Serial axes coordinate is a methodology for visualizing the \(p\)-dimensional geometry and multivariate data. As the name suggested, all axes are shown in serial. The axes can be a finite \(p\) space or transformed to an infinite space (e.g. Fourier transformation).
In the finite \(p\) space, all axes can be displayed in parallel which is known as the parallel coordinate; also, all axes can be displayed under a polar coordinate that is often known as the radial coordinate or radar plot. In the infinite space, a mathematical transformation is often applied. More details will be explained in the sub-section Infinite axes
A point in Euclidean \(p\)-space \(R^p\) is represented as a polyline in serial axes coordinate, it is found that a point <–> line duality is induced in the Euclidean plane \(R^2\) (A. Inselberg and Dimsdale 1990).
Before we start, a couple of things should be noticed:
In the serial axes coordinate system, no x
or y
(even group
) are required; but other aesthetics, such as colour
, fill
, size
, etc, are accommodated.
Layer geom_path
is used to draw the serial lines; layer geom_histogram
, geom_quantiles
, and geom_density
are used to draw the histograms, quantiles (not quantile
regression) and densities. Users can also customize their own layer (i.e. geom_boxplot
, geom_violin
, etc) by editing function add_serialaxes_layers
.
Suppose we are interested in the data set iris
. A parallel coordinate chart can be created as followings:
library(ggmulti)
# parallel axes plot
ggplot(iris,
mapping = aes(
Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = factor(Species))) +
geom_path(alpha = 0.2) +
coord_serialaxes() -> p
p
A histogram layer can be displayed by adding layer geom_histogram
+
p geom_histogram(alpha = 0.3,
mapping = aes(fill = factor(Species))) +
theme(axis.text.x = element_text(angle = 30, hjust = 0.7))
A density layer can be drawn by adding layer geom_density
+
p geom_density(alpha = 0.3,
mapping = aes(fill = factor(Species)))
A parallel coordinate can be converted to radial coordinate by setting axes.layout = "radial"
in function coord_serialaxes
.
$coordinates$axes.layout <- "radial"
p p
Note that: layers, such as geom_histogram
, geom_density
, etc, are not implemented in the radial coordinate yet.
Andrews (1972) plot is a way to project multi-response observations into a function \(f(t)\), by defining \(f(t)\) as an inner product of the observed values of responses and orthonormal functions in \(t\)
\[f_{y_i}(t) = <\mathbf{y}_i, \mathbf{a}_t>\]
where \(\mathbf{y}_i\) is the \(i\)th responses and \(\mathbf{a}_t\) is the orthonormal functions under certain interval. Andrew suggests to use the Fourier transformation
\[\mathbf{a}_t = \{\frac{1}{\sqrt{2}}, \sin(t), \cos(t), \sin(2t), \cos(2t), ...\}\]
which are orthonormal on interval \((-\pi, \pi)\). In other word, we can project a \(p\) dimensional space to an infinite \((-\pi, \pi)\) space. The following figure illustrates how to construct an “Andrew’s plot.”
<- ggplot(iris,
p mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = Species)) +
geom_path(alpha = 0.2,
stat = "dotProduct") +
coord_serialaxes()
p
A quantile layer can be displayed on top
+
p geom_quantiles(stat = "dotProduct",
quantiles = c(0.25, 0.5, 0.75),
size = 2,
linetype = 2)
A couple of things should be noticed:
mapping aesthetics is used to define the \(p\) dimensional space, if not provided, all columns in the dataset ‘iris’ will be transformed. An alternative way to determine the \(p\) dimensional space to set parameter axes.sequence
in each layer or in coord_serialaxes
.
To construct a dot product serial axes plot, say Fourier transformation, “Andrew’s plot,” we need to set the parameter stat
in geom_path
to “dotProduct.” The default transformation function is the Andrew’s (function andrews
). Users can customize their own, for example, Tukey suggests the following projected space
\[\mathbf{a}_t = \{\cos(t), \cos(\sqrt{2}t), \cos(\sqrt{3}t), \cos(\sqrt{5}t), ...\}\]
where \(t \in [0, k\pi]\) (Gnanadesikan 2011).
<- function(p = 4, k = 50 * (p - 1), ...) {
tukey <- seq(0, p* base::pi, length.out = k)
t <- seq(p)
seq_k <- sapply(seq_k,
values function(i) {
if(i == 1) return(cos(t))
if(i == 2) return(cos(sqrt(2) * t))
<- seq_k[i - 1] + seq_k[i - 2]
Fibonacci cos(sqrt(Fibonacci) * t)
})list(
vector = t,
matrix = matrix(values, nrow = p, byrow = TRUE)
)
}ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = Species)) +
geom_path(alpha = 0.2, stat = "dotProduct", transform = tukey) +
coord_serialaxes()
Note that: Tukey’s suggestion, element \(\mathbf{a}_t\) can “cover” more spheres in \(p\) dimensional space, but it is not orthonormal.
Rather than calling function coord_serialaxes
, an alternative way to create a serial axes object is to add a geom_serialaxes_...
object in our model.
For example, Figure 1 to 4 can be created by calling
<- ggplot(iris,
g mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Petal.Length = Petal.Length,
Petal.Width = Petal.Width,
colour = Species))
+ geom_serialaxes(alpha = 0.2)
g +
g geom_serialaxes(alpha = 0.2) +
geom_serialaxes_hist(mapping = aes(fill = Species), alpha = 0.2)
+
g geom_serialaxes(alpha = 0.2) +
geom_serialaxes_density(mapping = aes(fill = Species), alpha = 0.2)
# radial axes can be created by
# calling `coord_radial()`
# this is slightly different, check it out!
+
g geom_serialaxes(alpha = 0.2) +
geom_serialaxes(alpha = 0.2) +
coord_radial()
Figure 5 and 7 can be created by setting “stat” and “transform” in geom_serialaxes
; to Figure 6, geom_serialaxes_quantile
can be added to create a serial axes quantile layer.
Some slight difference should be noticed here:
One benefit of calling coord_serialaxes
rather than geom_serialaxes_...
is that coord_serialaxes
can accommodate duplicated axes in mapping aesthetics (e.g. Eulerian path, Hamiltonian path, etc). However, in geom_serialaxes_...
, duplicated axes will be omitted.
Meaningful axes labels in coord_serialaxes
can be created automatically, while in geom_serialaxes_...
, users have to set axes labels by ggplot2::scale_x_continuous
or ggplot2::scale_y_continuous
manually.
As we turn the serial axes into interactive graphics (via package loon.ggplot), serial axes lines in coord_serialaxes()
could be turned as interactive but in geom_serialaxes_...
all objects are static.
# The serial axes is `Sepal.Length`, `Sepal.Width`, `Sepal.Length`
# With meaningful labels
ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Sepal.Length = Sepal.Length)) +
geom_path() +
coord_serialaxes()
# The serial axes is `Sepal.Length`, `Sepal.Length`
# No meaningful labels
ggplot(iris,
mapping = aes(Sepal.Length = Sepal.Length,
Sepal.Width = Sepal.Width,
Sepal.Length = Sepal.Length)) +
geom_serialaxes()
Also, if the dimension of data is large, typing each variate in mapping aesthetics is such a headache. Parameter axes.sequence
is provided to determine the axes. For example, a serialaxes
object can be created as
ggplot(iris) +
geom_path() +
coord_serialaxes(axes.sequence = colnames(iris)[-5])
At very end, please report bugs here. Enjoy the high dimensional visualization! “Don’t panic… Just do it in ‘serial’” (Alfred Inselberg 1999).