
Package ‘ggeffects’
August 7, 2022

Type Package

Encoding UTF-8

Title Create Tidy Data Frames of Marginal Effects for 'ggplot' from
Model Outputs

Version 1.1.3

Maintainer Daniel Lüdecke <d.luedecke@uke.de>

Description Compute marginal effects and adjusted predictions from statistical
models and returns the result as tidy data frames. These data frames are
ready to use with the 'ggplot2'-package. Effects and predictions can be
calculated for many different models. Interaction terms, splines and
polynomial terms are also supported. The main functions are ggpredict(),
ggemmeans() and ggeffect(). There is a generic plot()-method to plot the
results using 'ggplot2'.

License GPL-3

Depends R (>= 3.4)

Imports graphics, insight (>= 0.17.0), MASS, sjlabelled (>= 1.1.2),
stats

Suggests AER, aod, betareg, brms, clubSandwich, effects (>= 4.1-2),
emmeans (>= 1.4.1), gam, gamlss, gamm4, gee, geepack, ggplot2,
GLMMadaptive, glmmTMB (>= 1.0.0), gridExtra, haven, httr,
knitr, lme4, logistf, magrittr, margins, Matrix, mice,
MCMCglmm, mgcv, nlme, ordinal, parameters, patchwork,
prediction, pscl, quantreg, rmarkdown, rms, robustbase,
rstanarm, rstantools, sandwich, see, sjstats, sjmisc (>=
2.8.2), survey, survival, testthat, VGAM

URL https://strengejacke.github.io/ggeffects/

BugReports https://github.com/strengejacke/ggeffects/issues/

RoxygenNote 7.2.1

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

1

https://strengejacke.github.io/ggeffects/
https://github.com/strengejacke/ggeffects/issues/

2 collapse_by_group

Author Daniel Lüdecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>),
Frederik Aust [ctb] (<https://orcid.org/0000-0003-4900-788X>),
Sam Crawley [ctb] (<https://orcid.org/0000-0002-7847-0411>),
Mattan S. Ben-Shachar [ctb] (<https://orcid.org/0000-0002-4287-4801>)

Repository CRAN

Date/Publication 2022-08-07 13:00:02 UTC

R topics documented:
collapse_by_group . 2
efc . 3
fish . 3
get_title . 4
ggeffect . 5
lung2 . 13
new_data . 13
plot . 14
pool_predictions . 18
pretty_range . 19
residualize_over_grid . 20
values_at . 21
vcov . 22

Index 24

collapse_by_group Collapse raw data by random effect groups

Description

This function extracts the raw data points (i.e. the data that was used to fit the model) and "averages"
(i.e. "collapses") the response variable over the levels of the grouping factor given in collapse.by.
Only works with mixed models.

Usage

collapse_by_group(grid, model, collapse.by = NULL, residuals = FALSE)

Arguments

grid A data frame representing the data grid, or an object of class ggeffects, as
returned by ggpredict() and others.

model The model for which to compute partial residuals. The data grid grid should
match to predictors in the model.

collapse.by Name of the (random effects) grouping factor. Data is collapsed by the levels of
this factor.

https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0003-4900-788X
https://orcid.org/0000-0002-7847-0411
https://orcid.org/0000-0002-4287-4801

efc 3

residuals Logical, if TRUE, collapsed partial residuals instead of raw data by the levels of
the grouping factor.

Value

A data frame with raw data points, averaged over the levels of the given grouping factor from the
random effects. The group level of the random effect is saved in the column "random".

Examples

library(ggeffects)
if (require("lme4", quietly = TRUE)) {

data(efc)
efc$e15relat <- as.factor(efc$e15relat)
efc$c161sex <- as.factor(efc$c161sex)
levels(efc$c161sex) <- c("male", "female")
model <- lmer(neg_c_7 ~ c161sex + (1 | e15relat), data = efc)
me <- ggpredict(model, terms = "c161sex")
head(attributes(me)$rawdata)
collapse_by_group(me, model, "e15relat")

}

efc Sample dataset from the EUROFAMCARE project

Description

A SPSS sample data set, imported with the sjlabelled::read_spss() function.

Examples

Attach EFC-data
data(efc)

Show structure
str(efc)

show first rows
head(efc)

fish Sample data set

Description

A sample data set, used in tests and some examples.

4 get_title

get_title Get titles and labels from data

Description

Get variable and value labels from ggeffects-objects. Functions like ggpredict() or ggeffect()
save information on variable names and value labels as additional attributes in the returned data
frame. This is especially helpful for labelled data (see sjlabelled), since these labels can be used to
set axis labels and titles.

Usage

get_title(x, case = NULL)

get_x_title(x, case = NULL)

get_y_title(x, case = NULL)

get_legend_title(x, case = NULL)

get_legend_labels(x, case = NULL)

get_x_labels(x, case = NULL)

get_complete_df(x, case = NULL)

Arguments

x An object of class ggeffects, as returned by any ggeffects-function; for get_complete_df(),
must be a list of ggeffects-objects.

case Desired target case. Labels will automatically converted into the specified char-
acter case. See ?sjlabelled::convert_case for more details on this argu-
ment.

Value

The titles or labels as character string, or NULL, if variables had no labels; get_complete_df()
returns the input list x as single data frame, where the grouping variable indicates the predicted
values for each term.

Examples

if (require("sjmisc", quietly = TRUE) &&
require("ggplot2", quietly = TRUE) &&
require("effects", quietly = TRUE)) {

data(efc)
efc$c172code <- to_factor(efc$c172code)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)

https://CRAN.R-project.org/package=sjlabelled

ggeffect 5

mydf <- ggpredict(fit, terms = c("c12hour", "c161sex", "c172code"))

ggplot(mydf, aes(x = x, y = predicted, colour = group)) +
stat_smooth(method = "lm") +
facet_wrap(~facet, ncol = 2) +
labs(

x = get_x_title(mydf),
y = get_y_title(mydf),
colour = get_legend_title(mydf)

)

adjusted predictions, a list of data frames (one data frame per term)
eff <- ggeffect(fit)
eff
get_complete_df(eff)

adjusted predictions for education only, and get x-axis-labels
mydat <- eff[["c172code"]]
ggplot(mydat, aes(x = x, y = predicted, group = group)) +

stat_summary(fun = sum, geom = "line") +
scale_x_discrete(labels = get_x_labels(mydat))

}

ggeffect Marginal effects, adjusted predictions and estimated marginal means
from regression models

Description

The ggeffects package computes estimated marginal means (predicted values) for the response, at
the margin of specific values or levels from certain model terms, i.e. it generates predictions by a
model by holding the non-focal variables constant and varying the focal variable(s).

ggpredict() uses predict() for generating predictions, while ggeffect() computes marginal
effects by internally calling effects::Effect() and ggemmeans() uses emmeans::emmeans().
The result is returned as consistent data frame.

Usage

ggeffect(model, terms, ci.lvl = 0.95, ...)

ggemmeans(
model,
terms,
ci.lvl = 0.95,
type = "fe",
typical = "mean",
condition = NULL,

6 ggeffect

back.transform = TRUE,
interval = "confidence",
...

)

ggpredict(
model,
terms,
ci.lvl = 0.95,
type = "fe",
typical = "mean",
condition = NULL,
back.transform = TRUE,
ppd = FALSE,
vcov.fun = NULL,
vcov.type = NULL,
vcov.args = NULL,
interval = "confidence",
...

)

Arguments

model A fitted model object, or a list of model objects. Any model that supports
common methods like predict(), family() or model.frame() should work.
For ggeffect(), any model that is supported by effects should work, and for
ggemmeans(), all models supported by emmeans should work.

terms Character vector (or a formula) with the names of those terms from model, for
which predictions should be displayed. At least one term is required to calculate
effects for certain terms, maximum length is four terms, where the second to
fourth term indicate the groups, i.e. predictions of first term are grouped at the
values or levels of the remaining terms. If terms is missing or NULL, adjusted
predictions for each model term are calculated. It is also possible to define
specific values for terms, at which adjusted predictions should be calculated
(see ’Details’). All remaining covariates that are not specified in terms are held
constant (see ’Details’). See also arguments condition and typical.

ci.lvl Numeric, the level of the confidence intervals. For ggpredict(), use ci.lvl
= NA, if confidence intervals should not be calculated (for instance, due to com-
putation time). Typically, confidence intervals based on the standard errors as
returned by the predict() function are returned, assuming normal distribution
(i.e. +/- 1.96 * SE). See introduction of this vignette for more details.

... For ggpredict(), further arguments passed down to predict(); for ggeffect(),
further arguments passed down to effects::Effect(); and for ggemmeans(),
further arguments passed down to emmeans::emmeans(). If type = "sim", ...
may also be used to set the number of simulation, e.g. nsim = 500.

type Character, only applies for survival models, mixed effects models and/or models
with zero-inflation. Note: For brmsfit-models with zero-inflation component,

https://CRAN.R-project.org/package=effects
https://CRAN.R-project.org/package=emmeans
https://strengejacke.github.io/ggeffects/articles/ggeffects.html

ggeffect 7

there is no type = "zero_inflated" nor type = "zi_random"; predicted val-
ues for MixMod-models from GLMMadaptive with zero-inflation component
always condition on the zero-inflation part of the model (see ’Details’).

"fixed" (or "fe" or "count") Predicted values are conditioned on the fixed
effects or conditional model only (for mixed models: predicted values are
on the population-level and confidence intervals are returned). For instance,
for models fitted with zeroinfl from pscl, this would return the predicted
mean from the count component (without zero-inflation). For models with
zero-inflation component, this type calls predict(..., type = "link")
(however, predicted values are back-transformed to the response scale).

"random" (or "re") This only applies to mixed models, and type = "random"
does not condition on the zero-inflation component of the model. type =
"random" still returns population-level predictions, however, unlike type
= "fixed", intervals also consider the uncertainty in the variance parame-
ters (the mean random effect variance, see Johnson et al. 2014 for details)
and hence can be considered as prediction intervals. For models with zero-
inflation component, this type calls predict(..., type = "link") (how-
ever, predicted values are back-transformed to the response scale).

To get predicted values for each level of the random effects groups, add the
name of the related random effect term to the terms-argument (for more
details, see this vignette).

"zero_inflated" (or "fe.zi" or "zi") Predicted values are conditioned on
the fixed effects and the zero-inflation component. For instance, for mod-
els fitted with zeroinfl from pscl, this would return the predicted re-
sponse (mu*(1-p)) and for glmmTMB, this would return the expected
value mu*(1-p) without conditioning on random effects (i.e. random ef-
fect variances are not taken into account for the confidence intervals). For
models with zero-inflation component, this type calls predict(..., type
= "response"). See ’Details’.

"zi_random" (or "re.zi" or "zero_inflated_random") Predicted values are
conditioned on the zero-inflation component and take the random effects
uncertainty into account. For models fitted with glmmTMB(), hurdle() or
zeroinfl(), this would return the expected value mu*(1-p). For glmmTMB,
prediction intervals also consider the uncertainty in the random effects vari-
ances. This type calls predict(..., type = "response"). See ’Details’.

"zi_prob" (or "zi.prob") Predicted zero-inflation probability. For glmmTMB
models with zero-inflation component, this type calls predict(..., type
= "zlink"); models from pscl call predict(..., type = "zero") and for
GLMMadaptive, predict(..., type = "zero_part") is called.

"simulate" (or "sim") Predicted values and confidence resp. prediction in-
tervals are based on simulations, i.e. calls to simulate(). This type of
prediction takes all model uncertainty into account, including random ef-
fects variances. Currently supported models are objects of class lm, glm,
glmmTMB, wbm, MixMod and merMod. See ... for details on number of sim-
ulations.

"survival" and "cumulative_hazard" (or "surv" and "cumhaz") Applies only

https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html

8 ggeffect

to coxph-objects from the survial-package and calculates the survival prob-
ability or the cumulative hazard of an event.

typical Character vector, naming the function to be applied to the covariates over which
the effect is "averaged". The default is "mean". See ?sjmisc::typical_value
for options.

condition Named character vector, which indicates covariates that should be held constant
at specific values. Unlike typical, which applies a function to the covariates
to determine the value that is used to hold these covariates constant, condition
can be used to define exact values, for instance condition = c(covariate1 =
20, covariate2 = 5). See ’Examples’.

back.transform Logical, if TRUE (the default), predicted values for log- or log-log transformed
responses will be back-transformed to original response-scale.

interval Type of interval calculation, can either be "confidence" (default) or "prediction".
May be abbreviated. Unlike confidence intervals, prediction intervals include
the residual variance (sigma^2). This argument is ignored for mixed models,
as interval = "prediction" is equivalent to type = "random" (and interval
= "confidence" is equivalent to type = "fixed"). Note that prediction in-
tervals are not available for all models, but only for models that work with
insight::get_sigma().

ppd Logical, if TRUE, predictions for Stan-models are based on the posterior predic-
tive distribution (rstantools::posterior_predict()). If FALSE (the default),
predictions are based on posterior draws of the linear predictor (rstantools::posterior_linpred()).

vcov.fun String, indicating the name of the vcov*()-function from the sandwich or clubSandwich-
package, e.g. vcov.fun = "vcovCL", which is used to compute (cluster) ro-
bust standard errors for predictions. If NULL, standard errors (and confidence
intervals) for predictions are based on the standard errors as returned by the
predict()-function. Note that probably not all model objects that work with
ggpredict() are also supported by the sandwich or clubSandwich-package.

vcov.type Character vector, specifying the estimation type for the robust covariance matrix
estimation (see ?sandwich::vcovHC or ?clubSandwich::vcovCR for details).

vcov.args List of named vectors, used as additional arguments that are passed down to
vcov.fun.

Details

Supported Models: A list of supported models can be found at https://github.com/strengejacke/
ggeffects. Support for models varies by function, i.e. although ggpredict(), ggemmeans() and
ggeffect() support most models, some models are only supported exclusively by one of the three
functions.

Difference between ggpredict() and ggeffect() or ggemmeans(): ggpredict() calls predict(),
while ggeffect() calls effects::Effect() and ggemmeans() calls emmeans::emmeans() to
compute predicted values. Thus, effects returned by ggpredict() can be described as conditional
effects (i.e. these are conditioned on certain (reference) levels of factors), while ggemmeans() and
ggeffect() return marginal means, since the effects are "marginalized" (or "averaged") over
the levels of factors. Therefore, ggpredict() and ggeffect() resp. ggemmeans() differ in

https://github.com/strengejacke/ggeffects
https://github.com/strengejacke/ggeffects

ggeffect 9

how factors are held constant: ggpredict() uses the reference level, while ggeffect() and
ggemmeans() compute a kind of "average" value, which represents the proportions of each fac-
tor’s category. Use condition to set a specific level for factors in ggemmeans(), so factors are
not averaged over their categories, but held constant at a given level.

Marginal Effects and Adjusted Predictions at Specific Values: Specific values of model terms
can be specified via the terms-argument. Indicating levels in square brackets allows for selecting
only specific groups or values resp. value ranges. Term name and the start of the levels in brackets
must be separated by a whitespace character, e.g. terms = c("age", "education [1,3]"). Nu-
meric ranges, separated with colon, are also allowed: terms = c("education", "age [30:60]").
The stepsize for range can be adjusted using ‘by‘, e.g. terms = "age [30:60 by=5]".

The terms-argument also supports the same shortcuts as the values-argument in values_at().
So terms = "age [meansd]" would return predictions for the values one standard deviation below
the mean age, the mean age and one SD above the mean age. terms = "age [quart2]" would
calculate predictions at the value of the lower, median and upper quartile of age.

Furthermore, it is possible to specify a function name. Values for predictions will then be trans-
formed, e.g. terms = "income [exp]". This is useful when model predictors were transformed
for fitting the model and should be back-transformed to the original scale for predictions. It is
also possible to define own functions (see this vignette).

Instead of a function, it is also possible to define the name of a variable with specific values,
e.g. to define a vector v = c(1000, 2000, 3000) and then use terms = "income [v]".

You can take a random sample of any size with sample=n, e.g terms = "income [sample=8]",
which will sample eight values from all possible values of the variable income. This option is
especially useful for plotting predictions at certain levels of random effects group levels, where
the group factor has many levels that can be completely plotted. For more details, see this vignette.

Finally, numeric vectors for which no specific values are given, a "pretty range" is calculated
(see pretty_range), to avoid memory allocation problems for vectors with many unique values.
If a numeric vector is specified as second or third term (i.e. if this vector represents a grouping
structure), representative values (see values_at) are chosen (unless other values are specified).
If all values for a numeric vector should be used to compute predictions, you may use e.g. terms
= "age [all]". See also package vignettes.

To create a pretty range that should be smaller or larger than the default range (i.e. if no spe-
cific values would be given), use the n-tag, e.g. terms="age [n=5]" or terms="age [n=12]".
Larger values for n return a larger range of predicted values.

Holding covariates at constant values: For ggpredict(), expand.grid() is called on all
unique combinations of model.frame(model)[, terms] and used as newdata-argument for predict().
In this case, all remaining covariates that are not specified in terms are held constant: Numeric
values are set to the mean (unless changed with the condition or typical-argument), factors are
set to their reference level (may also be changed with condition) and character vectors to their
mode (most common element).

ggeffect() and ggemmeans(), by default, set remaining numeric covariates to their mean value,

https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html
https://strengejacke.github.io/ggeffects/articles/introduction_effectsatvalues.html

10 ggeffect

while for factors, a kind of "average" value, which represents the proportions of each factor’s cat-
egory, is used. For ggemmeans(), use condition to set a specific level for factors so that these
are not averaged over their categories, but held constant at the given level.

Bayesian Regression Models: ggpredict() also works with Stan-models from the rstanarm
or brms-package. The predicted values are the median value of all drawn posterior samples. The
confidence intervals for Stan-models are Bayesian predictive intervals. By default (i.e. ppd =
FALSE), the predictions are based on rstantools::posterior_linpred() and hence have some
limitations: the uncertainty of the error term is not taken into account. The recommendation is to
use the posterior predictive distribution (rstantools::posterior_predict()).

Zero-Inflated and Zero-Inflated Mixed Models with brms: Models of class brmsfit always
condition on the zero-inflation component, if the model has such a component. Hence, there is
no type = "zero_inflated" nor type = "zi_random" for brmsfit-models, because predictions
are based on draws of the posterior distribution, which already account for the zero-inflation part
of the model.

Zero-Inflated and Zero-Inflated Mixed Models with glmmTMB: If model is of class glmmTMB,
hurdle, zeroinfl or zerotrunc, simulations from a multivariate normal distribution (see ?MASS::mvrnorm)
are drawn to calculate mu*(1-p). Confidence intervals are then based on quantiles of these re-
sults. For type = "zi_random", prediction intervals also take the uncertainty in the random-effect
paramters into account (see also Brooks et al. 2017, pp.391-392 for details).

An alternative for models fitted with glmmTMB that take all model uncertainties into account
are simulations based on simulate(), which is used when type = "sim" (see Brooks et al. 2017,
pp.392-393 for details).

MixMod-models from GLMMadaptive: Predicted values for the fixed effects component
(type = "fixed" or type = "zero_inflated") are based on predict(..., type = "mean_subject"),
while predicted values for random effects components (type = "random" or type = "zi_random")
are calculated with predict(..., type = "subject_specific") (see ?GLMMadaptive::predict.MixMod
for details). The latter option requires the response variable to be defined in the newdata-argument
of predict(), which will be set to its typical value (see ?sjmisc::typical_value).

Value

A data frame (with ggeffects class attribute) with consistent data columns:

x the values of the first term in terms, used as x-position in plots.

predicted the predicted values of the response, used as y-position in plots.

std.error the standard error of the predictions. Note that the standard errors are always on the
link-scale, and not back-transformed for non-Gaussian models!

conf.low the lower bound of the confidence interval for the predicted values.

conf.high the upper bound of the confidence interval for the predicted values.

group the grouping level from the second term in terms, used as grouping-aesthetics in plots.

facet the grouping level from the third term in terms, used to indicate facets in plots.

https://CRAN.R-project.org/package=rstanarm
https://CRAN.R-project.org/package=brms

ggeffect 11

The estimated marginal means (predicted values) are always on the response scale!

For proportional odds logistic regression (see ?MASS::polr) resp. cumulative link models (e.g., see
?ordinal::clm), an additional column response.level is returned, which indicates the grouping
of predictions based on the level of the model’s response.

Note that for convenience reasons, the columns for the intervals are always named conf.low and
conf.high, even though for Bayesian models credible or highest posterior density intervals are
returned.

Note

Multinomial Models: polr-, clm-models, or more generally speaking, models with ordinal or
multinominal outcomes, have an additional column response.level, which indicates with which
level of the response variable the predicted values are associated.

Printing Results: The print()-method gives a clean output (especially for predictions by
groups), and indicates at which values covariates were held constant. Furthermore, the print()-
method has the arguments digits and n to control number of decimals and lines to be printed,
and an argument x.lab to print factor-levels instead of numeric values if x is a factor.

Limitations: The support for some models, for example from package MCMCglmm, is rather
experimental and may fail for certain models. If you encounter any errors, please file an issue at
https://github.com/strengejacke/ggeffects/issues.

References

• Brooks ME, Kristensen K, Benthem KJ van, Magnusson A, Berg CW, Nielsen A, et al.
glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized
Linear Mixed Modeling. The R Journal. 2017;9: 378-400.

• Johnson PC, O’Hara RB. 2014. Extension of Nakagawa & Schielzeth’s R2GLMM to random
slopes models. Methods Ecol Evol, 5: 944-946. (doi:10.1111/2041210X.12225)

Examples

library(sjlabelled)
data(efc)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)

ggpredict(fit, terms = "c12hour")
ggpredict(fit, terms = c("c12hour", "c172code"))
ggpredict(fit, terms = c("c12hour", "c172code", "c161sex"))

specified as formula
ggpredict(fit, terms = ~ c12hour + c172code + c161sex)

only range of 40 to 60 for variable 'c12hour'
ggpredict(fit, terms = "c12hour [40:60]")

using "summary()" shows that covariate "neg_c_7" is held
constant at a value of 11.84 (its mean value). To use a

https://github.com/strengejacke/ggeffects/issues
https://doi.org/10.1111/2041-210X.12225

12 ggeffect

different value, use "condition"
ggpredict(fit, terms = "c12hour [40:60]", condition = c(neg_c_7 = 20))

to plot ggeffects-objects, you can use the 'plot()'-function.
the following examples show how to build your ggplot by hand.

Not run:
plot predicted values, remaining covariates held constant
library(ggplot2)
mydf <- ggpredict(fit, terms = "c12hour")
ggplot(mydf, aes(x, predicted)) +

geom_line() +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = .1)

three variables, so we can use facets and groups
mydf <- ggpredict(fit, terms = c("c12hour", "c161sex", "c172code"))
ggplot(mydf, aes(x = x, y = predicted, colour = group)) +

stat_smooth(method = "lm", se = FALSE) +
facet_wrap(~facet, ncol = 2)

select specific levels for grouping terms
mydf <- ggpredict(fit, terms = c("c12hour", "c172code [1,3]", "c161sex"))
ggplot(mydf, aes(x = x, y = predicted, colour = group)) +

stat_smooth(method = "lm", se = FALSE) +
facet_wrap(~facet) +
labs(
y = get_y_title(mydf),
x = get_x_title(mydf),
colour = get_legend_title(mydf)

)

level indication also works for factors with non-numeric levels
and in combination with numeric levels for other variables
data(efc)
efc$c172code <- sjlabelled::as_label(efc$c172code)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
ggpredict(fit, terms = c("c12hour",

"c172code [low level of education, high level of education]",
"c161sex [1]"))

use categorical value on x-axis, use axis-labels, add error bars
dat <- ggpredict(fit, terms = c("c172code", "c161sex"))
ggplot(dat, aes(x, predicted, colour = group)) +

geom_point(position = position_dodge(.1)) +
geom_errorbar(

aes(ymin = conf.low, ymax = conf.high),
position = position_dodge(.1)

) +
scale_x_discrete(breaks = 1:3, labels = get_x_labels(dat))

3-way-interaction with 2 continuous variables
data(efc)
make categorical

lung2 13

efc$c161sex <- as_factor(efc$c161sex)
fit <- lm(neg_c_7 ~ c12hour * barthtot * c161sex, data = efc)
select only levels 30, 50 and 70 from continuous variable Barthel-Index
dat <- ggpredict(fit, terms = c("c12hour", "barthtot [30,50,70]", "c161sex"))
ggplot(dat, aes(x = x, y = predicted, colour = group)) +

stat_smooth(method = "lm", se = FALSE, fullrange = TRUE) +
facet_wrap(~facet) +
labs(
colour = get_legend_title(dat),
x = get_x_title(dat),
y = get_y_title(dat),
title = get_title(dat)

)

or with ggeffects' plot-method
plot(dat, ci = FALSE)
End(Not run)

predictions for polynomial terms
data(efc)
fit <- glm(

tot_sc_e ~ c12hour + e42dep + e17age + I(e17age^2) + I(e17age^3),
data = efc,
family = poisson()

)
ggeffect(fit, terms = "e17age")

lung2 Sample data set

Description

A sample data set, used in tests and examples for survival models. This dataset is originally included
in the survival package, but for convenience reasons it is also available in this package.

new_data Create a data frame from all combinations of predictor values

Description

Create a data frame for the "newdata"-argument that contains all combinations of values from the
terms in questions. Similar to expand.grid(). The terms-argument accepts all shortcuts for rep-
resentative values as in ggpredict().

Usage

new_data(model, terms, typical = "mean", condition = NULL)

data_grid(model, terms, typical = "mean", condition = NULL)

14 plot

Arguments

model A fitted model object.

terms Character vector with the names of those terms from model for which all com-
binations of values should be created.

typical Character vector, naming the function to be applied to the covariates over which
the effect is "averaged". The default is "mean". See ?sjmisc::typical_value
for options.

condition Named character vector, which indicates covariates that should be held constant
at specific values. Unlike typical, which applies a function to the covariates
to determine the value that is used to hold these covariates constant, condition
can be used to define exact values, for instance condition = c(covariate1 =
20, covariate2 = 5). See ’Examples’.

Value

A data frame containing one row for each combination of values of the supplied variables.

Examples

data(efc)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
new_data(fit, c("c12hour [meansd]", "c161sex"))

nd <- new_data(fit, c("c12hour [meansd]", "c161sex"))
pr <- predict(fit, type = "response", newdata = nd)
nd$predicted <- pr
nd

compare to
ggpredict(fit, c("c12hour [meansd]", "c161sex"))

plot Plot ggeffects-objects

Description

A generic plot-method for ggeffects-objects.

Usage

S3 method for class 'ggeffects'
plot(
x,
ci = TRUE,
ci.style = c("ribbon", "errorbar", "dash", "dot"),
facets,

plot 15

add.data = FALSE,
limit.range = FALSE,
residuals = FALSE,
residuals.line = FALSE,
collapse.group = FALSE,
colors = "Set1",
alpha = 0.15,
dodge = 0.25,
use.theme = TRUE,
dot.alpha = 0.35,
jitter = 0.2,
log.y = FALSE,
case = NULL,
show.legend = TRUE,
show.title = TRUE,
show.x.title = TRUE,
show.y.title = TRUE,
dot.size = NULL,
line.size = NULL,
connect.lines = FALSE,
grid,
one.plot = TRUE,
rawdata,
residuals.type,
...

)

theme_ggeffects(base_size = 11, base_family = "")

show_pals()

Arguments

x An object of class ggeffects, as returned by the functions from this package.

ci Logical, if TRUE, confidence bands (for continuous variables at x-axis) resp. er-
ror bars (for factors at x-axis) are plotted.

ci.style Character vector, indicating the style of the confidence bands. May be either
"ribbon", "errorbar", "dash" or "dot", to plot a ribbon, error bars, or dashed
or dotted lines as confidence bands.

facets, grid Logical, defaults to TRUE, if x has a column named facet, and defaults to FALSE,
if x has no such column. Set facets = TRUE to wrap the plot into facets even for
grouping variables (see ’Examples’). grid is an alias for facets.

add.data, rawdata

Logical, if TRUE, a layer with raw data from response by predictor on the x-axis,
plotted as point-geoms, is added to the plot.

limit.range Logical, if TRUE, limits the range of the prediction bands to the range of the data.

16 plot

residuals Logical, if TRUE, a layer with partial residuals is added to the plot. See vignette
"Effect Displays with Partial Residuals" from effects for more details on partial
residual plots.

residuals.line Logical, if TRUE, a loess-fit line is added to the partial residuals plot. Only
applies if residuals is TRUE.

collapse.group For mixed effects models, name of the grouping variable of random effects.
If collapse.group = TRUE, data points "collapsed" by the first random effect
groups are added to the plot. Else, if collapse.group is a name of a group
factor, data is collapsed by that specific random effect. See collapse_by_group
for further details.

colors Character vector with color values in hex-format, valid color value names (see
demo("colors")) or a name of a ggeffects-color-palette. Following options are
valid for colors:

• If not specified, the color brewer palette "Set1" will be used.
• If "gs", a greyscale will be used.
• If "bw", the plot is black/white and uses different line types to distinguish

groups.
• There are some pre-defined color-palettes in this package that can be used,

e.g. colors = "metro". See show_pals() to show all available palettes.
• Else specify own color values or names as vector (e.g. colors = c("#f00000",
"#00ff00")).

alpha Alpha value for the confidence bands.

dodge Value for offsetting or shifting error bars, to avoid overlapping. Only applies, if
a factor is plotted at the x-axis (in such cases, the confidence bands are replaced
by error bars automatically), or if ci.style = "errorbars".

use.theme Logical, if TRUE, a slightly tweaked version of ggplot’s minimal-theme, theme_ggeffects(),
is applied to the plot. If FALSE, no theme-modifications are applied.

dot.alpha Alpha value for data points, when add.data = TRUE.

jitter Numeric, between 0 and 1. If not NULL and add.data = TRUE, adds a small
amount of random variation to the location of data points dots, to avoid over-
plotting. Hence the points don’t reflect exact values in the data. May also be a
numeric vector of length two, to add different horizontal and vertical jittering.
For binary outcomes, raw data is not jittered by default to avoid that data points
exceed the axis limits.

log.y Logical, if TRUE, the y-axis scale is log-transformed. This might be useful for
binomial models with predicted probabilities on the y-axis.

case Desired target case. Labels will automatically converted into the specified char-
acter case. See ?sjlabelled::convert_case for more details on this argu-
ment.

show.legend Logical, shows or hides the plot legend.

show.title Logical, shows or hides the plot title-

show.x.title Logical, shows or hides the plot title for the x-axis.

show.y.title Logical, shows or hides the plot title for the y-axis.

https://cran.r-project.org/package=effects

plot 17

dot.size Numeric, size of the point geoms.

line.size Numeric, size of the line geoms.

connect.lines Logical, if TRUE and plot has point-geoms with error bars (this is usually the
case when the x-axis is discrete), points of same groups will be connected with
a line.

one.plot Logical, if TRUE and x has a panel column (i.e. when four terms were used), a
single, integrated plot is produced.

residuals.type Deprecated. Formally was the residual type. Now is always "working".

... Further arguments passed down to ggplot::scale_y*(), to control the appear-
ance of the y-axis.

base_size Base font size.

base_family Base font family.

Details

For proportional odds logistic regression (see ?MASS::polr) or cumulative link models in general,
plots are automatically facetted by response.level, which indicates the grouping of predictions
based on the level of the model’s response.

Value

A ggplot2-object.

Partial Residuals

For generalized linear models (glms), residualized scores are computed as inv.link(link(Y) +
r) where Y are the predicted values on the response scale, and r are the working residuals.

For (generalized) linear mixed models, the random effect are also partialled out.

Note

Load library(ggplot2) and use theme_set(theme_ggeffects()) to set the ggeffects-theme as
default plotting theme. You can then use further plot-modifiers from sjPlot, like legend_style()
or font_size() without losing the theme-modifications.

There are pre-defined colour palettes in this package. Use show_pals() to show all available colour
palettes.

Examples

library(sjlabelled)
data(efc)
efc$c172code <- as_label(efc$c172code)
fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)

dat <- ggpredict(fit, terms = "c12hour")
plot(dat)

18 pool_predictions

facet by group, use pre-defined color palette
dat <- ggpredict(fit, terms = c("c12hour", "c172code"))
plot(dat, facet = TRUE, colors = "hero")

don't use facets, b/w figure, w/o confidence bands
dat <- ggpredict(fit, terms = c("c12hour", "c172code"))
plot(dat, colors = "bw", ci = FALSE)

factor at x axis, plot exact data points and error bars
dat <- ggpredict(fit, terms = c("c172code", "c161sex"))
plot(dat)

for three variables, automatic facetting
dat <- ggpredict(fit, terms = c("c12hour", "c172code", "c161sex"))
plot(dat)

show all color palettes
show_pals()

pool_predictions Pool Predictions or Estimated Marginal Means

Description

This function "pools" (i.e. combines) multiple ggeffects objects, in a similar fashion as mice::pool().

Usage

pool_predictions(x, ...)

Arguments

x A list of ggeffects objects, as returned by ggpredict, ggemmeans or ggeffect.

... Currently not used.

Details

Averaging of parameters follows Rubin’s rules (Rubin, 1987, p. 76).

Value

A data frame with pooled predictions.

References

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and
Sons.

pretty_range 19

Examples

example for multiple imputed datasets
if (require("mice")) {

data("nhanes2")
imp <- mice(nhanes2, printFlag = FALSE)
predictions <- lapply(1:5, function(i) {
m <- lm(bmi ~ age + hyp + chl, data = complete(imp, action = i))
ggpredict(m, "age")

})
pool_predictions(predictions)

}

pretty_range Create a pretty sequence over a range of a vector

Description

Creates an evenly spaced, pretty sequence of numbers for a range of a vector.

Usage

pretty_range(x, n = NULL, length = NULL)

Arguments

x A numeric vector.

n Numeric value, indicating the size of how many values are used to create a pretty
sequence. If x has a large value range (> 100), n could be something between
1 to 5. If x has a rather small amount of unique values, n could be something
between 10 to 20. If n = NULL, pretty_range() automatically tries to find a
pretty sequence.

length Integer value, as alternative to n, defines the number of intervals to be returned.

Value

A numeric vector with a range corresponding to the minimum and maximum values of x. If x is
missing, a function, pre-programmed with n and length is returned. See examples.

Examples

data(iris)
pretty range for vectors with decimal points
pretty_range(iris$Petal.Length)

pretty range for large range, increasing by 50
pretty_range(1:1000)

increasing by 20

20 residualize_over_grid

pretty_range(1:1000, n = 7)

return 10 intervals
pretty_range(1:1000, length = 10)

same result
pretty_range(1:1000, n = 2.5)

function factory
range_n_5 <- pretty_range(n = 5)
range_n_5(1:1000)

residualize_over_grid Compute partial residuals from a data grid

Description

This function computes partial residuals based on a data grid, where the data grid is usually a data
frame from all combinations of factor variables or certain values of numeric vectors. This data grid
is usually used as newdata argument in predict(), and can be created with new_data.

Usage

residualize_over_grid(grid, model, ...)

S3 method for class 'data.frame'
residualize_over_grid(grid, model, pred_name, type, ...)

S3 method for class 'ggeffects'
residualize_over_grid(grid, model, protect_names = TRUE, ...)

Arguments

grid A data frame representing the data grid, or an object of class ggeffects, as
returned by ggpredict() and others.

model The model for which to compute partial residuals. The data grid grid should
match to predictors in the model.

... Currently not used.

pred_name The name of the focal predictor, for which partial residuals are computed.

type Deprecated. Formally was the residual type. Now is always "working".

protect_names Logical, if TRUE, preserves column names from the ggeffects objects that is
used as grid.

Value

A data frame with residuals for the focal predictor.

values_at 21

Partial Residuals

For generalized linear models (glms), residualized scores are computed as inv.link(link(Y) +
r) where Y are the predicted values on the response scale, and r are the working residuals.

For (generalized) linear mixed models, the random effect are also partialled out.

References

Fox J, Weisberg S. Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor
Effect Plots and Partial Residuals. Journal of Statistical Software 2018;87.

Examples

library(ggeffects)
set.seed(1234)
x <- rnorm(200)
z <- rnorm(200)
quadratic relationship
y <- 2 * x + x^2 + 4 * z + rnorm(200)

d <- data.frame(x, y, z)
model <- lm(y ~ x + z, data = d)

pr <- ggpredict(model, c("x [all]", "z"))
head(residualize_over_grid(pr, model))

values_at Calculate representative values of a vector

Description

This function calculates representative values of a vector, like minimum/maximum values or lower,
median and upper quartile etc., which can be used for numeric vectors to plot marginal effects at
these representative values.

Usage

values_at(x, values = "meansd")

representative_values(x, values = "meansd")

Arguments

x A numeric vector.

values Character vector, naming a pattern for which representative values should be
calculcated.

22 vcov

"minmax" (default) minimum and maximum values (lower and upper bounds)
of the moderator are used to plot the interaction between independent vari-
able and moderator.

"meansd" uses the mean value of the moderator as well as one standard devia-
tion below and above mean value to plot the effect of the moderator on the
independent variable.

"zeromax" is similar to the "minmax" option, however, 0 is always used as
minimum value for the moderator. This may be useful for predictors that
don’t have an empirical zero-value, but absence of moderation should be
simulated by using 0 as minimum.

"quart" calculates and uses the quartiles (lower, median and upper) of the
moderator value, including minimum and maximum value.

"quart2" calculates and uses the quartiles (lower, median and upper) of the
moderator value, excluding minimum and maximum value.

"all" uses all values of the moderator variable. Note that this option only
applies to type = "eff", for numeric moderator values.

Value

A numeric vector of length two or three, representing the required values from x, like minimum/maximum
value or mean and +/- 1 SD. If x is missing, a function, pre-programmed with n and length is re-
turned. See examples.

Examples

data(efc)
values_at(efc$c12hour)
values_at(efc$c12hour, "quart2")

mean_sd <- values_at(values = "meansd")
mean_sd(efc$c12hour)

vcov Calculate variance-covariance matrix for marginal effects

Description

Returns the variance-covariance matrix for the predicted values from object.

Usage

S3 method for class 'ggeffects'
vcov(object, vcov.fun = NULL, vcov.type = NULL, vcov.args = NULL, ...)

vcov 23

Arguments

object An object of class "ggeffects", as returned by ggpredict().

vcov.fun String, indicating the name of the vcov*()-function from the sandwich or clubSandwich-
package, e.g. vcov.fun = "vcovCL", which is used to compute (cluster) ro-
bust standard errors for predictions. If NULL, standard errors (and confidence
intervals) for predictions are based on the standard errors as returned by the
predict()-function. Note that probably not all model objects that work with
ggpredict() are also supported by the sandwich or clubSandwich-package.

vcov.type Character vector, specifying the estimation type for the robust covariance matrix
estimation (see ?sandwich::vcovHC or ?clubSandwich::vcovCR for details).

vcov.args List of named vectors, used as additional arguments that are passed down to
vcov.fun.

... Currently not used.

Details

The returned matrix has as many rows (and columns) as possible combinations of predicted val-
ues from the ggpredict() call. For example, if there are two variables in the terms-argument of
ggpredict() with 3 and 4 levels each, there will be 3*4 combinations of predicted values, so the re-
turned matrix has a 12x12 dimension. In short, nrow(object) is always equal to nrow(vcov(object)).
See also ’Examples’.

Value

The variance-covariance matrix for the predicted values from object.

Examples

data(efc)
model <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc)
result <- ggpredict(model, c("c12hour [meansd]", "c161sex"))

vcov(result)

compare standard errors
sqrt(diag(vcov(result)))
as.data.frame(result)

only two predicted values, no further terms
vcov() returns a 2x2 matrix
result <- ggpredict(model, "c161sex")
vcov(result)

2 levels for c161sex multiplied by 3 levels for c172code
result in 6 combinations of predicted values
thus vcov() returns a 6x6 matrix
result <- ggpredict(model, c("c161sex", "c172code"))
vcov(result)

Index

∗ data
efc, 3
fish, 3
lung2, 13

collapse_by_group, 2, 16

data_grid (new_data), 13

efc, 3
efc_test (efc), 3

fish, 3

get_complete_df (get_title), 4
get_legend_labels (get_title), 4
get_legend_title (get_title), 4
get_title, 4
get_x_labels (get_title), 4
get_x_title (get_title), 4
get_y_title (get_title), 4
ggeffect, 5, 18
ggemmeans, 18
ggemmeans (ggeffect), 5
ggpredict, 18
ggpredict (ggeffect), 5

lung2, 13

new_data, 13, 20

plot, 14
pool_predictions, 18
pretty_range, 9, 19

representative_values (values_at), 21
residualize_over_grid, 20

show_pals (plot), 14
show_pals(), 16

theme_ggeffects (plot), 14

values_at, 9, 21
vcov, 22

24

	collapse_by_group
	efc
	fish
	get_title
	ggeffect
	lung2
	new_data
	plot
	pool_predictions
	pretty_range
	residualize_over_grid
	values_at
	vcov
	Index

