
Package ‘ggetho’
April 29, 2020

Title Visualisation of High-Throughput Behavioural (i.e. Ethomics)
Data

Date 2020-04-29

Version 0.3.6

Description Extension of 'ggplot2' providing layers, scales and preprocessing functions
useful to represent behavioural variables that are recorded over multiple animals and days.
This package is part of the 'rethomics' framework <http://rethomics.github.io/>.

Depends R (>= 3.00), ggplot2, behavr

Imports data.table, stringr, scales, labeling, rlang

Suggests testthat, covr, knitr, zeitgebr

License GPL-3

Encoding UTF-8

LazyData true

URL https://github.com/rethomics/ggetho

BugReports https://github.com/rethomics/ggetho/issues

RoxygenNote 6.1.1

NeedsCompilation no

Author Quentin Geissmann [aut, cre]

Maintainer Quentin Geissmann <qgeissmann@gmail.com>

Repository CRAN

Date/Publication 2020-04-29 19:30:02 UTC

R topics documented:
geom_peak . 2
ggetho . 4
ggperio . 6
ggspectro . 7
id_labeller . 8

1

https://github.com/rethomics/ggetho
https://github.com/rethomics/ggetho/issues

2 geom_peak

stat_bar_tile_etho . 9
stat_ld_annotations . 11
stat_pop_etho . 13
time_scales . 15

Index 18

geom_peak Visualise peaks in a power spectrum or periodogram

Description

This function draws points on the x-y coordinates of selected peaks and write their (y) value on the
bottom of the plot.

Usage

geom_peak(mapping = NULL, data = NULL, stat = "identity",
position = "identity", ..., na.rm = TRUE, show.legend = NA,
inherit.aes = TRUE, peak_rank = 1, conversion = hours)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

geom_peak 3

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

peak_rank numerical vector specifying the rank(s) of peak(s) to draw

conversion function to convert values of x to a specific unit. The default, hours, will write
x (time) in decimal hours.

Details

In the input data, peaks are encoded as an additional column/aesthetic with values corresponding to
peak ranks (and 0 when the point is not a peak). In other word, the mapping must provide x, y and
peak. Only peaks matching peak_rank will be drawn (see example).

Value

A ggplot layer.

References

• The relevant rethomic tutorial section

See Also

• ggperio to create a periodogram

• zeitgebr::find_peaks to automatically add a peak column on periodogram data

Other layers: stat_bar_tile_etho, stat_ld_annotations, stat_pop_etho

Examples

We make a data frame by hand with five rows
There are two peaks: in position 4 and 2

df <- data.frame(x = hours(1:5),
y = c(1, 2, 0, 4, 1),
peak = c(0, 2, 0, 1, 0))

We draw the plot as a line
pl <- ggplot(df, aes(x, y, peak = peak)) +

geom_line() +
scale_x_hours()

pl
Now we could add the peak values as an extra layer:
The first peak
pl + geom_peak()
The first ans second peak
pl + geom_peak(peak_rank = 1:2)
The second only
pl + geom_peak(peak_rank = 2)

Just like with other geoms,
we can change colour, size, alpha, shape, ... :

https://rethomics.github.io/ggetho.html#periodograms

4 ggetho

pl + geom_peak(colour = "red", size = 10, alpha = .5, shape = 20)

In the context of circadian analysis,
Using the zeitgebr package:

require(zeitgebr)
We make toy data
metadata <- data.table(id = sprintf("toy_experiment|%02d", 1:40),

region_id = 1:40,
condition = c("A", "B"),
sex = c("M", "M", "F", "F"))

dt <- toy_activity_data(metadata, seed = 107)
We shift period of the group "A" by 0.01
dt[, t := ifelse(xmv(condition) == "A", t, t * 1.01)]
We compute a periodogram for each individual
per_dt <- periodogram(moving, dt, FUN = chi_sq_periodogram)
per_dt <- find_peaks(per_dt)
out <- ggperio(per_dt, aes(y = power - signif_threshold, colour = condition, peak = peak)) +

stat_pop_etho() +
facet_wrap(~ id, labeller = id_labeller)

out
out + geom_peak(colour="black")

ggetho Prepare a ggplot object to represent behavioural data

Description

This function summarises a variable of interest (y or z axis) in order to subsequently represent it
over time (x axis) (using layers provided either by ggplot2 or ggetho).

Usage

ggetho(data, mapping, summary_FUN = mean,
summary_time_window = mins(30), time_wrap = NULL, time_offset = 0,
multiplot = NULL, multiplot_period = hours(24), ...)

Arguments

data behavr::behavr table containing the data and metadata

mapping default list of aesthetic mappings to use for plot

summary_FUN method (function) used to summarise variable over time (typically, the mean)
summary_time_window

width (in seconds) of the time window to compute a summary on

time_wrap time (in seconds) used to wrap the data (see details)

time_offset time offset (i.e. phase, in seconds) when using time_wrap

ggetho 5

multiplot integer, greater than two, or NULL, the default (see details)
multiplot_period

the duration of the period when mutiplotting (see details)

... additional arguments to be passed to ggplot2::ggplot()

Details

time_wrap is typically used to express time relatively to the start of the the day. In other words,
it can help be used to pull all days together in one representative day. In this case, time_wrap =
hours(24). Instead of representing data from the start of the day, it can be done from any offset,
using time_offset. For instance, time_offset = hours(12) puts the circadian reference (ZT0)
in the middle of the plot.

Multiplotting is a generalisation of double-plotting, triple-plotting... This type or representation
is useful to understand periodic behaviours. When multiplot is not NULL, data is repeated as
many time as its value, along the x axis. The y axis is then the period (typically the day) onset.
It is possible to set duration of the period, which is typically 24 h to arbitrary values using the
multiplot_period argument.

Value

An initial ggplot object that can be further edited.

References

• The relevant rethomic tutorial section

See Also

• stat_pop_etho to show population trend by aggregating individuals over time

• stat_tile_etho to show variable of interest as colour intensity

• stat_ld_annotations to show light and dark phases on the plot

Examples

We start by making a dataset with 20 animals
metadata <- data.table(id = sprintf("toy_experiment|%02d", 1:20),

condition = c("A", "B"))
dt <- toy_activity_data(metadata, 3)
We build a plot object with **nothing inside** (just the axis)
we want to show proportion of time sleeping on the y axis:
pl <- ggetho(dt, aes(y = asleep))
pl
Sometimes, the variable of interest in not on the y axis, but on z axis (colour scale).
When we do not provide a y axis,
ggetho will make an ID fo each animal and display them on separate rows
pl <- ggetho(dt, aes(z = asleep))
pl
this one is the same type, but it groups the animals by condition
pl <- ggetho(dt, aes(z = asleep, y = condition))

https://rethomics.github.io/ggetho.html#the-ggetho-function

6 ggperio

pl
sorting with paste
pl <- ggetho(dt, aes(z = asleep,y = paste(condition, id)))
pl

we want to summarise (wrap) data along a circadian day:
pl <- ggetho(dt, aes(y = asleep), time_wrap = hours(24))
pl

double-plotted actogram:
pl <- ggetho(dt,

aes(z = moving),
multiplot = 2,
multiplot_period = hours(24))

pl
then use `+ stat_tile_etho()` , or `+ stat_bar_tile_etho()`

ggperio Prepare a ggplot object to represent periodogram data

Description

This function summarises periodogram data (containing periodograms of multiple individual), to
show period on the x axis, and power (or equivalent) on the y axis.

Usage

ggperio(data, mapping = aes(x = period, y = power), ...)

Arguments

data behavr::behavr table containing the data and metadata
mapping default list of aesthetic mappings to use for plot
... additional arguments to be passed to ggplot2::ggplot()

Value

An initial ggplot object that can be further edited.

References

• The relevant rethomic tutorial section

See Also

• ggetho to plot time series
• geom_peak to draw peaks on a periodogram
• zeitgebr::periodogram to compute periodograms in a first place
• ggspectro to visualise spectrograms

https://rethomics.github.io/ggetho.html#periodograms

ggspectro 7

Examples

require(zeitgebr)
We make toy data
metadata <- data.table(id = sprintf("toy_experiment|%02d", 1:40),

region_id = 1:40,
condition = c("A", "B"),
sex = c("M", "M", "F", "F"))

dt <- toy_activity_data(metadata, seed = 107)
We shift period of the group "A" by 0.01
dt[, t := ifelse(xmv(condition) == "A", t, t * 1.01)]
We compute a periodogram for each individual
per_dt <- periodogram(moving, dt, FUN = chi_sq_periodogram)

Then we display them as an average
out <- ggperio(per_dt, aes(y = power, colour = condition))
out + stat_pop_etho()

out <- ggperio(per_dt, aes(y = power - signif_threshold, colour = condition))
out + stat_pop_etho()
out <- ggperio(per_dt, aes(y = power - signif_threshold, colour = condition))
out + stat_pop_etho() + facet_wrap(~ id, labeller = id_labeller)

ggspectro Prepare a ggplot object to represent spectrogram data

Description

This function summarises spectrogram data (containing spectrograms of multiple individual), to
show period on the y axis, time on the x axis and power on the z axis (e.g. as a colour).

Usage

ggspectro(data, mapping = aes(), summary_FUN = mean,
summary_time_window = mins(30), time_wrap = NULL, time_offset = 0,
...)

Arguments

data behavr::behavr table containing the data and metadata
mapping default list of aesthetic mappings to use for plot
summary_FUN method (function) used to summarise variable over time (typically, the mean)
summary_time_window

width (in seconds) of the time window to compute a summary on
time_wrap time (in seconds) used to wrap the data (see details)
time_offset time offset (i.e. phase, in seconds) when using time_wrap

... additional arguments to be passed to ggplot2::ggplot()

8 id_labeller

Value

An initial ggplot object that can be further edited.

References

• The relevant rethomic tutorial section

See Also

• ggperio to visualise periodograms

Examples

library(zeitgebr)
data(dams_sample)
dt <- dams_sample
spect_dt <- spectrogram(activity, dt)
pl <- ggspectro(spect_dt,time_wrap = hours(24)) +

stat_tile_etho() +
scale_y_hours(log=TRUE) +
stat_ld_annotations(ld_colours = c("grey","black"))

pl + facet_grid(period_group ~ .)
pl + facet_wrap(~ id)

id_labeller A facet labeller for id

Description

This function returns a ggplot2::labeller that displays the id on several lines to improve readability.

Usage

id_labeller(labels)

Arguments

labels Data frame of labels. Usually contains only one element, but faceting over mul-
tiple factors entails multiple label variables.

See Also

ggplot2::labeller, to make your own labellers

https://rethomics.github.io/ggetho.html#spectrogram

stat_bar_tile_etho 9

Examples

library(behavr)
metadata <- data.frame(

id = sprintf("2017-09-01 20:00:12|toy_experiment_a_very_long_name|%02d", 1:20),
condition = c("A", "B"))

dt <- toy_activity_data(metadata, duration = hours(2))
pl <- ggetho(dt, aes(y = asleep)) + stat_pop_etho()
Without labelling
pl + facet_wrap(~ id)

With labeller
pl + facet_wrap(~ id, labeller = id_labeller)

stat_bar_tile_etho Display a variable of interest either as a colour intensity value or as a
bar height

Description

These functions show the temporal trend (time on the x axis) of a variable of interest (z axis) as
either colour intensity (stat_tile_etho) or using the hight of the tiles (stat_bar_tile_etho). In
both cases, the y axis is a discrete variable such as a treatment or the id of individuals.

Usage

stat_bar_tile_etho(mapping = NULL, data = NULL, geom = "bar_tile",
position = "identity", ..., method = mean, method.args = list(),
na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)

stat_tile_etho(mapping = NULL, data = NULL, geom = "raster",
position = "identity", ..., method = mean, method.args = list(),
na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

10 stat_bar_tile_etho

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

method function used to compute the aggregate, when/if grouping several individuals on
the same row. The default is fucntion is mean. median, min, max are examples
of alternatives.

method.args List of additional arguments passed on to the modelling function defined by
method.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggplot layer.

• The relevant rethomic tutorial section

See Also

• ggetho to generate a plot object

• stat_pop_etho to show population trend by aggregating individuals over time

• stat_ld_annotations to show light and dark phases on the plot

Other layers: geom_peak, stat_ld_annotations, stat_pop_etho

Examples

We start by making a to dataset with 20 animals
metadata <- data.frame(id = sprintf("toy_experiment | %02d", 1:20),

age = c(1, 5, 10, 20),
condition = c("A", "B"))

print(metadata)
dt <- toy_activity_data(metadata, 3)
We build a plot object
pl <- ggetho(dt, aes(z = asleep))
A standard plot one row per animal:
pl + stat_tile_etho()
We can also group animals per condition and calculate the average sleep
pl <- ggetho(dt, aes(z = asleep, y = condition))

https://rethomics.github.io/ggetho.html#tile-plots

stat_ld_annotations 11

pl + stat_tile_etho()

We can sort by adding condition AND id on the y axis:
pl <- ggetho(dt, aes(z = asleep, y = interaction(id, condition)))
pl + stat_tile_etho()
Same if we want to sort by age
pl <- ggetho(dt, aes(z = asleep, y = interaction(id, age)))
pl + stat_tile_etho()

Instead, of the average, maybe we want to show the highest (max)
posible value of sleep for any time point
pl + stat_tile_etho(method = max)
We can also use stat_bar_tile as an alternative
pl + stat_bar_tile_etho()

stat_ld_annotations Compute and display light/dark annotations onto a plot object

Description

This function is used to show light and dark (L and D) phases as boxes on top a plot.

Usage

stat_ld_annotations(mapping = NULL, data = NULL,
position = "identity", ld_colours = c("white", "black"),
ypos = "bottom", height = 0.03, period = hours(24), phase = 0,
l_duration = hours(12), outline = "black", x_limits = c(NA, NA),
..., na.rm = FALSE, show.legend = FALSE, inherit.aes = TRUE)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

12 stat_ld_annotations

ld_colours character vector of length two setting the colours for light and dark phases, re-
spectively. The default is c("white","black").

ypos position and height of the annotation on the y axis. It can be either "top" or
"bottom". The default, "bottom" will put the labels below any data.

height relative height of the rectangles. The default is 3 percent (0.03).
period, phase, l_duration

period, phase and duration of the L phase (in seconds) of the LD cycle.

outline colour of the border of the rectangles. A value of NA draws no border.

x_limits numerical vector of length 2 for the start and end of the annotations (in seconds).
The default, c(NA,NA), uses the full range of the plotted data.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggplot layer.

References

• The relevant rethomic tutorial section

See Also

• ggetho to generate a plot object

Other layers: geom_peak, stat_bar_tile_etho, stat_pop_etho

Examples

library(behavr)
We start by making a to dataset with 20 animals
metadata <- data.frame(id = sprintf("toy_experiment | %02d", 1:20),

condition = c("A", "B"))
dt <- toy_activity_data(metadata, 3)
We build a plot object
pl <- ggetho(dt, aes(y = asleep)) + stat_pop_etho()
pl + stat_ld_annotations()
We can also put the annotations in the background:
pl <- ggetho(dt, aes(y = asleep)) +

https://rethomics.github.io/ggetho.html#ld-annotations

stat_pop_etho 13

stat_ld_annotations(outline = NA) +
stat_pop_etho()

pl
Different colours (e.g. DD)
pl + stat_ld_annotations(ld_colour = c("grey", "black"))
Shorter period
pl + stat_ld_annotations(period = hours(22), phase = hours(3))
On a tile plot:
pl <- ggetho(dt, aes(z = asleep)) + stat_tile_etho()
pl + stat_ld_annotations()

stat_pop_etho Compute and display a population aggregate for a variable of interest

Description

This function displays the temporal (time on the x axis) trend of variable of interest, on the y axis
as a line with confidence interval as a shaded area.

Usage

stat_pop_etho(mapping = NULL, data = NULL, geom = "smooth",
position = "identity", ..., method = mean_se, method.args = list(),
show.legend = NA, inherit.aes = TRUE)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

14 stat_pop_etho

method function used to compute the aggregate and confidence intervals. It should return
(y, ymin and ymax). The default is ggplot2::mean_se, which computes the mean
+ or - standard error. ggplot2::mean_cl_boot can be used instead to generate
bootstrap confidence interval instead.

method.args List of additional arguments passed on to the modelling function defined by
method.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggplot layer.

References

• The relevant rethomic tutorial section

See Also

• ggetho to generate a plot object

• stat_tile_etho to show variable of interest as colour intensity

• stat_ld_annotations to show light and dark phases on the plot

• ggplot2::stat_smooth to understand how to change the type of confidence interval, line colour
and so forth

Other layers: geom_peak, stat_bar_tile_etho, stat_ld_annotations

Examples

library(behavr)
metadata <- data.frame(id = sprintf("toy_experiment | %02d", 1:20),

age=c(1, 5, 10, 20),
condition=c("A", "B"))

dt <- toy_activity_data(metadata, 3)
We build a plot object
pl <- ggetho(dt, aes(y = asleep))
A standard plot of the whole population:
pl + stat_pop_etho()
We can also split by condition, and display the two population on different facets:
pl + stat_pop_etho() + facet_grid(condition ~ .)

Instead, we can use different colour for separate conditions:
pl <- ggetho(dt, aes(y = asleep, colour = condition))
pl + stat_pop_etho()

Sometimes, we also have numeric condition (e.g. age)

https://rethomics.github.io/ggetho.html#population-plots

time_scales 15

pl <- ggetho(dt, aes(y = asleep, colour = age))
pl + stat_pop_etho()
We could want to aggreate several days of data to one circadian day (i.e. time wrapping)
here, we also plot the invert of moving (!moving)
pl <- ggetho(dt, aes(y = !moving), time_wrap = hours(24))
pl + stat_pop_etho()

time_scales Scales for durations

Description

A set of scales used to represent experimental durations.

Usage

scale_x_days(name = "Time", breaks = waiver(),
minor_breaks = waiver(), labels = waiver(), limits = NULL,
expand = waiver(), oob = scales::censor, na.value = NA_real_,
position = "bottom", time_wrap = NULL, unit = "day", log = FALSE)

scale_y_days(name = "Time", breaks = waiver(),
minor_breaks = waiver(), labels = waiver(), limits = NULL,
expand = waiver(), oob = scales::censor, na.value = NA_real_,
position = "left", time_wrap = NULL, unit = "day", log = FALSE)

scale_x_hours(name = "Time", breaks = waiver(),
minor_breaks = waiver(), labels = waiver(), limits = NULL,
expand = waiver(), oob = scales::censor, na.value = NA_real_,
position = "bottom", time_wrap = NULL, unit = "h", log = FALSE)

scale_y_hours(name = "Time", breaks = waiver(),
minor_breaks = waiver(), labels = waiver(), limits = NULL,
expand = waiver(), oob = scales::censor, na.value = NA_real_,
position = "left", time_wrap = NULL, unit = "h", log = FALSE)

scale_x_seconds(name = "Time", breaks = waiver(),
minor_breaks = waiver(), labels = waiver(), limits = NULL,
expand = waiver(), oob = scales::censor, na.value = NA_real_,
position = "bottom", time_wrap = NULL, unit = "s", log = FALSE)

scale_y_seconds(name = "Time", breaks = waiver(),
minor_breaks = waiver(), labels = waiver(), limits = NULL,
expand = waiver(), oob = scales::censor, na.value = NA_real_,
position = "left", time_wrap = NULL, unit = "s", log = FALSE)

16 time_scales

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the breaks specified by date_breaks

• A Date/POSIXct vector giving positions of breaks
• A function that takes the limits as input and returns breaks as output

minor_breaks One of:

• NULL for no breaks
• waiver() for the breaks specified by date_minor_breaks

• A Date/POSIXct vector giving positions of minor breaks
• A function that takes the limits as input and returns minor breaks as output

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new lim-

its

expand Vector of range expansion constants used to add some padding around the data,
to ensure that they are placed some distance away from the axes. Use the con-
venience function ggplot2::expand_scale() to generate the values for the
expand argument. The defaults are to expand the scale by 5% on each side for
continuous variables, and by 0.6 units on each side for discrete variables.

oob Function that handles limits outside of the scale limits (out of bounds). The
default replaces out of bounds values with NA.

na.value Missing values will be replaced with this value.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom"
for horizontal scales

time_wrap duration (in seconds) used to wrap the labels of the time axis

unit the name of unit (string) to be used in the label (e.g. one could use "second"
instead of "s")

log logical, whether axis should be on a log-transformed

Details

time_wrap is useful, for instance, to express time within a day (ZT), instead of absolute time.

time_scales 17

Value

A ggplot scale.

References

• The relevant rethomic tutorial section

See Also

• ggetho to generate a plot object

• ggplot2::scale_x_continuous, the defaut ggplot scale, to understand limits, breaks, labels and
name

Examples

We generate some data
metadata <- data.frame(id = sprintf("toy_experiment | %02d", 1:20),

condition = c("A","B"))
dt <- toy_activity_data(metadata, 3)
Then, a simple plot
pl <- ggetho(dt, aes(y = asleep)) + stat_pop_etho()
pl + scale_x_hours(breaks = days(c(1, 2)))
pl + scale_x_hours()
pl + scale_x_days(breaks = days(c(1, 2)))
pl + scale_x_days()

To express time modulus `time_wrap`
e.g. time n the day
pl + scale_x_hours(time_wrap = hours(24)) +

coord_cartesian(xlim=c(0, days(2)))

On a shorter time scale
pl <- ggetho(dt[t < hours(5)], aes(z = asleep)) + stat_tile_etho()
pl + scale_x_hours()
pl + scale_x_hours(breaks = hours(1:4))
pl + scale_x_seconds(breaks = hours(1:4))

https://rethomics.github.io/ggetho.html#coordinate-and-scales

Index

aes(), 2, 9, 11, 13
aes_(), 2, 9, 11, 13

behavr::behavr, 4, 6, 7
borders(), 3, 10, 12, 14

fortify(), 2, 9, 11, 13

geom_peak, 2, 6, 10, 12, 14
ggetho, 4, 6, 10, 12, 14, 17
ggperio, 3, 6, 8
ggplot(), 2, 9, 11, 13
ggplot2::ggplot(), 5–7
ggplot2::labeller, 8
ggplot2::mean_cl_boot, 14
ggplot2::mean_se, 14
ggplot2::scale_x_continuous, 17
ggplot2::stat_smooth, 14
ggspectro, 6, 7

id_labeller, 8

layer(), 2, 10, 12, 13

max, 10
mean, 10
median, 10
min, 10

scale_x_days (time_scales), 15
scale_x_hours (time_scales), 15
scale_x_seconds (time_scales), 15
scale_y_days (time_scales), 15
scale_y_hours (time_scales), 15
scale_y_seconds (time_scales), 15
stat_bar_tile_etho, 3, 9, 12, 14
stat_ld_annotations, 3, 5, 10, 11, 14
stat_pop_etho, 3, 5, 10, 12, 13
stat_tile_etho, 5, 14
stat_tile_etho (stat_bar_tile_etho), 9

time_scales, 15

zeitgebr::find_peaks, 3
zeitgebr::periodogram, 6

18

	geom_peak
	ggetho
	ggperio
	ggspectro
	id_labeller
	stat_bar_tile_etho
	stat_ld_annotations
	stat_pop_etho
	time_scales
	Index

