
Package ‘ggbraid’
May 17, 2022

Type Package

Title Braid Ribbons in 'ggplot2'

Version 0.2.2

Description A new stat, stat_braid(), that extends the functionality of
geom_ribbon() to correctly fill the area between two alternating lines
(or steps) with two different colors, and a geom, geom_braid(), that
wraps geom_ribbon() and uses stat_braid() by default.

URL https://nsgrantham.github.io/ggbraid/,

https://github.com/nsgrantham/ggbraid/

BugReports https://github.com/nsgrantham/ggbraid/issues/

License MIT + file LICENSE

Depends R (>= 3.4.0)

Imports ggplot2 (>= 3.0.0)

Suggests rmarkdown, knitr, scales, readr, dplyr, tidyr, ggtext, glue,
hms

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

Author Neal Grantham [aut, cre]

Maintainer Neal Grantham <neal@nsgrantham.com>

Repository CRAN

Date/Publication 2022-05-17 10:40:02 UTC

R topics documented:
geom_braid . 2
hoops . 6
temps . 6

1

https://nsgrantham.github.io/ggbraid/
https://github.com/nsgrantham/ggbraid/
https://github.com/nsgrantham/ggbraid/issues/

2 geom_braid

Index 8

geom_braid Braided ribbons

Description

geom_braid() is an extension of geom_ribbon() that uses stat_braid() to correctly fill the area
between two alternating series (lines or steps) with two different colors.

Usage

geom_braid(
mapping = NULL,
data = NULL,
position = "identity",
...,
method = NULL,
na.rm = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_braid(
mapping = NULL,
data = NULL,
geom = "braid",
position = "identity",
...,
method = NULL,
na.rm = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

geom_braid 3

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

method Intersection and imputation method to use to braid the ribbon, accepts NULL,
"line", or "step". For method = NULL, the default, print a message to the con-
sole and use method = "line". For method = "line", silently braid the ribbon
with two series drawn by geom_line() or geom_path(). For method = "step",
silently braid the ribbon with two series drawn by geom_step().

na.rm If NA, the default, missing values are imputed by method. If FALSE, missing
values are kept and appear as gaps in the ribbon. If TRUE, missing values are
removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom Override the default connection with geom_braid().

Value

A ggplot2 layer that can be added to a plot created with ggplot().

Examples

library(ggplot2)

To demonstrate the features of `geom_braid()` we'll use a subset of the
`txhousing` dataset from ggplot2.

tx_long <- with(txhousing, txhousing[city %in% c("Dallas", "Austin"),])
tx_long <- with(tx_long, tx_long[date >= 2008,])
tx_long <- subset(tx_long, select = c(date, city, inventory))

tx_wide <- data.frame(
date = with(tx_long, date[city == "Dallas"]),
dallas = with(tx_long, inventory[city == "Dallas"]),
austin = with(tx_long, inventory[city == "Austin"])

)
tx_wide <- with(tx_wide, tx_wide[date >= 2008,])

p <- ggplot(tx_long, aes(date))

4 geom_braid

p + geom_line(aes(y = inventory, linetype = city))

Use `geom_braid()` to draw a ribbon between the two lines, just as we would
with `geom_ribbon()`.
p +

geom_line(aes(y = inventory, linetype = city)) +
geom_braid(aes(ymin = austin, ymax = dallas), data = tx_wide, alpha = 0.3)

Now fill the ribbon between the two series with different colors depending
on which series is over or under the other. Do so by mapping any of the
following to the `fill` aesthetic:
`austin < dallas`
`austin > dallas`
`austin <= dallas`
`austin >= dallas`
p +

geom_line(aes(y = inventory, linetype = city)) +
geom_braid(
aes(ymin = austin, ymax = dallas, fill = austin > dallas),
data = tx_wide,
method = "line",
alpha = 0.6

)

Alternatively, map `after_stat(braid)` to `fill` which will apply
`ymin < ymax` by default, in this case `austin < dallas`
p +

geom_line(aes(y = inventory, linetype = city)) +
geom_braid(
aes(ymin = austin, ymax = dallas, fill = after_stat(braid)),
data = tx_wide,
method = "line",
alpha = 0.6

)

To braid a ribbon with two series drawn with `geom_step()`, use
`method = "step"` in `geom_braid()`.
p +

geom_step(aes(y = inventory, linetype = city)) +
geom_braid(
aes(ymin = austin, ymax = dallas),
data = tx_wide,
method = "step",
alpha = 0.3

)

p +
geom_step(aes(y = inventory, linetype = city)) +
geom_braid(

aes(ymin = austin, ymax = dallas, fill = austin < dallas),
data = tx_wide,
method = "step",
alpha = 0.6

geom_braid 5

)

How does `geom_braid()` handle missing values? Let's replace some existing
values with `NA`s to demonstrate.

set.seed(42) # for reproducibility

tx_long[sample(1:nrow(tx_long), 20), "inventory"] <- NA

tx_wide <- transform(tx_wide,
dallas = with(tx_long, inventory[city == "Dallas"]),
austin = with(tx_long, inventory[city == "Austin"])

)

p <- ggplot(tx_long, aes(date))

p + geom_line(aes(y = inventory, linetype = city), na.rm = TRUE)

If `na.rm = NA`, the default, `geom_braid()` imputes missing values that
occur between observations in a series.
p +

geom_line(aes(y = inventory, linetype = city), na.rm = TRUE) +
geom_braid(
aes(ymin = austin, ymax = dallas, fill = austin < dallas),
data = tx_wide,
method = "line",
alpha = 0.6

)

If `na.rm = FALSE`, `geom_braid()` keeps the missing values and portrays
them as gaps in the ribbon.
p +

geom_line(aes(y = inventory, linetype = city), na.rm = TRUE) +
geom_braid(
aes(ymin = austin, ymax = dallas, fill = austin < dallas),
data = tx_wide,
method = "line",
alpha = 0.6,
na.rm = FALSE

)

If `na.rm = TRUE`, `geom_braid()` removes the missing values. However,
because this removes rows in `tx_wide` where only one of `austin` and
`dallas` may be missing, the resulting ribbon will likely not match the
lines drawn with `geom_line()` using `tx_long`.
p +

geom_line(aes(y = inventory, linetype = city), na.rm = TRUE) +
geom_braid(
aes(ymin = austin, ymax = dallas, fill = austin < dallas),
data = tx_wide,
method = "line",
alpha = 0.6,
na.rm = TRUE

6 temps

)

Happy braiding!

hoops NBA Finals Game

Description

A dataset containing the points scored during Game 1 of the 2018 National Basketball Association
(NBA) Finals on May 31, 2018 between the Golden State Warriors and the Cleveland Cavaliers.

Usage

hoops

Format

A data frame (specifically a tbl_df) with 129 rows and 3 variables:

time Game time

team Golden State Warriors (GSW) or Cleveland Cavaliers (CLE)

points Points scored, either 1, 2, or 3 (or 0, only in cases to mark the start and end of the game)

Examples

hoops

temps Average Daily Temperatures

Description

A dataset containing daily average temperatures of New York and San Francisco in 2021 as recorded
by the US National Weather Service (NWS) at weather.gov.

Usage

temps

Format

A data frame (specifically a tbl_df) with 730 rows and 3 variables:

city New York or San Francisco

date Date in YYYY-MM-DD format

avg Average temperature in degrees Fahrenheit (°F) rounded to the nearest half degree

temps 7

Details

It is difficult to pull data from the NWS. It does not provide the data via an API and the data it
returns through its point-and-click interface isn’t in plain text format! To make matters worse, you
can only retrieve data from a city one month at a time.

For San Francisco, visit https://www.weather.gov/wrh/climate?wfo=mtr and choose "San Fran-
cisco City, CA", "Daily data for a month", and a month from 2021; for New York, visit https:
//www.weather.gov/wrh/climate?wfo=okx and choose "NY-Central Park Area", "Daily data for
a month", and a month from 2021. Copy and paste the data into spreadsheet software for further
processing.

Examples

temps

https://www.weather.gov/wrh/climate?wfo=mtr
https://www.weather.gov/wrh/climate?wfo=okx
https://www.weather.gov/wrh/climate?wfo=okx

Index

∗ datasets
hoops, 6
temps, 6

aes(), 2
aes_(), 2

borders(), 3

fortify(), 2

geom_braid, 2
ggplot(), 2

hoops, 6

layer(), 3

stat_braid (geom_braid), 2

temps, 6

8

	geom_braid
	hoops
	temps
	Index

