis)

> dm1

Model: A dModel with 4 variables

-2logL : 9391.38 mdim : 9 aic : 9409.38

ideviance : 730.47 idf : 5 bic : 9459.05

deviance : 3.80 df : 6

The output reads as follows: -2logL is minus twice the maximized log–likelihood and mdim

is the number of parameters in the model (no adjustments have been made for sparsity
of data). The ideviance and idf gives the deviance and degrees of freedom between the
model and the independence model for the same variables and deviance and df is the
deviance and degrees of freedom between the model and the saturated model for the same
variables.

Section 8.1 describes model objects in more detail. Here we just notice that the generating
class of the model is contained in the slot glist:

Notice that the generating class does not appear directly. However the generating class
can be retrieved using formula() and terms():

3

> formula(dm1)

~smoke * mental * phys + smoke * systol

> str(terms(dm1))

List of 2

$: chr [1:3] "smoke" "mental" "phys"

$: chr [1:2] "smoke" "systol"

A summary of a model is provided by the summary() function:

> summary(dm1)

Length Class Mode

modelinfo 3 -none- list

varNames 4 -none- character

datainfo 1 -none- list

fitinfo 9 -none- list

isFitted 1 -none- logical

.call 3 -none- call

1

2.2 Model specification shortcuts

Below we illustrate various other ways of specifying log–linear models.

• A saturated model can be specified using ~.^. whereas ~.^2 specifies the model with
all–two–factor interactions. Using ~.^1 specifies the independence model.

• If we want, say, at most two–factor interactions in the model we can use the interactions
argument.

• Attention can be restricted to a subset of the variables using the marginal argument.

• Variable names can be abbreviated.

The following models illustrate these abbreviations:

1The summary() method leaves a bit to be desired...

4

> dm2 <- dmod(~.^2, margin=c("smo","men","phy","sys"),

+ data=reinis)

> formula(dm2)

~smoke * mental + smoke * phys + smoke * systol + mental * phys +

mental * systol + phys * systol

> dm3 <- dmod(list(c("smoke", "systol"), c("smoke", "mental", "phys")),

+ data=reinis, interactions=2)

> formula(dm3)

~smoke * mental + smoke * phys + mental * phys + smoke * systol

2.3 Plotting models

There are two methods for plotting the dependence graph of a model: Using iplot() and
plot(). The convention for both methods is that discrete variables are drawn as grey dots
and continuous variables as white dots. 1) iplot() creates an igraph object and plots this.
2) 2) plot() creates a graphNEL object and plots this.

> iplot(dm1)

smoke

mental

phys

systol

2.4 A Continuous Model

For Gaussian models there are at most second order interactions. Hence we may specify
the saturated model in different ways:

5

> data(carcass)

> cm1 <- cmod(~Fat11:Fat12:Fat13, data=carcass)

> cm1 <- cmod(~Fat11:Fat12 + Fat12:Fat13 + Fat11:Fat13, data=carcass)

> cm1

Model: A cModel with 3 variables

-2logL : 4329.16 mdim : 6 aic : 4341.16

ideviance : 886.10 idf : 3 bic : 4364.20

deviance : -0.00 df : 0

2

> iplot(cm1)

Fat11

Fat12

Fat13

2.5 A Mixed Model

> data(milkcomp1)

> mm1 <- mmod(~.^., data=milkcomp1)

> mm1

Model: A mModel with 5 variables

-2logL : 475.92 mdim : 44 aic : 563.92

ideviance : 101.57 idf : 31 bic : 652.24

deviance : 0.00 df : 0

3

> iplot(mm1)

2Harmonize cmod() output with that of dmod()
3Harmonize mmod() output with that of dmod()

6

treat

fat

protein

dm

lactose

3 Model editing - update()

The update() function enables dModel objects to be modified by the addition or deletion
of interaction terms or edges, using the arguments aterm, dterm, aedge or dedge. Some
examples follow:

• Set a marginal saturated model:

> ms <- dmod(~.^., marginal=c("phys","mental","systol","family"), data=reinis)

> formula(ms)

~phys * mental * systol * family

• Delete one edge:

> ms1 <- update(ms, list(dedge=~phys:mental))

> formula(ms1)

~phys * systol * family + mental * systol * family

• Delete two edges:

> ms2<- update(ms, list(dedge=~phys:mental+systol:family))

> formula(ms2)

~phys * systol + phys * family + mental * systol + mental * family

• Delete all edges in a set:

7

> ms3 <- update(ms, list(dedge=~phys:mental:systol))

> formula(ms3)

~systol * family + mental * family + phys * family

• Delete an interaction term

> ms4 <- update(ms, list(dterm=~phys:mental:systol))

> formula(ms4)

~phys * mental * family + phys * systol * family + mental * systol *

family

• Add three interaction terms:

> ms5 <- update(ms, list(aterm=~phys:mental+phys:systol+mental:systol))

> formula(ms5)

~phys * mental * systol * family

• Add two edges:

> ms6 <- update(ms, list(aedge=~phys:mental+systol:family))

> formula(ms6)

~phys * mental * systol * family

A brief explanation of these operations may be helpful. To obtain a hierarchical model
when we delete a term from a model, we must delete any higher-order relatives to the term.
Similarly, when we add an interaction term we must also add all lower-order relatives that
were not already present. Deletion of an edge is equivalent to deleting the corresponding
two-factor term. Let m − e be the result of deleting edge e from a model m. Then the
result of adding e is defined as the maximal model m∗ for which m∗ − e = m.

4 Testing for conditional independence

Tests of general conditional independence hypotheses of the form u⊥⊥ v |W can be per-
formed using the ciTest() function.

8

> cit <- ciTest(reinis, set=c("systol","smoke","family","phys"))

Testing systol _|_ smoke | family phys

Statistic (DEV): 13.045 df: 4 p-value: 0.0111 method: CHISQ

Slice information:

statistic p.value df family phys

1 4.734420 0.029565 1 y y

2 0.003456 0.953121 1 n y

3 7.314160 0.006841 1 y n

4 0.993337 0.318928 1 n n

The general syntax of the set argument is of the form (u, v,W) where u and v are variables
and W is a set of variables. The set argument can also be given as a right–hand sided
formula.

In model terms, the test performed by ciTest() corresponds to the test for removing the
edge {u, v} from the saturated model with variables {u, v}∪W . If we (conceptually) form
a factor S by crossing the factors in W , we see that the test can be formulated as a test
of the conditional independence u⊥⊥ v |S in a three way table. The deviance decomposes
into independent contributions from each stratum:

D = 2
∑

ijs

nijs log
nijs

m̂ijs

=
∑

s

2
∑

ij

nijs log
nijs

m̂ijs

=
∑

s

Ds

where the contribution Ds from the sth slice is the deviance for the independence model
of u and v in that slice. For example,

> cit$slice

statistic p.value df family phys

1 4.734420 0.029565 1 y y

2 0.003456 0.953121 1 n y

3 7.314160 0.006841 1 y n

4 0.993337 0.318928 1 n n

The sth slice is a u× v table {nijs}i=1...u,j=1...v. The number of degrees of freedom corre-
sponding to the test for independence in this slice is

dfs = (#{i : ni·s > 0} − 1)(#{j : n·js > 0} − 1)

where ni·s and n·js are the marginal totals.

An alternative to the asymptotic χ2 test is to determine the reference distribution using
Monte Carlo methods. The marginal totals are sufficient statistics under the null hypoth-
esis, and in a conditional test the test statistic is evaluated in the conditional distribution

9

given the sufficient statistics. Hence one can generate all possible tables with those given
margins, calculate the desired test statistic for each of these tables and then see how ex-
treme the observed test statistic is relative to those of the calculated tables. A Monte Carlo
approximation to this procedure is to randomly generate large number of tables with the
given margins, evaluate the statistic for each simulated table and then see how extreme
the observed test statistic is in this distribution. This is called a Monte Carlo exact test
and it provides a Monte Carlo p–value:

> ciTest(reinis, set=c("systol","smoke","family","phys"), method='MC')

Testing systol _|_ smoke | family phys

Statistic (DEV): 13.045 df: NA p-value: 0.0125 method: MC

Slice information:

statistic n.extreme p.value df family phys

1 4.734420 48 0.0240 NA y y

2 0.003456 1716 0.8580 NA n y

3 7.314160 15 0.0075 NA y n

4 0.993337 577 0.2885 NA n n

5 Fundamental methods for inference

This section describes some fundamental methods for inference in gRim. As basis for the
description consider the following model shown in Fig. 1:

> dm5 <- dmod(~ment:phys:systol+ment:systol:family+phys:systol:smoke,

+ data=reinis)

Model: A dModel with 5 variables

-2logL : 10888.82 mdim : 15 aic : 10918.82

ideviance : 732.29 idf : 10 bic : 11001.59

deviance : 25.59 df : 16

5.1 Testing for addition and deletion of edges

Let M0 be a model and let e = {u, v} be an edge in M0. The candidate model formed by
deleting e from M0 is M1. The testdelete() function can be used to test for deletion of
an edge from a model:

10

mental

phys

systol

family

smoke

Figure 1: A decomposable graphical model for the reinis data.

> testdelete(dm5, ~smoke:systol)

dev: 11.698 df: 2 p.value: 0.00288 AIC(k=2.0): 7.7 edge: smoke:systol

host: systol phys smoke

Notice: Test performed in saturated marginal model

> testdelete(dm5, ~family:systol)

dev: 1.085 df: 2 p.value: 0.58135 AIC(k=2.0): -2.9 edge: family:systol

host: systol family mental

Notice: Test performed in saturated marginal model

In the first case the p–value suggests that the edge can not be deleted. In the second
case the p–value suggests that the edge can be deleted. The reported AIC value is the
difference in AIC between the candidate model and the original model. A negative value
of AIC suggest that the candidate model is to be preferred.

Next, let M0 be a model and let e = {u, v} be an edge not in M0. The candidate model
formed by adding e to M0 is denoted M1. The testadd() function can be used to test
for deletion of an edge from a model:

> testadd(dm5, ~smoke:mental)

dev: 7.797 df: 4 p.value: 0.09930 AIC(k=2.0): -0.2 edge: smoke:mental

host: mental systol phys smoke

Notice: Test performed in saturated marginal model

The p–value suggests that no significant improvedment of the model is obtained by adding
the edge. The reported AIC value is the difference in AIC between the candidate model
and the original model. A negative value of AIC would have suggested that the candidate
model is to be preferred.

11

4

5.2 Finding edges

The getInEdges() function will return a list of all the edges in the dependency graph
G defined by the model. If we set type=’decomposable’ then the edges returned are
as follows: An edge e = {u, v} is returned if G minus the edge e is decomposable. In
connection with model selection this is convenient because it is thereby possibly to restrict
the search to decomposable models.

> ed.in <- getInEdges(ugList(terms(dm5)), type="decomposable")

[,1] [,2]

[1,] "mental" "phys"

[2,] "mental" "family"

[3,] "phys" "smoke"

[4,] "systol" "family"

[5,] "systol" "smoke"

The getOutEdges() function will return a list of all the edges which are not in the de-
pendency graph G defined by the model. If we set type=’decomposable’ then the edges
returned are as follows: An edge e = {u, v} is returned if G plus the edge e is decompos-
able. In connection with model selection this is convenient because it is thereby possibly
to restrict the search to decomposable models.

> ed.out <- getOutEdges(ugList(terms(dm5)), type="decomposable")

[,1] [,2]

[1,] "mental" "smoke"

[2,] "phys" "family"

4A function for testing addition / deletion of more general terms is needed.

12

5.3 Testing several edges

> args(testInEdges)

function (object, edgeMAT = NULL, criterion = "aic", k = 2, alpha = NULL,

headlong = FALSE, details = 1, ...)

NULL

> args(testOutEdges)

function (object, edgeMAT = NULL, criterion = "aic", k = 2, alpha = NULL,

headlong = FALSE, details = 1, ...)

NULL

The functions labelInEdges() and labelOutEdges() will test for deletion of edges and
addition of edges. The default is to use AIC for evaluating each edge. It is possible to
specify the penalty parameter for AIC to being other values than 2 and it is possible to
base the evaluation on significance tests instead of AIC. Setting headlong=TRUE causes the
function to exit once an improvement is found. For example:

> testInEdges(dm5, getInEdges(ugList(terms(dm5)), type="decomposable"),

+ k=log(sum(reinis)))

statistic df p.value aic V1 V2 action

1 686.703 2 0.000e+00 671.667 mental phys -

2 4.693 2 9.572e-02 -10.344 mental family +

3 28.147 2 7.726e-07 13.111 phys smoke -

4 1.085 2 5.813e-01 -13.951 systol family +

5 11.698 2 2.882e-03 -3.338 systol smoke +

6 Stepwise model selection

Two functions are currently available for model selection: backward() and forward().
These functions employ the functions in Section 5.3)

6.1 Backward search

For example, we start with the saturated model and do a backward search.

13

> dm.sat <- dmod(~.^., data=reinis)

> dm.back <- backward(dm.sat)

change.AIC -19.7744 Edge deleted: mental,systol

change.AIC -8.8511 Edge deleted: phys,systol

change.AIC -4.6363 Edge deleted: mental,protein

change.AIC -1.6324 Edge deleted: family,systol

change.AIC -3.4233 Edge deleted: protein,family

change.AIC -0.9819 Edge deleted: phys,family

change.AIC -1.3419 Edge deleted: smoke,family

> iplot(dm.back)

smoke

mental

phys

protein
systol

family

Default is to search among decomposable models if the initial model is decomposable.
Default is also to label all edges (with AIC values); however setting search=’headlong’

will cause the labelling to stop once an improvement has been found.

6.2 Forward search

Forward search works similarly; for example we start from the independence model:

14

> dm.i <- dmod(~.^1, data=reinis)

> dm.forw <- forward(dm.i)

change.AIC 683.9717 Edge added: mental,phys

change.AIC 25.4810 Edge added: phys,smoke

change.AIC 15.9293 Edge added: mental,protein

change.AIC 10.8092 Edge added: protein,systol

change.AIC 2.7316 Edge added: mental,family

change.AIC 1.9876 Edge added: mental,smoke

change.AIC 16.4004 Edge added: smoke,protein

change.AIC 12.5417 Edge added: smoke,systol

> iplot(dm.forw)

mental

smoke

phys

protein

systol

family

6.3 Fixing edges/terms in model as part of model selection

The stepwise model selection can be controlled by fixing specific edges. For example we
can specify edges which are not to be considered in a bacward selection:

15

> fix <- list(c("smoke","phys","systol"), c("systol","protein"))

> fix <- do.call(rbind, unlist(lapply(fix, names2pairs),recursive=FALSE))

> fix

[,1] [,2]

[1,] "phys" "smoke"

[2,] "smoke" "systol"

[3,] "phys" "systol"

[4,] "protein" "systol"

> dm.s3 <- backward(dm.sat, fixin=fix, details=1)

change.AIC -19.7744 Edge deleted: mental,systol

change.AIC -4.6982 Edge deleted: systol,family

change.AIC -6.8301 Edge deleted: protein,family

change.AIC -1.2294 Edge deleted: mental,protein

change.AIC -0.9819 Edge deleted: phys,family

change.AIC -1.3419 Edge deleted: smoke,family

There is an important detail here: The matrix fix specifies a set of edges. Submitting
these in a call to backward does not mean that these edges are forced to be in the model.
It means that those edges in fixin which are in the model will not be removed.

Likewise in forward selection:

> dm.i3 <- forward(dm.i, fixout=fix, details=1)

change.AIC 683.9717 Edge added: mental,phys

change.AIC 15.9293 Edge added: mental,protein

change.AIC 15.4003 Edge added: smoke,protein

change.AIC 8.6638 Edge added: smoke,mental

change.AIC 2.7316 Edge added: mental,family

change.AIC 1.1727 Edge added: phys,protein

Edges in fix will not be added to the model but if they are in the starting model already,
they will remain in the final model.

7 Further topics on models for contingency tables

7.1 Adjusting for sparsity

5

5Comment on adjustment for sparsity in testadd() and testdelete()

16

7.2 Dimension of a log–linear model

The loglinDim() is a general function for finding the dimension of a log–linear model. It
works on the generating class of a model being represented as a list:

> dim_loglin(terms(dm2), reinis)

[1] 10

8 Miscellaneous

8.1 The Model Object

It is worth looking at the information in the model object:

> dm3 <- dmod(list(c("smoke", "systol"), c("smoke", "mental", "phys")),

+ data=reinis)

> names(dm3)

[1] "modelinfo" "varNames" "datainfo" "fitinfo" "isFitted" ".call"

• The model, represented as a list of generators, is

> str(terms(dm3))

List of 2

$: chr [1:3] "smoke" "mental" "phys"

$: chr [1:2] "smoke" "systol"

> str(dm3$glistNUM)

NULL

The numeric representation of the generators refers back to

> dm3$varNames

[1] "smoke" "mental" "phys" "systol"

Notice the model object does not contain a graph object. Graph objects are generated
on the fly when needed.

• Information about the variables etc. is

17

> str(dm3[c("varNames","conNames","conLevels")])

List of 3

$ varNames: chr [1:4] "smoke" "mental" "phys" "systol"

$ NA : NULL

$ NA : NULL

• Finally isFitted is a logical for whether the model is fitted; data is the data (as a
table) and fitinfo consists of fitted values, logL, df etc.

18

