
Package ‘gfpop’
March 10, 2022

Type Package

Title Graph-Constrained Functional Pruning Optimal Partitioning

Version 1.1.0

Maintainer Vincent Runge <vincent.runge@univ-evry.fr>

Description Penalized parametric change-point detection by functional pruning dynamic program-
ming algorithm. The successive means are constrained using a graph structure with edges defin-
ing the nature of the changes These changes can be unconstrained (type std), up or down con-
strained (type up and down) or constrained by a mini-
mal size jump (type abs). The type null means that the graph allows us to stay on the same seg-
ment. To each edge we can associate some additional properties: a mini-
mal gap size, a penalty, some robust parameters (K,a) for biweight (K) and Hu-
ber losses (K and a). The user can also constrain the inferred means to lie between some mini-
mal and maximal values. Data is modeled by a cost with possible use of a robust loss, bi-
weight and Huber (see edge parameters K and a). These costs should have a quadratic, log-
linear or a log-log representation.

License MIT + file LICENSE

Encoding UTF-8

Imports Rcpp (>= 1.0.0)

SystemRequirements C++11

LinkingTo Rcpp

RoxygenNote 7.1.2

Suggests devtools, knitr, data.table, testthat, rmarkdown, ggplot2,
penaltyLearning

Depends R (>= 3.5.0)

NeedsCompilation yes

Author Vincent Runge [aut, cre],
Toby Hocking [aut],
Guillem Rigaill [aut],
Daniel Grose [aut],
Gaetano Romano [aut],
Fatemeh Afghah [aut],
Paul Fearnhead [aut],

1

2 dataGenerator

Michel Koskas [ctb],
Arnaud Liehrmann [ctb]

Repository CRAN

Date/Publication 2022-03-10 16:50:02 UTC

R topics documented:
dataGenerator . 2
Edge . 3
gfpop . 4
graph . 6
itergfpop . 8
Node . 9
paperGraph . 9
plot.gfpop . 10
sdDiff . 11
StartEnd . 12

Index 13

dataGenerator Data Generator

Description

Generating data with a given model = changepoint relative positions + parameters + type of cost +
(standard deviation + gamma decay)

Usage

dataGenerator(
n,
changepoints,
parameters,
type = "mean",
sigma = 1,
gamma = 1,
size = 10

)

Arguments

n number of data points to generate

changepoints vector of positions of the changepoints in (0,1] (last element is always 1).

parameters vector of means for the consecutive segments (same length as changepoints)

Edge 3

type a string defining the cost model to use: "mean", "variance", "poisson", "exp",
"negbin"

sigma a positive number = the standard deviation of the data

gamma a number between 0 and 1 : the coefficient of the exponential decay (by default
= 1 for piecewise constant signals)

size parameter of the rnbinom function

Value

a vector of size n generated by the chosen model

Examples

dataGenerator(500, c(0.3, 0.6, 1), c(1, 2, 3), type = "mean", sigma = 0.5)

dataGenerator(1000, c(0.2, 0.33,0.5, 1), c(4, 0.2, 3,0.5), type = "variance")

dataGenerator(800, c(0.4, 0.8, 1), c(15, 5, 8), type = "mean", gamma = 0.95, sigma = 0.4)

dataGenerator(400, c(0.4, 0.9, 1), c(2, 1.5, 3), type = "poisson")

dataGenerator(1000, c(0.44, 0.86, 1), c(0.5, 0.2, 0.4), type = "negbin", size = 3)

Edge Edge generation

Description

Edge creation for gfpop-R-Package graph

Usage

Edge(
state1,
state2,
type = "null",
decay = 1,
gap = 0,
penalty = 0,
K = Inf,
a = 0

)

4 gfpop

Arguments

state1 a string defining the starting state of the edge

state2 a string defining the ending state of the edge

type a string equal to "null", "std", "up", "down" or "abs". Default type is "null",
the transition to stay on the same segment.

decay a nonnegative number to give the strength of the exponential decay into the
segment

gap a nonnegative number to constrain the size of the gap in the change of state

penalty a nonnegative number. The penality associated to this state transition

K a positive number. Threshold for the Biweight robust loss

a a positive number. Slope for the Huber robust loss

Value

a one-row dataframe with 9 variables

Examples

Edge("Dw", "Up", "up", gap = 1, penalty = 10, K = 3)

Edge(0, 1, "abs", penalty = 2, gap = 1)

Edge(0, 0, "null", penalty = 0, K = 2, a = 1)

Edge("Dw", "Dw", type = "null", decay = 0.997)

gfpop Graph-Constrained Functional Pruning Optimal Partitioning (gfpop)

Description

Functional pruning optimal partitioning with a graph structure to take into account constraints on
consecutive segment parameters. The user has to specify the graph he wants to use (see the graph
function) and a type of cost function. This is the main function of the gfpop package. Its result can
be plotted using the S3 gfpop function gfpop::plot()

Usage

gfpop(data, mygraph, type = "mean", weights = NULL, testMode = FALSE)

gfpop 5

Arguments

data vector of data to segment. For simulation studies, Data can be generated using
gfpop package function gfpop::dataGenerator()

mygraph dataframe of class "graph" to constrain the changepoint inference, see gfpop::graph()

type a string defining the cost model to use: "mean", "variance", "poisson", "exp",
"negbin"

weights vector of weights (positive numbers), same size as data

testMode boolean. FALSE by default. Used to debug the code

Details

The constrained optimization problem for n data points takes the following general form:

Qn = min(withconstraints)(

n∑
t=1

(γ(e[t])(y[t], µ[t]) + β(e[t]))

with data points y[t], edges e[t], edge-dependent penalties β(e[t]) and cost functions γ. The cost
function can take three different forms for parameter x and constants (A, B, C):

• quadratic, with representation Ax2 +Bx+ C with x in R

• log-linear, with representation Ax−Blog(x) + C with x ≥ 0

• log-log, with representation −Alog(x)−Blog(1− x) + C with 0 ≤ x ≤ 1

For each optimization problem, we consider a unique cost representation. However, the User can
define robustness values (K and a) specific to each edge, making the cost function edge-dependent.
We give the atomic form of each of the five available types (for one data point of value y with weight
w)

• "mean" : A = w, B = −2wy, C = wy2

• "variance" : A = wy2, B = w, C = 0

• "poisson" : A = w, B = wy, C = 0

• "exp" : A = wy, B = w, C = 0

• "negbin" : A = w, B = wy, C = 0

Value

a gfpop object = (changepoints,states,forced,parameters,globalCost)

changepoints is the vector of changepoints (we give the last element of each segment)

states is the vector giving the state of each segment

forced is the vector specifying whether the constraints of the graph are active (= TRUE) or not (=
FALSE)

parameters is the vector of successive parameters of each segment

globalCost is a number equal to the total loss: the minimal cost for the optimization problem with
all penalty values excluded

6 graph

See Also

• gfpop::dataGenerator() to generate data for multiple change-point simulations

• gfpop::graph() to create graphs complying with the gfpop function

• gfpop::plot() to plot the gfpop object and visualize inferred changepoints and parameters

Examples

n <- 1000 #data length
EXAMPLE 1 ### updown graph + poisson loss
myData <- dataGenerator(n, c(0.1, 0.3, 0.5, 0.8, 1), c(1, 2, 1, 3, 1), type = "poisson")
myGraph <- graph(penalty = 2 * sdDiff(myData)^2 * log(n), type = "updown")
gfpop(data = myData, mygraph = myGraph, type = "poisson")

EXAMPLE 2 ### relevant graph with min gap = 2 + poisson loss
myData <- dataGenerator(n, c(0.1, 0.3, 0.5, 0.8, 1), c(1, 2, 3, 5, 3), type = "poisson")
myGraph <- graph(type = "relevant", penalty = 2 * log(n), gap = 2)
gfpop(data = myData, mygraph = myGraph, type = "poisson")

EXAMPLE 3 ### std graph with robust loss + variance loss
myData <- dataGenerator(n, c(0.1, 0.3, 0.5, 0.8, 1), c(1, 5, 1, 5, 1), type = "variance")
outliers <- 5 * rbinom(n, 1, 0.05) - 5 * rbinom(n, 1, 0.05)

with robust parameter K
myGraph <- graph(type = "std", penalty = 2 * log(n), K = 10)
gfpop(data = myData + outliers, mygraph = myGraph, type = "variance")

no K
myGraph <- graph(type = "std", penalty = 2 * log(n))
gfpop(data = myData, mygraph = myGraph, type = "variance")

EXAMPLE 4 ### 3-segment graph with mean (Gaussian) loss
myData <- dataGenerator(n, c(0.12, 0.31, 0.53, 0.88, 1), c(1, 2, 0, 1, 2), type = "mean")
outliers <- 5 * rbinom(n, 1, 0.05) - 5 * rbinom(n, 1, 0.05)
gfpop(data = myData + outliers, mygraph = paperGraph(8, penalty = 2 * log(n)), type = "mean")

graph Graph generation

Description

Graph creation using component functions Edge, StartEnd and Node

Usage

graph(
...,
type = "empty",
decay = 1,
gap = 0,
penalty = 0,

graph 7

K = Inf,
a = 0,
all.null.edges = FALSE

)

Arguments

... This is a list of edges definied by functions Edge, StartEnd and Node. See gfpop
functions gfpop::Edge(), gfpop::StartEnd() and gfpop::Node()

type a string equal to "std", "isotonic", "updown" or "relevant" to build a pre-
defined classic graph

decay a nonnegative number to give the strength of the exponential decay into the
segment

gap a nonnegative number to constrain the size of the gap in the change of state

penalty a nonnegative number equals to the common penalty to use for all edges

K a positive number. Threshold for the Biweight robust loss

a a positive number. Slope for the Huber robust loss

all.null.edges a boolean. Add null edges to all nodes automatically

Value

a dataframe with 9 variables : columns are named "state1", "state2", "type", "parameter",
"penalty", "K", "a", "min", "max" with additional "graph" class.

Examples

graph(type = "updown", gap = 1.3, penalty = 5)

graph(Edge("Dw","Dw"),
Edge("Up","Up"),
Edge("Dw","Up","up", gap = 0.5, penalty = 10),
Edge("Up","Dw","down"),
StartEnd("Dw","Dw"),
Node("Dw",0,1),
Node("Up",0,1))

graph(Edge("1", "2", type = "std"),
Edge("2", "3", type = "std"),
Edge("3", "4", type = "std"),
StartEnd(start = "1", end = "4"),
all.null.edges = TRUE)

8 itergfpop

itergfpop Graph-constrained functional pruning optimal partitioning iterated

Description

Functional pruning optimal partitioning with a graph structure to take into account constraints on
consecutive segment parameters. This is an iterated version of the main gfpop function using a
Birgé Massart like penalty

Usage

itergfpop(
data,
mygraph,
type = "mean",
weights = NULL,
iter.max = 100,
D.init = 1

)

Arguments

data vector of data to segment. For simulation studies, Data can be generated using
gfpop package function gfpop::dataGenerator()

mygraph dataframe of class "graph" to constrain the changepoint inference, see gfpop::graph()

type a string defining the cost model to use: "mean", "variance", "poisson", "exp",
"negbin"

weights vector of weights (positive numbers), same size as data

iter.max maximal number of iteration of the gfpop function

D.init initialisation of the number of segments

Value

a gfpop object = (changepoints,states,forced,parameters,globalCost)

changepoints is the vector of changepoints (we give the last element of each segment)

states is the vector giving the state of each segment

forced is the vector specifying whether the constraints of the graph are active (= TRUE) or not (=
FALSE)

parameters is the vector of successive parameters of each segment

globalCost is a number equal to the total loss: the minimal cost for the optimization problem with
all penalty values excluded

Dvect is a vector of integers. The successive tested D in the Birgé Massart penalty until conver-
gence

Node 9

Node Node Values

Description

Constrain the range of values to consider at a node

Usage

Node(state = NULL, min = -Inf, max = Inf)

Arguments

state a string defining the state to constrain

min minimal value for the inferred parameter

max maximal value for the inferred parameter

Value

a dataframe with 9 variables with only state1, min and max defined (not NA).

Examples

Node(state = "s0", min = 0, max = 2)

Node(state = 0, min = -1, max = 1)

Node(state = "positive", min = 0)

Node(state = "mu0", min = 0.5, max = 0.5)

paperGraph Graphs of our paper in JSS

Description

Graphs of our paper in JSS (Journal of Statistical Software)

Usage

paperGraph(nb, penalty = 0, decay = 1, gap = 0, oneValue = 0, K = Inf, a = 0)

10 plot.gfpop

Arguments

nb the number of the Figure in paper

penalty the penalty to use for change-point

decay a nonnegative number to give the strength of the exponential decay into the
segment

gap a nonnegative number to constrain the size of the gap in the change of state

oneValue the value for parameter when we consider the collective anomalies problem

K a positive number. Threshold for the Biweight robust loss

a a positive number. Slope for the Huber robust loss

Value

a dataframe with 9 variables : columns are named "state1", "state2", "type", "parameter",
"penalty", "K", "a", "min", "max" with additional "graph" class.

plot.gfpop plot.gfpop

Description

Plotting inferred segment parameters (the result of gfpop) and data.

Usage

S3 method for class 'gfpop'
plot(x, ..., data, multiple = TRUE)

Arguments

x a gfpop class object

... Other parameters

data the data from which we get the gfpop result

multiple if TRUE we plot data and the model on different graphs. Only with "mean" and
"poisson" cost functions (as in that case the parameter values represent the data
mean value over each segment) we allow the User to plot signal and data on a
single graph.

Value

plot data and the inferred gfpop segments

sdDiff 11

Examples

n <- 1000 #data length
data <- dataGenerator(n, c(0.3, 0.4, 0.7, 0.95, 1), c(1, 3, 1, -1, 4), "mean", sigma = 3)
myGraph <- graph(type = "relevant", gap = 0.5, penalty = 2 * sdDiff(data) ^ 2 * log(n))
g <- gfpop(data, myGraph, type = "mean")
plot(x = g, data = data, multiple = FALSE)

data <- dataGenerator(n, c(0.4, 0.8, 1), c(1, 1.7, 2.3), "exp")
g <- gfpop(data,graph(type = "isotonic", penalty = 2 * sdDiff(data) ^ 2 * log(n)), type = "exp")
plot(x = g, data = data, multiple = TRUE)

data <- dataGenerator(n, c(0.22, 0.75, 1), c(1.4,1,0.8), "poisson")
g <- gfpop(data, paperGraph(8), type = "poisson")
plot(x = g, data = data, multiple = TRUE)

sdDiff sdDiff

Description

sdDiff is a function based on the difference operator (or difference order for HALL method) estimat-
ing the time-series standard deviation. The estimation works for time-series generated by Gaussian
random variables with constant standard deviation and multiple changes in mean. Three estimators
are available:

• HALL : the so-called HALL-estimator of order 3. For more details see: (1990) Asymptotically
optimal difference-based estimation of variance in nonparametric regression. Authors: Hall,
Peter and Kay, JW and Titterinton, DM. Biometrika, pages 521–528

• MAD : the median absolute deviation estimator computed on diff(x)/sqrt(2) with x the
vector of datapoints

• SD : the standard deviation estimator (function sd) computed on diff(x)/sqrt(2) with x the
vector of datapoints

Usage

sdDiff(x, method = "HALL")

Arguments

x vector of datapoints

method Three available methods: "HALL", "MAD" and "SD"

Value

a value equal to the estimated standard deviation

12 StartEnd

Examples

data <- dataGenerator(300, seq(0.1,1,0.1), sample(10), sigma = 2)
sdDiff(data, method = "HALL")
sdDiff(data, method = "MAD")
sdDiff(data, method = "SD")

StartEnd Start and End nodes for the graph

Description

Defining the beginning and ending states of a graph

Usage

StartEnd(start = NULL, end = NULL)

Arguments

start a vector of states. The beginning nodes for the changepoint inference

end a vector of states. The ending nodes for the changepoint inference

Value

dataframe with 9 variables with only state1 and type = "start" or "end" defined (not NA).

Examples

StartEnd(start = "A", end = c("A","B"))

StartEnd(start = 0)

StartEnd(start = 1, end = 1)

StartEnd(start = "v0", end = "v3")

StartEnd(end = "s0")

Index

dataGenerator, 2

Edge, 3

gfpop, 4
gfpop::dataGenerator(), 5, 6, 8
gfpop::Edge(), 7
gfpop::graph(), 5, 6, 8
gfpop::Node(), 7
gfpop::plot(), 4, 6
gfpop::StartEnd(), 7
graph, 6

itergfpop, 8

Node, 9

paperGraph, 9
plot.gfpop, 10

sdDiff, 11
StartEnd, 12

13

	dataGenerator
	Edge
	gfpop
	graph
	itergfpop
	Node
	paperGraph
	plot.gfpop
	sdDiff
	StartEnd
	Index

