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Abstract

This vignette introduces the glmertree package for fitting generalized linear mixed-
effects model trees (GLMM trees or glmertrees). In hands-on examples based on artificial
datasets, emphasis is given to three special cases of fitting GLMM trees: trees with con-
stant fits in the terminal nodes (Section 2), detection of treatment-subgroup interactions
(Section 3), and subgroup detection in longitudinal growth curve models (Section 4).
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1. Introduction

Generalized linear mixed-effects model trees (GLMM trees or glmertrees) have initially been
proposed by Fokkema, Smits, Zeileis, Hothorn, and Kelderman (2018) for detecting treatment-
subgroup interactions in clustered datasets. However, GLMM trees may be used to address a
wider range of research questions. Using hands-on examples based on artificial datasets, this
vignette describes how to fit GLMM trees. Section 2 shows how to fit (G)LMM trees with con-
stant fits in the terminal nodes on clustered (multilevel) data. Section 3 shows how to assess
main and interaction effects of a categorical variable (treatment) on a continuous response
(treatment outcome) on clustered data. Section 4 shows how subgroups can be detected
with respect to the parameters of a growth curve model. These are just examples; package
glmertree can be used to detect predictors and moderators in a wide range of GLMMs-type
models.

The GLMM tree model is composed of global and local parts: The global model is composed
of the random-effects terms and using all observations. The local model is composed of the
fixed-effects terms, which are estimated locally: the observations in a dataset are partitoned
with respect to additional covariates (a.k.a. partitioning variables) and a separate fixed-effects
model is estimated in each cell of the resulting partition. Package glmertree employs package
partykit (Hothorn and Zeileis 2015) to find the partition and package lme4 (Bates, Mächler,
Bolker, and Walker 2015) to estimate the mixed-effects model.

The current stable release version of package glmertree can be installed from the Compre-
hensive R Archive Network (CRAN) as follows:

R> install.packages("glmertree")

Alternatively, the current development version can be installed from R-Forge:

R> install.packages("glmertree", repos = "http://R-Forge.R-project.org")
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After installation, the package can be loaded as follows:

R> library("glmertree")

The main functions in package glmertree are lmertree() for continuous outcome variables,
and glmertree() for binary or count outcome variables. Both functions require specification
of a formula and data argument, as will also be illustrated in the examples below. The
various methods that are available to plot and print the fitted models and to extract further
information will also be shown in the examples below.

For both main functions, the formula argument specifies the model formula, which is com-
posed of a left- and right-hand side: the left-hand side specifies the response variable, followed
by a tilde (~). The right-hand side comprises three parts: the predictors for the node-specific
model (comprising fixed effects only, with coefficients that are allowed to differ over sub-
groups), the global model (comprising random and/or fixed effects, for which coefficients are
estimated globally, using all observations) and the potential partitioning variables. The three
parts of the right-hand side are separated by vertical bars:

response ~ node-specific predictors | global predictors | partitioning variables

2. Fitting a mixed-model tree with constant fits

For this example, we will make use of the artificially generated MHserviceDemo dataset,
containing data on N = 350 young people receiving treatment at one of 13 mental-health
service providers. The response variable is (outcome), a continuous variable representing
treatment outcome, as measured by a mental-health difficulties score at follow-up, corrected
for the baseline assessment, with higher values reflecting poorer treatment outcome. Potential
predictor variables are demographic variables and case characteristics: two continuous (age

and impact) and four binary covariates (gender, emotional, autism and conduct). The
cluster indicator (cluster_id) is an indicator for the mental-health service provider. The
data can be loaded as follows:

R> data("MHserviceDemo", package = "glmertree")

R> summary(MHserviceDemo)

age impact gender emotional autism

Min. : 1.100 Min. :-5.600 female:162 no :153 no :317

1st Qu.: 9.025 1st Qu.: 2.000 male :188 yes:197 yes: 33

Median :11.250 Median : 4.500

Mean :11.233 Mean : 4.229

3rd Qu.:13.500 3rd Qu.: 6.275

Max. :20.600 Max. :14.200

conduct cluster_id outcome

no :285 13 : 35 Min. :-1.8000

yes: 65 4 : 33 1st Qu.:-0.5000

11 : 33 Median :-0.2000
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12 : 32 Mean :-0.1406

2 : 31 3rd Qu.: 0.2000

8 : 31 Max. : 1.6000

(Other):155

The response is a continuous variable, so we employ function lmertree(). In the model
formula, we specify outcome as the response variable, followed by a tilde. Next, we specify
the node-specific model, which comprises only an intercept in this case, because we want to
identify subgroups which differ on their value of the response variable. Next, we specify the
predictor for the global model. We only want to account for possible outcome differences be-
tween the service providers, so we specify a random intercept with respect to the cluster_id

variable. Finally, we specify the demographic variables and case characteristic as the potential
partitioning variables:

R> MH_tree <- lmertree(outcome ~ 1 | cluster_id | age + gender + emotional +

+ autism + impact + conduct, data = MHserviceDemo)

Note that we specified cluster_id as a predictor variable for the global model, in order
to estimate arandom intercept with respect to cluster_id. We used short-hand notation
for (1|cluster_id); because function lmertree and glmertree assume a single random
intercept term, by default, which is specified through providing the cluster indicator only.

More complex random-effects structures can be specified with the customary formulation
employed in package lme4. For example, if we would want to account for a global linear fixed
effect of age, we can incorporate it in the specification of the global model as follows (results
not presented or discussed further):

R> MH_tree2 <- lmertree(outcome ~ 1 | age + (1 | cluster_id) | gender +

+ emotional + autism + impact + conduct,

+ data = MHserviceDemo)

Note that we used the round brackets around (1|cluster_id) to protect the vertical bars
separating the global predictors from the node-specific predictors and potential partitioning
variables.

Alternatively, using the glmertree() function, a tree may be fitted to binary (family =

binomial, default) or count response variables (family = poisson). Therefore, a binomial
GLMM tree for a dichotomized response could be obained by (results not presented or dis-
cussed further):

R> MHserviceDemo$outcome_bin <- factor(MHserviceDemo$outcome > 0)

R> MH_gtree <- glmertree(outcome_bin ~ 1 | cluster_id | age + gender +

+ emotional + autism + impact + conduct,

+ data = MHserviceDemo, family = "binomial")

Using the plot method, we can plot the resulting tree and random effects:

R> plot(MH_tree)
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Figure 1: LMM tree for predicting treatment outcome.

By using argument which, we could have specified which part of the model should be plotted;
by default, which = "all" the tree as well as the random effects are plotted.

The plotted tree is depicted in Figure 1. In every inner node of the plotted tree, the splitting
variable and corresponding p-value from the parameter stability test is reported. To control
for multiple testing, the p-values are Bonferroni corrected, by default. This can be turned
off by adding bonferroni = FALSE to the function call, which yields a less conservative
criterion for the parameter stability tests, but may increase the likelihood of overfitting. The
significance level α equals .05 by default, but a different value may be specified by including
alpha = .01 in the function call, for example.

The Tree in Figure 1 shows the distribution of the observated values of the response in
each of the terminal nodes. Four subgroups were found: terminal node 3 indicates that for
female patients with lower age, the higher values for the response (i.e., poorer outcomes) were
observed. Slightly better treatment outcomes are observed in terminal node 4 (females with
higher age) and node 6 (males not presenting with emotional disorder). The best treatment
outcomes are observed in node 7 (males presenting with emotional disorder).

Random-effects predictions are plotted in Figure 2. On average, patients at service provider
3 appear to have higher response variable values (poorer outcomes), while patients at service
provider 10 appear to have more favorable outcomes.

To obtain numerical results, print, coef, codefixef, ranef and VarCorr methods are available
(results omitted):

R> print(MH_tree)

R> coef(MH_tree)
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Figure 2: Predicted random effects predictions for the different service providers.

R> fixef(MH_tree)

R> ranef(MH_tree)

R> VarCorr(MH_tree)

To obtain predicted values, the predict method can be used:

R> predict(MH_tree, newdata = MHserviceDemo[1:10,])

1 2 3 4 5

0.04161240 -0.27275670 -0.09567592 -0.13960661 -0.12668176

6 7 8 9 10

-0.07843856 -0.28259716 -0.09567592 -0.09567592 -0.13546837

If the newdata argument is not specified, predictions for the training observations are returned,
by default. Also by default, the predictions are based on both random- and fixed-effects.
Random effects can be excluded from the predictions by adding re.form = NA. This is useful,
for example, when newdata specifies new observations whichare not part of a cluster from the
training data (i.e., are from a ’new’ cluster):

R> predict(MH_tree, newdata = MHserviceDemo[1:10, -7], re.form = NA)

1 2 3 4 5

-0.17325489 -0.31054321 -0.31054321 -0.17325489 -0.17325489

6 7 8 9 10

-0.17325489 -0.07652208 -0.31054321 -0.31054321 -0.17325489
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2.1. Inspecting residuals

Residuals of the fitted mixed-effects tree can be obtained with the residuals method. Residu-
als can be used for assessing potential misspecification of the model or violation of assumptions
(e.g., heteroscedasticity):

R> resids <- residuals(MH_tree)

R> preds <- predict(MH_tree)

R> plot(MHserviceDemo$cluster_id, resids)

R> scatter.smooth(preds, resids)

The plotted residuals are depicted in Figure 3. The left panel indicates some differences in
residual variances across the levels of cluster_id, but these differences were not statistically
significant (when tested with functions bartlett.test() or fligner.test()). The right
panel of in Figure 3 indicates no pattern of association between fitted values and residuals.
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Figure 3: Residuals of the fitted linear mixed-effects model tree in Figure 1.



Marjolein Fokkema, Achim Zeileis 7

3. Detecting treatment-subgroup interactions in clustered data

In this example, we extend the model for the terminal nodes to accomodate a predictor
variable: an indicator for treatment. Including predictor variables in the node-specific model
may be particularly helpful when the interest is in detecting moderators. For example, in the
detection of treatment-subgroup interactions where the effect of treatment may be moderated
by one or more additional covariates. To illustrate, we will use the artificial motivating dataset
from Fokkema et al. (2018), which can be recreated using the code provided in Appendix A,
or can be loaded as follows:

R> data("DepressionDemo", package = "glmertree")

R> summary(DepressionDemo)

depression treatment cluster age

Min. : 3.00 Treatment 1:78 Min. : 1.0 Min. :18

1st Qu.: 7.00 Treatment 2:72 1st Qu.: 3.0 1st Qu.:39

Median : 9.00 Median : 5.5 Median :45

Mean : 9.12 Mean : 5.5 Mean :45

3rd Qu.:11.00 3rd Qu.: 8.0 3rd Qu.:52

Max. :16.00 Max. :10.0 Max. :69

anxiety duration depression_bin

Min. : 3.00 Min. : 1.000 0:78

1st Qu.: 8.00 1st Qu.: 5.000 1:72

Median :10.00 Median : 7.000

Mean :10.26 Mean : 6.973

3rd Qu.:12.00 3rd Qu.: 9.000

Max. :18.00 Max. :17.000

The dataset includes seven variables: A continuous response variable (depression), a pre-
dictor variable for the linear model (treatment), three potential partitioning variables (age,
anxiety, duration), an indicator for cluster (cluster) and a binarized response variable
(depression_bin).

We fit a tree to the continuous response as follows:

R> lmmt <- lmertree(depression ~ treatment | cluster | age +

+ duration + anxiety, data = DepressionDemo)

The left-hand side of the model formula (preceding the tilde symbol) specified the response
variable (depression). The right-hand side of the model formula comprises three parts,
separated by vertical bars: The first part specifies the predictor variable(s) of the node specific
(G) LMM (treatment, in this example). The second part specifies the predictors of the
global model (comprising only a random intercept with respect to cluster, in this example).
The third part specifies the potential partitioning variables. In this example, all partitioning
variables are continuous, but (ordered) categorical partitioning variables can also be specified.

We specified only a single variable for the global model, resulting in estimation of a random
intercept with respect to cluster. By default, if only a single variable is specified for the
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global model, a random intercept with respect to the specified variable will be estimated.
More complex random effects can be specified using the customary formulation employed in
lme4. For example, we could specify a global model comprising a correlated random intercept
and slope of age, both estimated with respect to cluster:

R> depression ~ treatment | (age + (1 + age | cluster)) | age +

+ duration + anxiety

Note that we included a fixed effect for age in the global model, as is customary when
specifying a random effect. Note also that we used round brackets in order to protect the
vertical bars in the formulation of the (global) random effects.

We could also encounter nested multilevel structures, for example when we have patients from
treatment centers nested within geographical areas. Using the indicators for treatment center
and geographical areas (e.g., center and area), we could have specified random intercept
terms for center, nested within area:

R> depression ~ treatment | (1|center/area) | age + duration + anxiety

depression ~ treatment | (1 | center/area) | age + duration +

anxiety

Using the plot method, we can plot the resulting tree and random effects:

R> plot(lmmt)

The plotted tree is depicted in Figure 4. In every inner node of the plotted tree, the splitting
variable and corresponding p-value from the parameter stability test is reported. To control
for multiple testing, the p-values are Bonferroni corrected, by default.

The plotted tree in Figure 4 shows that there are three subgroups with differential treat-
ment effectiveness: node 3 indicates that for patients with lower duration and lower anxiety,
Treatment 1 leads to lower post-treatment depression. Node 4 indicates that for patients
with lower duration and higher anxiety, both treatments yield more or less the same expected
outcome. Node 5 indicates, that for patients with higher duration, Treatment 2 leads to lower
post-treatment depression.

The predicted random effects are plotted in Figure 5. On average, patients from cluster
10 have somewhat higher expected post-treatment depression scores, whereas patients from
cluster 4 have somewhat lower expected post-treatment depression scores.

Alternatively, we can request caterpillar plots of the estimated node-specific coefficients
through specifying which = "tree.coef":

R> plot(lmmt, which = "tree.coef")

The plotted results depict the node-specific parameter estimated with error bars (±1.96 times
the standard error). Note that these standard errors do not account for the searching of the
tree structure and are likely too small, but they do allow for gauging the precision of the
estimated parameters.

To obtain numerical results, print, coef, fixef, ranef, and VarCorr methods are available
(results omitted):
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Figure 4: Linear mixed-effects model tree with treatment-subgroup interactions.
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Figure 5: Random effects for the linear mixed-effects model tree in Figure 4.

R> print(lmmt)

R> coef(lmmt)

R> fixef(lmmt)

R> ranef(lmmt)
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Figure 6: Estimated node-specific fixed effects with error bars.

R> VarCorr(lmmt)

To obtain predicted values, the predict method can be used:

R> predict(lmmt, newdata = DepressionDemo[1:7,])

1 2 3 4 5 6 7

10.777967 11.554671 7.158594 9.045116 11.280676 8.816419 11.883481

When newdata is not specified, predictions for the training observations are returned, by
default. Random effects can be excluded from the predictions by adding re.form = NA. This
is useful, for example, when newdata is specified, but the new observations do not have a
cluster indicator or are from new clusters:

R> predict(lmmt, newdata = DepressionDemo[1:7, -3], re.form = NA)

1 2 3 4 5 6 7

11.087612 11.622223 7.500141 9.112668 11.622223 8.591409 11.622223

3.1. Inspecting residuals

Residuals of the fitted (G)LMM tree can be obtained with the residuals method. This can
be useful for assessing potential misspecification of the model (e.g., heteroscedasticity):

R> resids <- residuals(lmmt)

R> preds <- predict(lmmt)

R> plot(factor(DepressionDemo$cluster), resids)

R> scatter.smooth(preds, resids)

The plotted residuals are depicted in Figure 7. The left panel indicates some variation in
error variances across levels of the random effects, but it appears these differences are not
statistivally significant:
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R> fligner.test(resids ~ DepressionDemo$cluster)

Fligner-Killeen test of homogeneity of variances

data: resids by DepressionDemo$cluster

Fligner-Killeen:med chi-squared = 8.981, df = 9, p-value =

0.439

R> bartlett.test(resids ~ DepressionDemo$cluster)

Bartlett test of homogeneity of variances

data: resids by DepressionDemo$cluster

Bartlett's K-squared = 5.6663, df = 9, p-value = 0.7728

The right panel of Figure 7 shows fitted values against residuals and also does not reveal a
pattern indicating model misspecification.

4. Detecting subgroups with different growth trajectories

An artificially generated, longitudinal dataset is included in package glmertree and can be
loaded as follows:

R> data("GrowthCurveDemo", package = "glmertree")

R> dim(GrowthCurveDemo)

[1] 1250 11
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Figure 7: Residuals of the fitted linear mixed-effects model tree in Figure 4.
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R> names(GrowthCurveDemo)

[1] "x1" "x2" "x3" "x4" "x5" "x6" "x7"

[8] "x8" "person" "time" "y"

The dataset contains 1250 repeated measurements from 250 individuals. The data is in long
format and the response was measured at five timepoints for each individual. The dataset
contains 11 variables: A continuous response variable (y), a predictor variable for the linear
model (time, taking values 0 through 4), time-invariant potential partitioning variables (x1

through x8), and an indicator for person (person).

The data were generated so that x1, x2 and x3 are true partitioning variables. Furthermore, x1

is a binary variable, while all other potential partitioning variables follow a normal distribution
with µ = 0 and σ = 5. Potential partitioning variables were generated so as to be uncorrelated.
Random intercepts and slopes were generated so that the intercept and slope values for persons
vary around their node-specific means, following a normal distribution with µ = 0 and σ =

√
2

for the intercept and σ =
√

.4 for the slope. Errors were uncorrelated and followed a normal
distribution with µ = 0 and σ =

√
5.

The default fitting procedure as employed by functions lmertree() and glmertree() assume
potential predictor variables are measured on the observation level. In this example, potential
partitioning variables are measured on the cluster level (i.e., time-invariant covariates) and
the observation-level stability tests will likely have inflated type-I error. We can account for
the level of the partitioning variables through specification of the cluster argument. As a
result, parameter stability tests will be performed on the cluster instead of the observation
level:

R> gc_tree <- lmertree(y ~ time | person | x1 + x2 + x3 + x4 + x5 + x6 +

+ x7 + x8, cluster = person, data = GrowthCurveDemo)

The first part of the formula (y ~ time) regresses the response on time. The second part
(| person |) specifies that a random intercept should be estimated with respect to person.
The third part (x1 + ... + x8) specifies the potential partitioning variables. Using the
cluster-level stability tests, we obtained a tree with four subgroups (terminal nodes):

R> width(gc_tree$tree)

[1] 4

Employing the default observation-level stability tests would have yielded a tree with more
(possibly spurious) subgroups:

R> gc_obs_tree <- lmertree(y ~ time | person | x1 + x2 + x3 + x4 + x5 +

+ x6 + x7 + x8, data = GrowthCurveDemo)

R> width(gc_obs_tree$tree)

[1] 10

We plot the growth-curve tree using the plot method:
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Node 4 (n = 375)
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Node 7 (n = 300)
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Figure 8: Linear mixed-effects model tree with growth curve models in the terminal nodes.

R> plot(gc_tree, which = "tree", fitted = "marginal")

Note that we additionally specified which = "tree", to obtain a plot of the tree only, and
fitted = "marginal". The latter specified that the fitted values (represented by the red
lines in the terminal nodes) should be computed by fixing all remaining (fixed- an random-
effects) predictor variables at their means (or majority class, for categorical predictors). By
default, fitted = "combined" yields fitted values, computed based on the observed values
of the remaining (random and fixed-effects) predictor variables. We employed the marginal
approach here, as this yields straight lines plotted in the terminal nodes, which may better
reflect the average trajectories. The resulting plot is depicted in Figure 8. The red lines
in the terminal nodes represent the average trajectory within the terminal nodes. The dots
represent the observed data values.

The plot reveals that the true partitioning variables (x1, x2 and x3) were selected for splitting.
The fitted models in the terminal nodes (red lines) reveal a decrease in the response variable
over time for the left-most subgroup, and an increase for the right-most subgroup. The curves
in the two middle subgroups are rather flat, indicating no change over time. We can also print
the values of the estimated coefficients in the terminal nodes:

R> plot(gc_tree, type = "simple", which = "tree")

The tree in Figure 9 reveals effects of time relatively close to zero for nodes 4 and 6. We can
also plot the coefficients with error bars:

R> plot(gc_tree, which = "tree.coef")
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Figure 9: Linear mixed-effects model tree with estimated coefficients printed in the terminal
nodes.
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Estimated coefficients
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Figure 10: Caterpillar plots of estimated coefficients for each of the terminal nodes.

The standard errors used for creating the error bars in Figure 10 do not account for the
searching of the tree sturcture and may be too small. However, the overlapping error bars
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for the effect of time in nodes 6 and 4 indicate a non-significant difference between the effects
of time in these nodes. The observed data points in Figure 8 indicate that the individual
observations show substantial variation around the estimated fixed effects. To obtain an
estimate of the random effects and residual variances, we can use the VarCorr method:

R> varcor <- VarCorr(gc_tree)

R> varcor

Groups Name Std.Dev.

person (Intercept) 2.2449

Residual 2.3696

WE can use these variances to obtain an estimate of the intraclass correlation (ICC):

R> res_var <- attr(varcor, "sc")^2

R> int_var <- as.numeric(varcor$person)

R> ICC <- int_var / (res_var + int_var)

R> ICC

[1] 0.4729834

The value of the ICC indicates that about 47.3 percent of variance in the response is accounted
for by inter-individual variation.

4.1. Adding a random slope of time

Earlier, we specified a model formula with only a random intercept and thus did not account
for possible variation between persons in the effect of time, within terminal nodes. To account
for such differences we can incorporate a random slope of time into the model formula:

R> form_s <- formula(paste0("y ~ time | (1 + time | person) | ",

+ paste0("x", 1:8, collapse = " + ")))

R> form_s

y ~ time | (1 + time | person) | x1 + x2 + x3 + x4 + x5 + x6 +

x7 + x8

Again, we fit the tree:

R> gc_tree_s <- lmertree(form_s, cluster = person, data = GrowthCurveDemo)

In this case, we obtained the same tree structure with or without estimating random slopes
(Figure 8). This need not necessarily be the case with other datasets. At the very least, the
estimated random effects can provide us with additional information about variation due to
between-person differences in initial levels and growth over time:

R> VarCorr(gc_tree_s)
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Groups Name Std.Dev. Corr

person (Intercept) 2.0671

time 0.5892 -0.092

Residual 2.1812

Compared to the fitted model with random intercepts only, we see that the residual variance
decreased somewhat.
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A. R code for generating artificial motivating dataset

Generate the predictor variables and error term:

R> set.seed(123)

R> treatment <- rbinom(n = 150, size = 1, prob = .5)

R> duration <- round(rnorm(150, mean = 7, sd = 3))

R> anxiety <- round(rnorm(150, mean = 10, sd = 3))

R> age <- round(rnorm(150, mean = 45, sd = 10))

R> error <- rnorm(150, 0, 2)

Generate the random intercepts:

R> cluster <- error + rnorm(150, 0, 6)

R> rand_int <- sort(rep(rnorm(10, 0, 1), each = 15))

R> rand_int[order(cluster)] <- rand_int

R> error <- error - rand_int

R> cluster[order(cluster)] <- rep(1:10, each = 15)

Generate treatment subgroups:

R> node3t1 <- ifelse(duration <= 8 & anxiety <= 10 & treatment == 0, -2, 0)

R> node3t2 <- ifelse(duration <= 8 & anxiety <= 10 & treatment == 1, 2, 0)

R> node5t1 <- ifelse(duration > 8 & treatment == 0, 2.5, 0)

R> node5t2 <- ifelse(duration > 8 & treatment == 1, -2.5, 0)

Generate the continuous and dichotomized outcome variable:

R> depression <- round(9 + node3t1 + node3t2 + node5t1 + node5t2 +

+ .4 * treatment + error + rand_int)

R> depression_bin <- factor(as.numeric(depression > 9))

Make treatment indicator a factor and collect everything in a data frame:

http://dx.doi.org/10.18637/jss.v067.i01
https://link.springer.com/article/10.3758/s13428-017-0971-x
https://link.springer.com/article/10.3758/s13428-017-0971-x
http://www.jmlr.org/papers/v16/hothorn15a.html
http://www.jmlr.org/papers/v16/hothorn15a.html
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R> treatment <- factor(treatment, labels = c("Treatment 1", "Treatment 2"))

R> DepressionDemo <- data.frame(depression, treatment, cluster,

+ age, anxiety, duration, depression_bin)
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