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Abstract

We describe the R package gmvarkit, which provides tools for estimating and analyz-
ing the reduced form and structural Gaussian mixture vector autoregressive model, the
StudentŠs t mixture vector autoregressive model, and the Gaussian and StudentŠs t mix-
ture vector autoregressive model. These three models constitute an appealing family of
mixture autoregressive models that we call the GSMVAR models. The model parameters
are estimated with the method of maximum likelihood by running multiple rounds of a
two-phase estimation procedure in which a genetic algorithm is used to Ąnd starting values
for a gradient based method. For evaluating the adequacy of the estimated models, gm-

varkit utilizes so-called quantile residuals and provides functions for graphical diagnostics
and for calculating formal diagnostic tests. gmvarkit also enables to simulate from the
GSMVAR processes, to estimate generalized impulse response functions and generalized
forecast error variance decompositions, and to forecast future values of the process, for
example. We illustrate the use of gmvarkit with a quarterly series consisting of two U.S.
variables: the percentage change of real GDP and the percentage change of GDP implicit
price deĆator. This manuscript is intended as a fancy vignette only.

Keywords: mixture vector autoregressive model, structural mixture vector autoregressive
model, regime-switching, Gaussian mixture, StudentŠs t mixture, mixture VAR, mixture
SVAR.

1. Introduction

If you came to read this vignette because you have trouble with the estimation
(and donŠt want to read through the whole thing), see Sections 3.3 and 3.4. If
you have in particular trouble with the estimation of structural models, see also
Section 3.5.

Linear vector autoregressive (VAR) model is a standard tool in time series econometrics. It
can be employed to answer questions about the statistical relationships of different variables
or to forecast future values of the process, for example. Structural VAR model allows to
trace out the effects of economic shocks that have been identiĄed by the researcher. With
an appropriate choice of the autoregressive order p, a linear VAR is often able to Ąlter out
autocorrelation from the series very well. If the errors are assumed to follow an autoregressive
conditional heteroskedasticity (ARCH) process, the model is also often able to adequately
Ąlter out conditional heteroskedasticity from the series.

In some cases, linear VAR models are not, however, capable to capture all the relevant char-
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acteristics of the series. This includes shifts in the mean or volatility, and changes in the
autoregressive dynamics of the process. Such nonlinear features frequently occur in economic
time series when the underlying data generating dynamics vary in time, for example, depend-
ing the speciĄc state of the economy.

Various types of time series models capable of capturing this kind of regime-switching behavior
have been proposed, one of them being the class of mixture models introduced by Le, Martin,
and Raftery (1996) and further developed by, among others, Kalliovirta, Meitz, and Saikkonen
(2015), Kalliovirta et al. (2015), Meitz, Preve, and Saikkonen (2021), Virolainen (2022b),
and Virolainen (2021, 2022a). Following the recent developments of Kalliovirta, Meitz, and
Saikkonen (2016), Virolainen (2022b), and Virolainen (2022a), we consider the Gaussian
mixture vector autoregressive (GMVAR) model, the StudentŠs t mixture vector autoregressive
(StMVAR) model, and the Gaussian and StudentŠs t mixture autoregressive (G-StMVAR)
model. These three models constitute an appealing family of mixture vector autoregressive
models that we call the GSMVAR models.

A GSMVAR process generates each observation from one of its mixture components, which
are either conditionally homoskedastic linear Gaussian vector autoregressions or conditionally
heteroskedastic linear StudentŠs t vector autoregressions. The mixture component that gen-
erates each observation is randomly selected according to the probabilities determined by the
mixing weights that, for a pth order model, depend on the full distribution of the previous
p observations. Consequently, the regime-switching probabilities may depend on the level,
variability, kurtosis, and temporal dependence of the past observations. The speciĄc formu-
lation of the mixing weights also leads to attractive theoretical properties such as ergodicity
and full knowledge of the stationary distribution of p + 1 consecutive observations.

This paper describes the R package gmvarkit providing a comprehensive set of easy-to-use
tools for GSMVAR modeling, including unconstrained and constrained maximum likelihood
(ML) estimation of the model parameters, quantile residual based model diagnostics, simula-
tion from the processes, forecasting, estimation generalized impulse response function (GIRF)
and generalized forecast error variance decomposition (GFEVD), and more. Both, reduced
form and structural GSMVAR models are covered. The emphasis is on estimation, as it
can, in our experience, be rather tricky. In particular, due to the endogenously determined
mixing weights, the log-likelihood function has a large number of modes and large areas of
the parameter space where the log-likelihood function is Ćat in multiple directions. The log-
likelihood functionŠs global maximum point is also frequently located very near the boundary
of the parameter space. However, such near-the-boundary estimates often maximize the log-
likelihood function for a technical reason, and it might be more appropriate to consider an
alternative estimate based on the largest local maximum point that is clearly in the interior
of the parameter space.

The model parameters are estimated by running multiple rounds of a two-phase estimation
procedure in which a modiĄed genetic algorithm is used to Ąnd starting values for a gradient
based variable metric algorithm. Because of the multimodality of the log-likelihood function,
some of the estimation rounds may end up in different local maximum points, thereby en-
abling the researcher to build models not only based on the global maximum point but also
on the local ones. The estimated models can be conveniently examined with the summary and
plot methods. For evaluating their adequacy, gmvarkit utilizes multivariate quantile residual
diagnostics in the framework presented in Kalliovirta and Saikkonen (2010), including graph-
ical diagnostics as well as diagnostic tests that take into account uncertainty about the true
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parameter value. Forecasting is based on a Monte Carlo simulation method. For univariate
modeling, we suggest using the CRAN distributed R package uGMAR (Virolainen 2018).

The remainder of this paper is organized as follows. Section 2 introduces the GSMVAR models
and discusses some of their properties. For structural models, identiĄcation of the shocks is
also covered. Section 3 discusses estimation of the model parameters. In particular, we discuss
many important practical aspects of the estimation that might not be obvious to researchers
unfamiliar with (S)GSMVAR modeling. We also illustrates how the GSMVAR models can
be estimated and examined with gmvarkit and how parameter constraints can be tested.
In Section 4, we describe quantile residuals and demonstrate how they can be utilized to
evaluate model adequacy in gmvarkit. Section 5 discusses impulse response analysis based on
generalized impulse response functions and generalized forecast error variance decompositions.
Section 6 shows how the GSMVAR models can be built with given parameter values. In
Section 7, we Ąrst show how to simulate observations from a GSMVAR process, and then
we illustrate how to forecast future values of a GSMVAR process with a simulation-based
Monte Carlo method. Section 8 concludes and collects some useful functions in gmvarkit to
a single table for convenience. Appendix A provides density functions and some properties of
multivariate Gaussian and StudentŠs t distributions. Finally, Appendix B derives closed form
expressions for the multivariate quantile residuals of the GSMVAR models.

Throughout this paper, we illustrate the use of gmvarkit with a quarterly series consisting of
two U.S. variables: the percentage change of real GDP and the percentage change of GDP
implicit price deĆator, covering the period from 1959Q1 to 2019Q4. We deploy the notation
nd(µ, Γ) for the d-dimensional normal distribution with mean µ and (positive deĄnite) co-
variance matrix Γ, and td(µ, Γ, ν) for the d-dimensional t-distribution with mean µ, (positive
deĄnite) covariance matrix Γ, and ν > 2 degrees of freedom. The corresponding density
functions are denoted as nd(·;µ, Γ) and td(·;µ, Γ, ν), respectively. By 1p = (1, ..., 1) (p × 1),
we denote p-dimensional vector of ones. Finally, ⊗ denotes Kronecker product.

2. Models

This section introduces the GMVAR model (Kalliovirta et al. 2016), the StMVAR model
(Virolainen 2022a), and the G-StMVAR model (Virolainen 2022a), a family of mixture vector
autoregressive models that we call the GSMVAR models. First, we deĄne the component
processes of the GSMVAR models - linear VARs based on either Gaussian or StudentŠs t
distribution. Then, we introduce the reduced form GSMVAR models. For brevity, we only
give the deĄnition of the more general G-StMVAR model but explain how the GMVAR
and StMVAR models are obtained as special cases of it, namely, by taking all the component
models to be of either Gaussian or StudentŠs t type. After deĄning the reduced form GSMVAR
model, we introduce structural version of the models incorporating statistically identiĄed
structural shocks. IdentiĄcation of the shocks is also brieĆy discussed.

2.1. Linear Gaussian and StudentŠs t vector autoregressions

To develop theory and notation, consider Ąrst the component processes of the Gaussian and
StudentŠs t mixture vector autoregressive models. For a pth order linear Gaussian or StudentŠs
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t vector autoregression zt, we have

zt = ϕ0 +
p
∑

i=1

Aizt−1 + Ω
1/2
t εt, ε ∼ IID(0, Id), (1)

where Ω
1/2
t is a symmetric square root matrix of the positive deĄnite (d×d) covariance matrix

Ωt, and ϕ0 ∈ R
d. The (d × d) autoregression matrices are assumed to satisfy Ap ≡ [A1 : ... :

Ap] ∈ S
d×dp, where

S
d×dp = ¶[A1 : ... : Ap] ∈ R

d×dp : det(Id −
p
∑

i=1

Aiz
i) ̸= 0 for ♣z♣ ≤ 1♢ (2)

deĄnes the usual stability condition of a linear vector autoregression.

In the case of Gaussian VAR, the errors εt are assumed standard normal distributed and
the covariance matrices Ωt = Ω are time invariant. Denoting zt = (zt, ..., zt−p+1) and z+

t =
(zt,zt−1), it is well known that the stationary solution to (1) satisĄes

zt ∼ ndp(1p ⊗ µ, Σp)

z+
t ∼ nd(p+1)(1p+1 ⊗ µ, Σp+1)

zt♣zt−1 ∼ nd(ϕ0 +Apzt−1, Ω),

(3)

where the last line deĄnes the conditional distribution of zt given zt−1. Denoting by Σ(h) the
lag h (h = 0, ±1, ±2, ...) autocovariance matrix of zt, the quantities µ, Σp, Σ1, Σ1p, Σp+1 are
given as (see, e.g., Lütkepohl 2005, pp. 23, 28-29)

µ =(Id −
p
∑

i=1

Ai)
−1ϕ0 (d × 1)

vec(Σp) =(I(dp)2 −A⊗A)−1vec(Ω) ((dp)2 × 1)

Σ1 =Σ(0) (d × d)

Σ(p) =A1Σ(p − 1) + · · · + ApΣ(0) (d × d)

Σ1p =[Σ(1) : ... : Σ(p − 1) : Σ(p)] = ApΣp (d × dp)

Σp+1 =



Σ1 Σ1p

Σ′
1p Σp

]

(d(p + 1) × d(p + 1))

(4)

where

Σp =













Σ(0) Σ(1) · · · Σ(p − 1)
Σ(−1) Σ(0) · · · Σ(p − 2)

...
...

. . .
...

Σ(−p + 1) Σ(−p + 2) · · · Σ(0)













(dp×dp)

,

A =

















A1 A2 · · · Ap−1 Ap

Id 0 · · · 0 0
0 Id 0 0
...

. . .
...

...
0 0 . . . Id 0

















(dp×dp)

, and Ω =













Ω 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 . . . 0













(dp×dp)

.

(5)
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Virolainen (2022a) shows that there are exists conditionally heteroskecastic StudentŠs t vec-
tor autoregressions with distributional properties similar to the Gaussian VARs. Using
the notation described above, these StudentŠs t VARs are obtained from (1) by assuming
εt ∼ td(0, Id, ν + dp) and

Ωt =
ν − 2 + (z − 1p ⊗ µ)′Σ−1

p (z − 1p ⊗ µ)

ν − 2 + dp
Ω. (6)

The StudentŠs t VARs are stationary and satisfy (Virolainen 2022a, Theorem 1)

zt ∼ tdp(1p ⊗ µ, Σp, ν)

z+
t ∼ td(p+1)(1p+1 ⊗ µ, Σp+1, ν)

zt♣zt−1 ∼ td(ϕ0 +Apzt−1, Ωt, ν + dp).

(7)

The conditional variance (6) consists of a constant covariance matrix that is multiplied by
a time-varying scalar that depends on the quadratic form of the preceding p observations
through the autoregressive parameters. In this sense, the model has a ŚVAR(p)ŰARCH(p)Š
representation, but the ARCH type conditional variance is not as general as in the conven-
tional multivariate ARCH process (e.g., Lütkepohl 2005, Section 16.3) that allows the entries
of the conditional covariance matrix to vary relative to each other.

We refer often to the linear Gaussian VARs as GMVAR type, because they are similar to the
component processes of the GMVAR model (Kalliovirta et al. 2016). Likewise, we often refer
to the linear StudentŠs t VARs as StMVAR type, because they are similar to the component
processes of the StMVAR model (Virolainen 2022a). The G-StMVAR model (Virolainen
2022a) incorporates both types of component processes. Because the GMVAR are StMVAR
models are obtained as special cases of the G-StMVAR model by assuming that all the
component processes are either GMVAR or StMVAR type, we will only give the deĄnition of
the more general G-StMVAR model.

2.2. The Gaussian and StudentŠs t mixture vector autoregressive model

Let yt (t = 1, 2, ...) be the real valued d-dimensional time series of interest, and let Ft−1 denote
σ-algebra generated by the random vectors ¶ys, s < t♢. In a G-StMVAR model (Virolainen
2022a) with autoregressive order p and M mixture components (or regimes), the observations
yt are assumed to be generated by

yt =
M
∑

m=1

sm,t(µm,t + Ω
1/2
m,tεm,t), (8)

µm,t =ϕm,0 +
p
∑

i=1

Am,iyt−i, (9)

where the following conditions hold.

Condition 1

1. For m = 1, ..., M1 ≤ M , the random vectors εm,t are IID nd(0, Id) distributed, and for
m = M1 + 1, ..., M , they are IID td(0, Id, νm + dp) distributed. For all m, εm,t are
independent of Ft−1.
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2. For each m = 1, ..., M ‚ ϕm,0 ∈ R
d, Am,p ≡ [Am,1 : ... : Am,p] ∈ S

d×dp (the set Sd×dp is de-
fined in (2)), and Ωm is positive definite. For m = 1, ..., M1, the conditional covariance
matrices are constants, Ωm,t = Ωm. For m = M1 + 1, ..., M , the conditional covariance
matrices Ωm,t are as in (6), except that z is replaced with yt−1 = (yt−1, ..., yt−p) and the
regime specific parameters ϕm,0, Am,p,Ωm,νm are used to define the quantities therein.
For m = M1 + 1, ..., M , also νm > 2.

3. The unobservable regime variables s1,t, ..., sM,t are such that at each t, exactly one of
them takes the value one and the others take the value zero according to the condi-
tional probabilities expressed in terms of the (Ft−1-measurable) mixing weights αm,t ≡
Pr(sm,t = 1♣Ft−1) that satisfy

∑M
m=1 αm,t = 1.

4. Conditionally on Ft−1, (s1,t, ..., sM,t) and εm,t are assumed independent.

The conditions νm > 2 are made to ensure the existence of second moments. This deĄnition
implies that the G-StMVAR model generates each observation from one of its mixture com-
ponents, linear Gaussian or StudentŠs t vector autoregression discussed in Section 2.1, and
that the mixture component is selected randomly according to the probabilities given by the
mixing weights αm,t. The Ąrst M1 mixture components are assumed to be linear Gaussian
VARs, and the last M2 ≡ M − M1 mixture components are assumed to be linear StudentŠs t
VARs. If all the component processes are Gaussian VARs (M1 = M), the G-StMVAR model
reduces to the GMVAR model of Kalliovirta et al. (2016). If all the component processes
are StudentŠs t VARs (M1 = 0), the G-StMVAR model reduced to the StMVAR model of
Virolainen (2022a).

The deĄnition (8), (9), and Condition 1 leads to a model in which the conditional density
function of yt conditional on its past, Ft−1, is given as

f(yt♣Ft−1) =
M1
∑

m=1

αm,tnd(yt; µm,t, Ωm) +
M
∑

m=M1+1

αm,ttd(yt; µm,t, Ωm,t, νm + dp). (10)

The conditional densities nd(yt; µm,t, Ωm,t) and td(yt; µm,t, Ωm,t, νm + dp) are obtained from
(3) and (7), respectively. The explicit expressions of the density functions are given in Ap-
pendix A. To fully deĄne the G-StMVAR model, it is then left to specify the mixing weights
αm,t.

The mixing weights are deĄned as as weighted ratios of the component process stationary
densities corresponding to the previous p observations. In order to formally specify the mixing
weights, we Ąrst deĄne the following function for notational convenience. Let

dm,dp(y; 1p ⊗ µm, Σm,p, νm) =

{

ndp(y; 1p ⊗ µm, Σm,p), when m ≤ M1,
tdp(y; 1p ⊗ µm, Σm,p, νm), when m > M1,

(11)

where the dp-dimensional densities ndp(y; 1p ⊗ µm, Σm,p) and tdp(y; 1p ⊗ µm, Σm,p, νm) cor-
respond to the stationary distribution of the mth component process (given in equations (3)
and (7)). Denoting yt−1 = (yt−1, ..., yt−p), the mixing weights of the G-StMVAR model are
deĄned as

αm,t =
αmdm,dp(yt−1; 1p ⊗ µm, Σm,p, νm)

∑M
n=1 αndn,dp(yt−1; 1p ⊗ µn, Σn,p, νn)

, (12)
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where αm ∈ (0, 1), m = 1, ..., M , are mixing weights parameters assumed to satisfy
∑M

m=1 αm =
1, µm = (Id −

∑p
i=1 Am,i)

−1ϕm,0, and covariance matrix Σm,p is given in (4) and (5) but using
the regime speciĄc parameters to deĄne the quantities therein.

Because the mixing weights are weighted component processŠs stationary densities correspond-
ing to the previous p observations, an observation is more likely to be generated from a regime
with higher relative weighted likelihood. This is a convenient feature for forecasting but it
also allows the researcher to associate speciĄc characteristics to different regimes. Moreover,
it turns out that this speciĄc formulation of the mixing weights leads to attractive properties
such as full knowledge of the stationary distribution of p + 1 consecutive observations and
ergodicity of the process. SpeciĄcally, yt = (yt, ..., yt−p+1) has stationary distribution that is
characterized by the density (Virolainen 2022a, Theorem 2)

f(y) =
M
∑

m=1

αmndp(y; 1p ⊗ µm, Σm,p) +
M
∑

m=M1+1

αmtdp(y; 1p ⊗ µm, Σm,p, νm). (13)

gmvarkit collects the parameters of a G-StMVAR model to the ((M(d+d2p+d(d+1)/2+2)−
M1−1)×1) vector θ = (ϑ1, ...,ϑM , α1, ..., αM−1,ν), where ϑm = (ϕm,0, vec(Am,p), vech(Ωm))
and ν = (νM1+1, ..., νM ). The last mixing weight parameter αM is not parametrized because
it is obtained from the restriction

∑M
m=1 αm = 1. A G-StMVAR model with autoregressive

order p, and M1 GMVAR type and M2 StMVAR type mixture components is referred to as
G-StMVAR(p, M1, M2) model, whenever the order of the model needs to be emphasized. If
the model imposes constraints or is a structural model, the parameter vector is different. For
details, see the documentation.

2.3. Structural G-StMVAR model

We write the structural G-StMVAR model (Virolainen 2022a) as

yt =
M
∑

m=1

sm,t(ϕm,0 +
p
∑

i=1

Am,iyt−i) + Btet (14)

and

ut ≡ Btet =











































u1,t ∼ nd(0, Ω1,t) if s1,t = 1 (with probability α1,t)
...

uM1,t ∼ nd(0, ΩM1,t) if sM1,t = 1 (with probability αM1,t)
uM1+1,t ∼ td(0, ΩM1+1,t, νM1+1 + dp) if sM1+1,t = 1 (with probability αM1+1,t)

...
uM,t ∼ td(0, ΩM,t, νM + dp) if sM,t = 1 (with probability αM,t)

(15)
where the probabilities are expressed conditionally on Ft−1 and et (d × 1) in an orthogonal
structural error. For the GMVAR type regimes, m = 1, ..., M1‚ Ωm,t = Ωm. For the StMVAR
type regimes, m = M1 + 1, ..., M , Ωm,t = ωm,tΩm, where

ωm,t =
νm − 2 + (yt−1 − 1p ⊗ µm)′Σ−1

m,p(yt−1 − 1p ⊗ µm)

νm − 2 + dp
. (16)
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The invertible (d × d) "B-matrix" Bt, which governs the contemporaneous relations of the
shocks, is time-varying and a function of yt−1, ..., yt−p. With a particular choice of Bt, the
conditional covariance matrix of the structural error can be normalized to an identity matrix.
Consequently, a constant sized structural shock will be ampliĄed according to the conditional
variance of the reduced form error, thereby reĆecting the speciĄc state of the economy.

We have Ωu,t ≡ Cov(ut♣Ft−1) =
∑M1

m=1 αm,tΩm +
∑M

m=M1+1 αm,tωm,tΩm, while the conditional

covariance matrix of the structural error et = B−1
t ut (which are not IID but are martingale

differences and therefore uncorrelated) is obtained as

Cov(et♣Ft−1) =
M1
∑

m=1

αm,tB
−1
t ΩmB′−1

t +
M
∑

m=M1+1

αm,tωm,tB
−1
t ΩmB′−1

t . (17)

Therefore, we need to choose the B-matrix so that the structural shocks are orthogonal
regardless of which regime they come from.

We employ the following decomposition to simultaneously diagonalize all the error term co-
variance matrices:

Ωm = WΛmW ′, m = 1, ..., M, (18)

where the diagonal of Λm = diag(λm1, ..., λmd), λmi > 0 (i = 1, ..., d), contains the eigenvalues
of the matrix ΩmΩ−1

1 and the columns of the nonsingular W are the related eigenvectors (that
are the same for all m by construction). When M = 2, the decomposition (18) always exists,
but for M ≥ 3 its existence requires that the matrices share the common eigenvectors in W .
This is, however, testable.

Lanne, Lütkepohl, and Maciejowsla (2010, Proposition 1) show that for a given ordering
of the eigenvalues, W is unique apart from changing all signs a column, as long as for all
i ̸= j ∈ ¶1, ..., d♢ there exists an m ∈ ¶2, ..., M♢ such that λmi ̸= λmj (for m = 1, Λm = Id

and λm1 = · · · = λmd = 1). A locally unique B-matrix that ampliĄes a constant sized
structural shock according to the conditional variance of the reduced form error is therefore
obtained as

Bt = W (
M1
∑

m=1

αm,tΛm +
M
∑

m=M1+1

αm,tωm,tΛm)1/2. (19)

Since B−1
t ΩmB′−1

t = Λm(
∑M1

n=1 αn,tΛn +
∑M

n=M1+1 αn,tωn,tΛn)−1, the B-matrix (19) simulta-
neously diagonalizes Ω1, ..., ΩM , and Ωu,t (and thereby also Ω1,t, ..., ΩM,t) for each t so that
Cov(et♣Ft−1) = Id.

2.4. IdentiĄcation of the structural shocks

With the decomposition (18) of Ω1, ..., ΩM and the B-matrix (19), a statistical identiĄcation
of the shocks is achieved as long as each pair of the eigenvalues is distinct for some m. In order
to identify structural shocks with economic interpretations, they need to be uniquely related
to the economic shocks through the constraints on the B-matrix (or equally W ) that only the
shock of interest satisĄes. Virolainen (2022b, Proposition 1) gives formal conditions for global
identiĄcation of any subset of the shocks when the relevant pairs eigenvalues are distinct in
some regime. He also derives conditions for globally identifying some of the shocks when one
of the relevant pairs of the eigenvalues is identical in all regimes. For convenience, we repeat
the conditions in the former case below, but in the latter case, we refer to Virolainen (2022b,
where also the following Proposition is proven).
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Proposition 1 Suppose Ωm = WΛmW ′, m = 1, ..., M , where the diagonal of Λ = diag(λm1, ..., λmd),
λmi > 0 (i = 1, ..., d), contains the eigenvalues of the matrix ΩmΩ−1

1 and the columns of the
nonsingular W are the related eigenvectors. Then, the last d1 structural shocks are uniquely
identified if

1. for all j > d − d1 and i ̸= j there exists an m ∈ ¶2, ..., M♢ such that λmi ̸= λmj,

2. the columns of W in a way that for all i ̸= j > d − d1, the ith column cannot satisfy the
constraints of the jth column as is nor after changing all signs in the ith column, and

3. there is at least one (strict) sign constraint in each of the last d1 columns of W .

Condition 3 Ąxes the signs in the last d1 columns of W , and therefore the signs of the instan-
taneous effects of the corresponding shocks. However, since changing the signs of the columns
is effectively the same as changing the signs of the corresponding shocks, and the structural
shock has a distribution that is symmetric about zero, this condition is not restrictive. The
assumption that the last d1 shocks are identiĄed is not restrictive either, as one may always
reorder the structural shocks accordingly.

For example, if d = 3, λm1 ̸= λm3 for some m, and λm2 ̸= λm3 for some m, the third structural
shock can be identiĄed with the following constraints:

Bt =







∗ ∗ ∗
+ + −
+ + +






or







− ∗ +
− + −
∗ + +






or







+ 0 −
∗ ∗ ∗
+ ∗ +






(20)

and so on, where ”∗” signiĄes that the element is not constrained, ”+” denotes strict positive
and ” − ” a strict negative sign constraint, and ”0” means that the element is constrained to
zero. Because imposing zero or sign constraints on W equals to placing them on Bt, they may
be justiĄed economically. Furthermore, besides a single sign constraint in each column, the
constraints are over-identifying and can thus be also justiĄed statistically. Sign constraints,
however, donŠt reduce the dimension of the parameter space, making some of the measures
such as the conventional likelihood ratio test and information criteria unsuitable for testing
them. Quantile residual diagnostics, on the other hand, can be used to evaluate how well the
restricted model is able to encapsulate the statistical properties of the data compared to the
unrestricted alternative.

If condition 1 of Proposition 1 is strengthened to state that for all i ̸= j there exists an
m ∈ ¶2, ..., M♢ such that λmi ̸= λmj , the model is statistically identiĄed even though only
the last d1 structural shocks have been identiĄed with the proposition. Consequently, the
constraints imposed in condition 2 become testable. If it cannot be assumed that all the
pairs of the eigenvalues are distinct in some regime, then the testing problem is nonstandard
and the conventional asymptotic distributions of likelihood ratio and Wald test statistics
become unreliable. Note, however, that since placing zero or sign constraints on W equals to
placing them on the B-matrix (19), the constraints imposed in condition 2 can be justiĄed
economically as usual.

3. Estimation
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3.1. Log-likelihood function

gmvarkit employs the method of maximum likelihood (ML) for estimating the parameters
of the G-StMVAR model. Even the exact log-likelihood function is available, as the sta-
tionary distribution p consecutive observations in known. Suppose the observed time series
is y−p+1, ..., y0, y1, ..., yT and that the initial values are stationary. Then, the log-likelihood
function of the G-StMVAR model takes the form

L(θ) = log

(

M
∑

m=1

αmdm,dp(y0; 1p ⊗ µm, Σm,p, νm)



+
M
∑

m=1

lt(θ), (21)

where dm,dp(·; 1p ⊗ µm, Σm,p, νm) is deĄned in (11) and

lt(θ) = log





M1
∑

m=1

αm,tnd(yt; µm,t, Ωm) +
M
∑

m=M1+1

αm,ttd(yt; µm,t, Ωm,t, νm + dp)



 . (22)

If stationarity of the initial values seems unreasonable, one can condition on the initial values
and base the estimation on the conditional log-likelihood function, which is obtained by
dropping the Ąrst term on the right hand side of (21).

Virolainen (2022a, Theorem 3) shows that the ML estimator of the G-StMVAR model is
strongly consistent and has the conventional limiting distribution under the conventional
high-level conditions. In the case of a GMVAR model (M1 = M), however, establishing
asymptotic normality of the ML estimator requires less unveriĄed assumptions (Kalliovirta
et al. 2016, Theorem 3).

If there are two regimes in the model (M = 2), the structural G-StMVAR model is ob-
tained from estimated reduced form model by decomposing the covariance matrices Ω1, ..., ΩM

as in (18). If M ≥ 3 or overidentifying constraints are imposed on Bt through W , the
model can be reparametrized with W and Λm (m = 2, ..., M) instead of Ω1, ..., ΩM , and
the log-likelihood function can be maximized subject to the new set of parameters and con-
straints.1 In this case, the decomposition (18) is plugged in to the log-likelihood function and
vech(Ω1), ..., vech(ΩM ) are replaced with vec(W ) and λ2, ...,λM in the parameter vector θ,
where λm = (λm1, ..., λmd).

3.2. Two-phase estimation procedure

Finding the ML estimate amounts maximizing the log-likelihood function (21) (and (22))
over a high dimensional parameter space satisfying the constraints summarized in Virolainen
(2022a, Assumption 1). Due to the complexity of the log-likelihood function, numerical op-
timization methods are required. The maximization problem can, however, be challenging in
practice. This is particularly due to the mixing weightsŠ complex dependence on the preced-
ing observations, which induces a large number of modes to the surface of the log-likelihood
function, and large areas to the parameter space where it is Ćat in multiple directions. Also,
the popular EM algorithm (Redner and Walker 1984) is virtually useless here, as at each
maximization step one faces a new optimization problem that is not much simpler than the

1Namely, instead of constraining vech(Ω1), ..., vech(ΩM ) so that Ω1, ..., ΩM are positive definite, we impose
the constraints λmi > 0 for all m = 2, ..., M and j = 1, ..., d.
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original one. Following Meitz, Preve, and Saikkonen (2018), Meitz et al. (2021), and Viro-
lainen (2021, 2018), we therefore employ a two-phase estimation procedure in which a genetic
algorithm is used to Ąnd starting values for a gradient based method.

The genetic algorithm in gmvarkit is, at core, mostly based on the description by Dorsey and
Mayer (1995) but several modiĄcations have been deployed to improve its performance. The
modiĄcations include the ones proposed by Patnaik and Srinivas (1994) and Smith, Dike, and
Stegmann (1995) as well as further adjustments that take into account model speciĄc issues
related to the mixing weightsŠ dependence on the preceding observations. For a more detailed
description of the genetic algorithm and its modiĄcations, see Virolainen (2021, Appendix
A), where the genetic algorithm is discussed in the univariate context. After running the
genetic algorithm, the estimation is Ąnalized with a variable metric algorithm (Nash 1990,
algorithm 21, implemented by R Core Team 2020) using central difference approximation for
the gradient of the log-likelihood function (see Section 3.4).

3.3. Examples of unconstrained estimation

In this section, we demonstrate how to estimate GSMVAR models with gmvarkit and provide
several examples in order to illustrate various frequently occurring situations. In addition to
the ordinary estimation, we particularly show how a GSMVAR model can be built based on
a local-only maximum point when the ML estimate seems unreasonable. We also consider
the estimation of the appropriate G-StMVAR model when the estimated StMVAR model
contains overly large degrees of freedom estimates (see the related discussion in Virolainen
2022a). In the examples, we only consider p = 1 models for simplicity and because then the
code outputs Ąt in the margins better, estimation times are shorter, etc. This order may not
be best in the modeling perspective, however.

In gmvarkit, the GSMVAR models are deĄned as class gsmvar S3 objects, which can be
created with given parameter values using the constructor function GSMVAR (see Section 6) or
by using the estimation function fitGSMVAR, which estimates the parameters and then builds
the model. For estimation, fitGSMVAR needs to be supplied with a univariate time series
and the arguments specifying the model. The necessary arguments for specifying the model
include the autoregressive order p, the number of mixture components M, and model, which
should be either "GMVAR", "StMVAR", or "G-StMVAR". For GMVAR and StMVAR models, the
argument M is a positive integer, whereas for the G-StMVAR model it is a length two numeric
vector specifying the number of GMVAR type regimes in the Ąrst element and the number
of StMVAR type regimes in the second.

Additional arguments may be supplied to fitGSMVAR in order to specify, for example, whether
the exact log-likelihood function should be used instead of the conditional one (conditional),
how many estimation rounds should be performed (ncalls), and how many central processing
unit (CPU) cores should be used in the estimation (ncores). Some of the estimation rounds
may end up in local-only maximum points or saddle points, but reliability of the estimation
results can be improved by increasing the number of estimation rounds. A large number of
estimation rounds may be required particularly when the number of mixture components is
large, as the surface of the log-likelihood function becomes increasingly more challenging. It
is also possible to adjust the settings of the genetic algorithm that is used to Ąnd the starting
values. The available options are listed in the documentation of the function GAfit to which
the arguments adjusting the settings will be passed.



12 A Family of Mixture Autoregressive Models in R

In general, we recommend being conservative with choice of M due to the iden-
tifation problems induced if the number of regimes is chosen too large. Also,
estimation of models that contain more than two regimes can be extremely chal-
lenging. Another important thing to know about estimation is that the estimation
algorithm performs very poorly if some of the AR coefficients very large, signif-
cantly larger than one. This means that you need scale each component time
series so that they vary approximately in the same magnitude. For instance,
typically in macroeconomic time series, log-differences should be multiplied by
hundred. If the suitable scales are not obvious, you can try out different scales
and estimate linear VARs with your favorite package to see whether the AR co-
effients are in a reasonable range. When a suitable scale is found, proceed to the
GSMVAR models.

We illustrate the use of gmvarkit with a quarterly series consisting of two U.S. variables: the
percentage change of real GDP and the percentage change of GDP implicit price deĆator, cov-
ering the period from 1959Q1 to 2019Q4. The following code Ąts a StMVAR(p = 1, M = 2)
this model to this series (gdpdef) using the conditional log-likelihood function and perform-
ing 16 estimation rounds with 8 CPU cores. In practice, hundreds or even thousands
of estimation rounds is often required to obtain reliable results. The larger the
dimension of the series is and the larger the order of the model is, the more esti-
mation rounds is required. We use only 16 estimation rounds in this simplistic example
to shorten the estimation time, knowing beforehand that the given seeds produce the desired
result (in this simplistic case, majority the estimation rounds end up in the MLE anyway,
though).

The argument seeds supplies the seeds that initialize the random number generator at the
beginning of each call to the genetic algorithm, thereby yielding reproducible results.

R> library(gmvarkit)

R> data("gdpdef", package="gmvarkit")

R> fit12t <- fitGSMVAR(gdpdef, p=1, M=2, model="StMVAR", ncalls=16, ncores=8,

+ seeds=1:16)

Using 8 cores for 16 estimations rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=26s

Results from the genetic algorithm:

The lowest loglik: -277.038

The mean loglik: -258.416

The largest loglik: -252.168

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s

Results from the variable metric algorithm:

The lowest loglik: -276.974

The mean loglik: -252.439

The largest loglik: -243.719

Calculating approximate standard errors...

Finished!

Warning messages:
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1: In warn_df(p = p, M = M, params = params, model = model) :

The model contains overly large degrees of freedom parameters. Consider

switching to the appropriate G-StMVAR model by setting the corresponding

regimes to GMVAR type with the function 'stmvar_to_gstmvar'.

2: In warn_eigens(ret) :

Regime 2 has near-singular error term covariance matrix! Consider

building a model from the next-largest local maximum with the function

'alt_gsmvar' by adjusting its argument 'which_largest'.

The progression of the estimation process is reported with a progress bar giving an estimate of
the remaining estimation time. Also statistics on the spread of the log-likelihoods are printed
after each estimation phase. The progress bars are generated during parallel computing with
the package pbapply (Solymos and Zawadzki 2020).

The function throws a warning (the second warning) because at least one the regimes contains
a near-singular covariance matrix. This kind of unreasonable boundary points can often be
disregarded, and the model can be built based on a reasonable estimate found from a local
maximum that is clearly in the interior of the parameter space. Models based on the next-
best local maximum can be built with the function alt_gsmvar by adjusting its argument
which_largest.

The following code builds a StMVAR model based on the second-largest local maximum found
in the estimation:

R> fit12t_alt <- alt_gsmvar(fit12t, which_largest=2)

Warning message:

In warn_df(p = p, M = M, params = params, model = model) :

The model contains overly large degrees of freedom parameters. Consider

switching to the appropriate G-StMVAR model by setting the corresponding

regimes to GMVAR type with the function 'stmvar_to_gstmvar'.

The estimates can be examined with the print.

R> print(fit12t_alt)

Reduced form StMVAR model:

p = 1, M = 2, d = 2, #parameters = 21, #observations = 244 x 2,

conditional log-likelihood, intercept parametrization, no AR parameter

constraints

Regime 1

Mixing weight: 0.83

Regime means: 0.78, 0.54

Df parameter: 7.57

Y phi0 A1 Omega 1/2

1 y1 = [ 0.55 ] + [ 0.33 -0.04 ] y1.1 + ( [ 0.42 0.00 ] ) eps1
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2 y2 [ 0.12 ] [ 0.05 0.71 ] y2.1 ( ARCH_mt [ 0.00 0.04 ] ) eps2

Regime 2

Mixing weight: 0.17

Regime means: 0.66, 1.67

Df parameter: 92497.86

Y phi0 A1 Omega 1/2

1 y1 = [ 1.60 ] + [ 0.13 -0.61 ] y1.1 + ( [ 1.21 -0.04 ] ) eps1

2 y2 [ 0.48 ] [ -0.03 0.72 ] y2.1 ( ARCH_mt [ -0.04 0.14 ] ) eps2

The parameter estimates are reported for each mixture component separately so that the
estimates can be easily interpreted. Each regimeŠs autoregressive formula is presented in the
form

yt = φm,0 + Am,1yt−1 + ... + Am,pyt−p + Ω
1/2
m,tεm,t. (23)

If Ω
1/2
m,t is time varying, it printed in the form Ω

1/2
m,t = (ARCH_mtΩm)1/2 where ARCH_mt is

the ωm,t deĄned in (16). No numerical value is given to the ARCH scalar, as it is time-varying.
The other statistics are listed above the formula, including the mixing weight pameter αm,
the unconditional mean µm, and the degrees freedom parameter νm.

The above printout shows that the second regimeŠs degrees of freedom parameter estimate is
very large, which might induce numerical problems. However, since a StMVAR model with
some degrees of freedom parameters tending to inĄnity coincides with the G-StMVAR model
with the corresponding regimes switched to GMVAR type, one may avoid the problems by
switching to the appropriate G-StMVAR model (see Virolainen 2022a). Switching to the
appropriate G-StMVAR model is recommended also because it removes the redundant de-
grees of freedom parameters from the model, thereby reducing its complexity. The function
stmvar_to_gstmvar does this switch automatically by Ąrst removing the large degrees of free-
dom parameters and then estimating the G-StMVAR model with a variable metric algorithm
(Nash 1990, algorithm 21) using the induced parameter vector as the initial value.

To exemplify, the following code switches all the regimes of the StMVAR model fit12t_alt

with a degrees of freedom parameter estimate larger than 100 to GMVAR type, and then
estimates the corresponding G-StMVAR model.

R> fit12gs <- stmvar_to_gstmvar(fit12t_alt, maxdf=100)

We use the summary method to obtain a more detailed printout of the estimated the G-
StMVAR model:

R> summary(fit12gs)

Reduced form G-StMVAR model:

p = 1, M1 = 1, M2 = 1, d = 2, #parameters = 20, #observations = 244 x 2,

conditional log-likelihood, intercept parametrization, no AR parameter

constraints

log-likelihood: -247.50, AIC: 534.99, HQIC: 563.13, BIC: 604.85
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Regime 1 (GMVAR type)

Moduli of 'bold A' eigenvalues: 0.75, 0.10

Cov. matrix 'Omega' eigenvalues: 1.21, 0.14

Mixing weight: 0.17

Regime means: 0.66, 1.67

Y phi0 A1 Omega 1/2

1 y1 = [ 1.60 ] + [ 0.13 -0.61 ] y1.1 + [ 1.21 -0.04 ] eps1

2 y2 [ 0.48 ] [ -0.03 0.72 ] y2.1 [ -0.04 0.14 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.000 -0.087

[2,] -0.087 1.000

Regime 2 (StMVAR type)

Moduli of 'bold A' eigenvalues: 0.70, 0.34

Cov. matrix 'Omega' eigenvalues: 0.42, 0.04

Mixing weight: 0.83

Regime means: 0.78, 0.54

Df parameter: 7.57

Y phi0 A1 Omega 1/2

1 y1 = [ 0.55 ] + [ 0.33 -0.04 ] y1.1 + ( [ 0.42 0.00 ] ) eps1

2 y2 [ 0.12 ] [ 0.05 0.71 ] y2.1 ( ARCH_mt [ 0.00 0.04 ] ) eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.000 0.014

[2,] 0.014 1.000

Print approximate standard errors with the function 'print_std_errors'.

In the G-StMVAR model, estimates for GMVAR type regimes are reported before StMVAR
type regimes, in a decreasing order according to the mixing weight parameter estimates. As
shown above, the model fit12gs incorporates one GMVAR type regime and one StMVAR
type regime. Estimates of the unconditional mean, the Ąrst p autocovariances and autocor-
relations (including the unconditional covariance matrix) can be obtained from the element
$uncond_moments of the model object. The conditional moments calculated using the data
are available for the process ($total_cmeans and $total_ccovs) as well as for the regimes
separately ($regime_cmeans and $regime_ccovs). These conditional moments can be con-
veniently plotted along the series with the function cond_moment_plot.

Approximate standard errors can be printed with the function print_std_errors, which
prints the standard errors in the same form as the print method prints the estimates. Note
that the last mixing weight parameter estimate does not have an approximate standard error
because it is not parametrized. Likewise, there is no standard error for the intercepts if
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mean parametrization is used (by setting parametrization = "mean" in fitGSMVAR) and
vice versa. In order to obtain standard errors for the regimewise unconditional means or
intercepts, one can easily swap between the mean and intercept parametrizations with the
function swap_parametrization.

To exemplify, the following code prints approximate standard errors for the model fit12gs:

R> print_std_errors(fit12gs)

Reduced form model:

p = 1, M = 2, conditional log-likelihood, intercept parametrization,

no AR parameter constraints

APPROXIMATE STANDARD ERRORS

Regime 1 (GMVAR type)

Mixing weight: 0.124

Y phi0 A1 Omega 1/2

1 Y1 = [ 0.759 ] + [ 0.149 0.386 ] Y1.1 + [ 0.264 0.061 ] eps1

2 Y2 [ 0.234 ] [ 0.050 0.118 ] Y2.1 [ 0.061 0.029 ] eps2

Regime 2 (StMVAR type)

Df parameter: 2.740

Y phi0 A1 Omega 1/2

1 Y1 = [ 0.127 ] + [ 0.079 0.196 ] Y1.1 + ( [ 0.070 0.011 ] eps1

2 Y2 [ 0.037 ] [ 0.024 0.064 ] Y2.1 ( ARCH_mt [ 0.011 0.008 ] eps2

Missing values are reported when gmvarkit is not able to calculate the standard error. This
typically happens either because there is an overly large degrees of freedom parameter estimate
in the model or because the estimation algorithm did not stop a local maximum. In the
former case, switch to the appropariate G-StMVAR with the function stmvar_to_gstmvar.
In the latter case, make sure the estimate in not an unreasonable near-the-boundary point.
If it is, it might appropriate the consider the next-best local maximum with the function
alt_gsmvar. If it is not a near-the-boundary point, try running more iterations of the variable
metric algorithm with the function iterate_more. Section 3.4 discusses how to evaluate with
gmvarkit whether the estimate is a local maximum (and how to improve the reliability that
it is the global maximum).

Other statistics reported in the summary printout include the log-likelihood and values of the
information criteria, moduli of the eigenvalues of the Šbold AŠ matrix (see (5)) and eigenvalues
of the covariance matrix Ωm. If some of the moduli are very close to one, the related estimates
are near the boundary of the stationarity region. If some of the eigenvalues of Ωm close to zero,
the related estimates are near the boundary of positive-deĄniteness region. As mentioned
already multiple times, this kind of near-the-boundary point might be unreasonable and
maximize the log-likelihood function for a technical reason, so it might be more appropriate
to consider the next-best local maximum with the function alt_gsmvar.
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This is possible in gmvarkit, because the estimation function fitGSMVAR stores the estimates
from all the estimation rounds so that a GSMVAR model can be built based on any one of
them, most conveniently with the function alt_gsmvar. The desired estimation round can
be speciĄed either with the argument which_round or which_largest. The former speciĄes
the round in the estimation order, whereas the latter speciĄes it in a decreasing order of the
log-likelihoods.

3.4. Further examination of the estimates

In addition to examining the summary printout, it is often useful to visualize the model
by plotting the mixing weights together with the time series and the modelŠs (marginal)
stationary density together with a kernel density estimate of the time series. That is exactly
what the plot method for GSMVAR models does. The following command creates the time
series plot along with estimated mixing weights:

R> plot(fit12gs, type="series")

The resulting plot is presented in Figure 1.

And the following command creates the stationary density plot:

R> plot(fit12gs, type="density")

The resulting plot is presented in Figure 2. If the argument type is not speciĄed, both of the
Ągures will be plotted.

It is also sometimes interesting to examine the time series of (one-step) conditional means
and variances of the process along with the time series the model was Ątted to. This can be
done conveniently with the function cond_moment_plot, where the argument which_moment

should be speciĄed with "mean" or "variance" accordingly. In addition to the conditional
moment of the process, cond_moment_plot also displays the conditional means or variances of
the regimes multiplied by the mixing weights. Note, however, that the conditional variance of
the process is not generally the same as the weighted sum of regimewise conditional variances,
as it includes a component that encapsulates heteroskedasticity caused by variation in the
conditional mean.

The variable metric algorithm employed in the Ąnal estimation does not necessarily stop at
a local maximum point. The algorithm might also stop at a saddle point or near a local
maximum, when the algorithm is not able to increase the log-likelihood, or at any point,
when the maximum number of iterations has been reached. In the latter case, the estimation
function throws a warning, but saddle points and inaccurate estimates need to be detected
by the researcher.

It is well known that in a local maximum point, the gradient of the log-likelihood function
is zero, and the eigenvalues of the Hessian matrix are all negative. In a local minimum, the
eigenvalues of the Hessian matrix are all positive, whereas in a saddle point, some of them
are positive and some negative. Nearly numerically singular Hessian matrices occur when
the surface of the log-likelihood function is very Ćat about the estimate in some directions.
This particularly happens when the model contains overly large degrees of freedom parameter
estimates or the mixing weights αm,t are estimated close to zero for all t = 1, ..., T for some
regime m.
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Figure 1: The Ągure produced by the command plot(fit12gs, type="series"). On
the top, a quarterly series consisting of two U.S. variables: the percentage change of real
GDP and the percentage change of GDP implicit price deĆator, covering the period from
1959Q1 to 2019Q4. On the bottom, the estimated mixing weights of the G-StMVAR model
plot(fit12gs) Ątted the series.

Figure 2: The Ągure produced by the command plot(fit12gs, type="density"). Kernel
density estimates of the marginal series of the data the model was Ątted to (black solid line),
the stationary marginal density of the estimated G-StMVAR model (grey dashed line), and
the marginal stationary densities of the component processes multiplied by the mixing weight
parameter estimates (blue and red dashed lines).
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gmvarkit provides several functions for evaluating whether the estimate is a local maximum
point. The function get_foc returns the (numerically approximated) gradient of the log-
likelihood function evaluated at the estimate, and the function get_soc returns eigenvalues of
the (numerically approximated) Hessian matrix of the log-likelihood function evaluated at the
estimate. The numerical derivatives are calculated using a central difference approximation

∂L(θ)

∂θi
≈

f(θ + h(i)) − f(θ − h(i))

2h
, h > 0, (24)

where θi is the ith element of θ and h(i) = (0, ..., 0, h, 0, ..., 0) contains h as its ith element. By
default, the difference h = 6 · 10−6 is used for all parameters except for overly large degrees of
freedom parameters, whose partial derivatives are approximated using larger differences. The
difference is increased for large degrees of freedom parameters, because the limited precision
of the Ćoat point presentation induces artiĄcially rugged surfaces to the their proĄle log-
likelihood functions, and the increased differences diminish the related numerical error. On
the other hand, as the surface of the proĄle log-likelihood function is very Ćat about a large
degrees of freedom parameter estimate, large differences work well for the approximation.

For example, the following code calculates the Ąrst order condition for the G-StMVAR model
fit12gs:

R> get_foc(fit12gs)

[1] 1.475392e-03 2.520058e-03 1.593868e-03 -4.325443e-03

[5] 3.426033e-03 1.272343e-03 -7.762371e-04 -4.553748e-03

[9] 3.181280e-03 3.919771e-03 -2.321276e-02 4.170381e-03

[13] -1.782989e-02 3.166647e-03 -3.229744e-03 -3.738130e-03

[17] -9.082465e-03 2.232360e-02 -7.895506e-03 9.746278e-06

and the following code calculates the second order condition:

R> get_soc(fit12gs)

[1] -1.329154e-01 -1.389172e+00 -1.273009e+01 -1.865806e+01

[5] -2.067262e+01 -5.037907e+01 -8.094178e+01 -1.070554e+02

[9] -1.715455e+02 -2.124879e+02 -2.769413e+02 -3.371079e+02

[13] -4.467047e+02 -1.104002e+03 -1.130339e+03 -1.261037e+03

[17] -1.820865e+03 -9.262083e+03 -1.302900e+04 -3.456585e+04

All eigenvalues of the Hessian matrix are negative, which points to a local maximum, but the
gradient of the log-likelihood function seems to somewhat deviate from zero. The gradient
might be inaccurate, because it is based on a numerical approximation. It is also possible
that the estimate is inaccurate, because it is based on approximative numerical estimation,
and the estimates are therefore not expected to be exactly accurate. Whether the estimate is
a local maximum point with accuracy that is reasonable enough, can be evaluated by plotting
the graphs of the proĄle log-likelihood functions about the estimate. In gmvarkit, this can be
done conveniently with the function profile_logliks.

The exemplify, the following command plots the graphs of proĄle log-likelihood functions of
the estimated G-StMVAR model fit12gs:
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Figure 3: The Ągure produced by the command profile_logliks(fit12gs, scale=0.02,

precision=200). The graphs of the proĄle log-likelihood functions of the G-StMVAR model
drawn about the estimate. The red vertical lines denote the estimate.

R> profile_logliks(fit12gs, scale=0.02, precision=200)

The resulting plot is presented in Figure 3.

The output shows that the estimateŠs accuracy is reasonable, as changing any individual
parameter value marginally would not increase the log-likelihood much. The argument scale

can be adjusted to shorten or lengthen the interval shown in the horizontal axis. If one zooms
in enough by setting scale to a very small number, it can be seen that the estimate is not
exactly at the local maximum, but it is so close that moving there would not increase the
log-likelihood notably. The argument precision can be adjusted to increase the number of
points the graph is based on. For faster plotting, it can be decreased, and for more precision,
it can be increased. The argument which_pars is used to specify the parameters whose
proĄle log-likelihood functions should be plotted. This argument is particularly useful when
creating as many plots as there are parameters in the model to a single Ągure would cause the
individual plots to be very small. In such a case, proĄle log-likelihood functions for subsets
of the parameters can be plotted separately by specifying this argument accordingly.

We have discussed tools that can be utilized to evaluate whether the found estimate is a local
maximum with a reasonable accuracy. It is, however, more difficult to establish that the
estimate is the global maximum. With gmvarkit, the best way to increase the reliability that
the found estimate is the global maximum, is to run more estimation rounds by adjusting the
argument ncalls of the estimation function fitGSMVAR.

If the model is very large, a very large number of estimation rounds may be required to
Ąnd the global maximum. If there are two regimes in the model, p is reasonable, and the
dimension of the time series at most four, the required number of estimation rounds typically
varies from several hundred to several thousand depending on the model and the data. In the
simpler models, less estimation rounds are required. In the larger models, and in particular
if M > 2 or d > 4, a signiĄcantly large number of estimation rounds may be required obtain
the MLE. Another thing that makes the estimation more challenging, are exotic parameter
constraints that do not reduce the dimension of the parameter much. Constraints that greatly
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reduce complexity of the parameter space (such as constraining the autoregressive matrices
to be identical in all regimes2), on the other hand, make the estimation easier and reliable
estimation of such models thereby require less estimation rounds.

3.5. Estimation of the structural GSMVAR model

The structural GSMVAR models are estimated similarly to the reduced form version, expect
that the model is parametrized with W and λmi, m = 2, ..., M , i = 1, ..., d instead of the
covariance matrices Ωm, m = 1, ..., M . The estimation is can be done with the function
fitGSMVAR but now the argument structural_pars needs to be supplied with a list providing
the constraints on W (which equally imposes the constraints on the B-matrix) and optionally
linear constraints on the λmi parameters.

The list structural_pars should contain at least the element W which is a (dxd) matrix matrix
with its entries imposing constraints on W : NA indicating that the element is unconstrained,
a positive value indicating strict positive sign constraint, a negative value indicating strict
negative sign constraint, and zero indicating that the element is constrained to zero. The
element named C_lambda is optional. If speciĄed it should be a (d(M − 1) × r) constraint
matrix that satisĄes (λ2, ..., λM ) = Cλγ where λm = (λm1, ..., λmd) and γ is the new (rx1)
parameter subject to which the model is estimated (similarly to AR parameter constraints).
The entries of C_lambda must be either positive or zero. Ignore (or set to NULL) if the
eigenvalues λmi should not be constrained. Note that other constraints than constraining
some of the λmi to be identical are not recommended but if such constraints are imposed, the
argument lambda_scale in the genetic algorithm (see ?GAfit) should be adjusted accordingly.
If some of the λmi are constrained to be identical, make sure the appropriate zero constraints
placed in the W matrix, because otherwise the MLE does not identify and you probably wonŠt
obtain any useful estimates (see Virolainen 2022a, Proposition 2).

Reliable estimation of structural GSMVAR models typically requires much more
estimation rounds than the estimation of the reduced form models. However,
when M = 2, every reduced form model has an implied statistically identiĄed
structural model, which can be built without any additional estimation (this will
be discussed next). We recommend considering this implied model Ąrst. Then,
if overidentifying constraints are to be imposed on the B-matrix (or equally W ),
we recommend using the unrestricted estimate to create an initial guess for the
constrained parameter vector and pass this to the genetic algorithm as an initial
population. See the help page ?GAfit for the arguments that can be passed by fitGSMVAR

to the genetic algorithm. Create the initial guess for the parameter vector by using the form
given in documentation of the argument initpop. If M ̸= 2, the structural model needs to
be estimated in the normal way with fitGSMVAR, however.

Building structural model based on a reduced form model

If the number of regimes is two (M = 2), a structural model can be built based on a re-
duced form model, because the matrix decomposition used in the simultaneous diagonaliza-
tion of the error term covariance matrices always exists. This can be done with function
gsmvar_to_sgsmvar which should be supplied with the reduced form model, and it then re-

2Models constrained in this way can often be reliably estimated with a reasonable number of estimation
rounds even when M > 2
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turns a corresponding structural model. After creating the structural model, the columns of
W can be reordered with the function reorder_W_columns which also reorders all λmi ac-
cordingly (and hence the resulting model will coincide with the original reduced form model).
Also, all signs any column of W can be swapped with the function swap_W_signs.

The exemplify, the following code creates statistically identiĄed structural model based on
the reduced form model fit12gs and then prints the estimates.

R> fit12gss <- gsmvar_to_sgsmvar(fit12gs)

R> fit12gss

Structural G-StMVAR model:

p = 1, M1 = 1, M2 = 1, d = 2, #parameters = 20, #observations = 244 x 2,

conditional log-likelihood, intercept parametrization, no AR parameter

constraints

Regime 1 (GMVAR type)

Mixing weight: 0.17

Regime means: 0.66, 1.67

Y phi0 A1 Omega 1/2

1 y1 = [ 1.60 ] + [ 0.13 -0.61 ] y1.1 + [ 1.21 -0.04 ] eps1

2 y2 [ 0.48 ] [ -0.03 0.72 ] y2.1 [ -0.04 0.14 ] eps2

Regime 2 (StMVAR type)

Mixing weight: 0.83

Regime means: 0.78, 0.54

Df parameter: 7.57

Y phi0 A1 Omega 1/2

1 y1 = [ 0.55 ] + [ 0.33 -0.04 ] y1.1 + ( [ 0.42 0.00 ] ) eps1

2 y2 [ 0.12 ] [ 0.05 0.71 ] y2.1 ( ARCH_mt [ 0.00 0.04 ] ) eps2

Structural parameters:

W lamb2

1 [ 0.95 -0.55 ] [ 0.36 ]

2 [ 0.16 0.34 ] , [ 0.28 ]

The B-matrix (or equally W) is subject to 0 zero constraints and 2 sign

constraints. The eigenvalues lambda_{mi} are not subject to linear constraints.

Estimates for the structural parameters, W and the eigenvalues, are printed last.

If there is only one mixture component, i.e., M == 1, gsmvar_to_sgsmvar returns a symmetric
and pos. def. square root matrix of the error term covariance matrix by default. But one
may also employ lower triangular Cholesky identiĄcation by setting cholesky = TRUE in the
arguments.
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Estimating overidentiĄed structural GSMVAR models

Sometimes is appropriate to impose overidentifying constraints on W (or equally the B-
matrix). With preliminary estimates from the just-identiĄed model in the case M > 1 or any
model in the case M = 1, it is convenient to use the function estimate_sgsmvar. It takes in
a reduced form or structural GSMVAR model as a class ŠgsmvarŠ object and new constraints
in the argument new_W as a matrix expressing the sign or zero constraints. Strictly positive
or negative elements signify strict sign constraints, zeros zero constraints, and NA values that
the element is unconstrained.

estimate_sgsmvar then creates preliminary estimate based on the supplied model and the
constraints, and then runs the two-phase estimation with settings of the genetic algorithm
such that the search is focused on the neighbourhood of the preliminary estimate. Thus, it will
lead to the correct ML estimate only if the unconstrained estimate is close to the constrained
one in the Ąrst place. It is therefore useful for imposing zero constraints for elements that are
close to zero in the unrestricted estimate, for instance.

It is important to make sure that supplied model readily satisĄes the sign con-
straints that are imposed. To achieve this, you can swap the signs in each column
of the W matrix with the function swap_W_signs. If the sign constraints are not
not readily satisĄe, the preliminary estimate switches the signs and will probably
lead to incorrect estimate.

estimate_sgsmvar can also be used to estimate models that are not identiĄed, i.e., one
regime models. If it supplied with a reduced form model, it will Ąrst apply the function
gsmvar_to_sgsmvar, then impose the constraints and Ąnally estimate the model.

3.6. Constrained estimation

Linear constraints on the autoregressive parameters

Imposing linear constraints on the autoregressive parameters of GMVAR model is straightfor-
ward in gmvarkit. The constraints are expressed in a somewhat general form which allows to
impose a wide class of constraints but one needs to take the time to construct the constraint
matrix carefully for each particular case.

We consider constraints of form

(φ1, ...,φM ) = Cψ, (25)

φm = (vec(Am,1), ..., vec(Am,p)) (pd2x1), m = 1, ..., M, (26)

C is known (Mpd2xq) constraint matrix (of full column rank) and ψ is unknown (qx1)
parameter vector.

The parameter vector for constrained model has the size ((M(d + d(d + 1)/2 + 1) + q − 1)x1)
and the form

θ = (ϕ1,0, ..., ϕM,0,ψ, α1, ..., αM−1,ν), (27)

where ψ is the (qx1) parameter vector containing constrained autoregressive parameters.
As in the case of regular models, instead of the intercept parametrization that takes use
of intercept terms ϕm,0, one may use the mean parametrization with regimewise means µm

instead (m = 1, ..., M).
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Examples of linear constraints

Consider the following two common uses of linear constraints: restricting the autoregressive
matrices to be the same for all regimes and constraining some AR parameters to zero. Of
course also some other constraints may be useful, but we chose to show illustrative examples
of these two, as they are taken use of in Kalliovirta et al. (2016).

Restricting AR matrices to be the same for all regimes

To restrict the AR matrices to be the same for all regimes, we want φm to be the same for all
m = 1, ..., M . The parameter vector ψ (qx1) then corresponds to any φm = φ, and therefore
q = pd2. For the constraint matrix we choose

C = [Ipd2 : · · · : Ipd2 ]′ (Mpd2xpd2), (28)

that is, M pieces of (pd2xpd2) diagonal matrices stacked on top of each other, because then

Cψ = (ψ, ...,ψ) = (φ, ...,φ). (29)

For instance, if there are two regimes in the model, the appropriate constraint matrix then
created with R as

R> p <- 1 # Any autoregressive order

R> d <- 2 # Whatever the dimension of the time series is

R> I_pd2 <- diag(p*d^2) # The appropriate diagonal matrix

R> (C1 <- rbind(I_pd2, I_pd2)) # Stack them on top of each other

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

[5,] 1 0 0 0

[6,] 0 1 0 0

[7,] 0 0 1 0

[8,] 0 0 0 1

The command fitGSMVAR(gdpdef, p=1, M=2, model="GMVAR", constraints=C1) would
then estimate a GMVAR(1, 2) model with the AR matrices constrained to be the same in
both regimes. In practice, you might want to adjust the number of CPU cores used, the of
estimation rounds, and set seeds. Notably, with the dimension of the time series being only
two and p = 1 with two regimes, almost all of the estimation rounds end up in the MLE.
Also, because model has the AR matrices constrained to be the same for all regimes, the
estimation is much easier than with freely estimated models.

Restricting AR parameters to be the same for all regimes and constraining non-diagonal
elements of coefficient matrices to be zero

The previous example shows how to restrict the AR parameters to be the same for all
regimes, but say we also want to constrain the non-diagonal elements of coefficient matri-
ces Am,i (m = 1, ..., M, i = 1, ..., p) to be zero. We have the constrained parameter ψ (qx1)
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representing the unconstrained parameters (φ1, ...,φM ), where by assumption φm = φ =
(vec(A1), ..., vec(Ap)) (pd2x1) and the elements of vec(Ai) (i = 1, ..., p) corresponding to the
diagonal are zero.

For illustrative purposes, letŠs consider a GMVAR model with autoregressive degree p = 2,
number of mixture components M = 2 and number of time series in the system d = 2. Then
we have

φ = (A1(1, 1), 0, 0, A1(2, 2), A2(1, 1), 0, 0, A2(2, 2)) (8x1) and (30)

ψ = (A1(1, 1), A1(2, 2), A2(1, 1), A2(2, 2)) (4x1). (31)

By a direct calculation, we can see that choosing the constraint matrix

C =



c̃

c̃

]

(Mpd2x4), (32)

where

c̃ =





























1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1





























(pd2x4) (33)

satisĄes Cψ = (φ, ...,φ).

The above constraint matrix can be created with R as

R> c_tilde <- matrix(0, nrow=2*2^2, ncol=4)

R> c_tilde[c(1, 12, 21, 32)] <- 1

R> C2 <- rbind(c_tilde, c_tilde)

R> C2

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 1 0 0

[5,] 0 0 1 0

[6,] 0 0 0 0

[7,] 0 0 0 0

[8,] 0 0 0 1

[9,] 1 0 0 0

[10,] 0 0 0 0

[11,] 0 0 0 0

[12,] 0 1 0 0

[13,] 0 0 1 0

[14,] 0 0 0 0

[15,] 0 0 0 0

[16,] 0 0 0 1
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The command fitGSMVAR(gdpdef, p=2, M=2, model="GMVAR", constraints=C2) would
then estimate a GMVAR(2, 2) model with the AR matrices constrained to be the same in
both regimes and the off-diagonal elements constrained to zero (again, you may want to adjust
the arguments ncalls, ncored, and seeds).

Constraining the unconditional means of some regimes to be the same

In addition to constraining the autoregressive parameters, gmvarkit allows to constrain the
unconditional means of some regimes to be the same. This feature is, however, only avail-
able for models that are parametrized with the unconditional means instead of intercepts
(because some of the estimation is always done with mean-parametrization and one cannot
generally swap the parametrization when constraints are imposed on means/intercepts). With
the mean-parametrization employed (by setting parametrization="mean"), one may deĄne
groups of regimes that have the same mean parameters using the argument same_means. For
instance, with three regime model (M = 3) the argument same_means=list(c(1, 3), 2)

sets the unconditional means of the Ąrst and third regimes to be the same while allows the
second regime to have different mean.

One can also combine linear constraints on the AR parameters with constraining some of
the means to be the same. This allows, for instance, to estimate a model in which only the
covariance matrix varies in time. To exemplify, the following code (which is not executed in
this vignette) estimates a GMVAR(p = 4, M = 2) model such that the unconditional means
and autoregression matrices are constrained be the same in both regimes. The resulting model
thereby has time-varying covariance matrix but otherwise it is linear.

R> I_pd2 <- diag(4*2^2) # The appropriate diagonal matrix for the constraint matrix

R> C3 <- rbind(I_pd2, I_pd2) # Stack them on top of each other

R> fit42cm <- fitGSMVAR(gdpdef, p=4, M=2, model="GMVAR", parametrization="mean",

+ same_means=list(1:2), constraints=C3, ncalls=16, ncores=8, seeds=1:16)

Using 8 cores for 16 estimations rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=31s

Results from the genetic algorithm:

The lowest loglik: -227.251

The mean loglik: -225.743

The largest loglik: -224.648

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s

Results from the variable metric algorithm:

The lowest loglik: -223.311

The mean loglik: -223.311

The largest loglik: -223.311

Calculating approximate standard errors...

Finished!

3.7. Testing parameter constraints



Savi Virolainen 27

One way to asses the validity of the imposed constraints is to compare the values of informa-
tion criteria of the constrained and unconstrained models. gmvarkit, however, also provides
functions for testing the constraints with the likelihood ratio test and Wald test, which are
applicable as the ML estimator of a GSMVAR model has the conventional asymptotic distri-
bution (as long as the model is correctly speciĄed and one is willing to assume the validity of
the required unveriĄed assumptions; see Virolainen 2022a, Theorem 3, and Kalliovirta et al.
(2016), Theorem 3). For a discussion on the likelihood ratio and Wald tests, see Buse (1982)
and the references therein, for example.

The likelihood ratio test considers the null hypothesis that the true parameter value θ0 satisĄes
some constraints imposed on these parameters (such that the constrained parameter space is
a subset of the parameter space, which is presented in Virolainen 2022a, Assumption 2 for the
GSMVAR models). Denoting by L̂U and L̂C the (maximized) log-likelihoods based on the
unconstrained and constrained ML estimates, respectively, the test statistic takes the form

LR = 2(L̂U − L̂C). (34)

Under the null, the test statistic is asymptotically χ2-distributed with the degrees of freedom
given by the difference in the dimensions of the unconstrained and constrained parameter
spaces. With gmvarkit, the likelihood ratio test can be calculated with the function LR_test,
which takes the unconstrained model (a class gsmvar object) as its Ąrst argument and the
constrained model as the second argument.

gmvarkit implements the Wald test of the null hypothesis

Aθ0 = c, (35)

where A is a (k × d) matrix with full row rank, c is a (k × 1) vector, θ0 is the true parameter
value, d is the dimension of the parameter space, and k is the number of constraints. The
Wald test statistic takes the form

W = (Aθ̂ − c)′[AJ (θ̂)−1A′]−1(Aθ̂ − c), (36)

where J (θ̂) is the observed information matrix evaluated at the ML estimate θ̂. Under the
null, the test statistic is asymptotically χ2-distributed with k degrees of freedom (which is
the difference in dimensions of the constrained and unconstrained parameter spaces). With
gmvarkit, the Wald test can be calculated with function Wald_test, which takes the estimated
unconstrained model (as a class gsmvar object) as the Ąrst argument, the matrix A as the
second argument, and the vector c as the third argument.

Note that the standard tests are not applicable if the number of GMVAR or StMVAR type
regimes is chosen too large, as then some of the parameters are not identiĄed, causing the
result of the asymptotic normality of the ML estimator to break down. This particularly
happens when one tests for the number of regimes in the model, as the under the null some
of the regimes are reduced from the model3 (see the related discussion in Virolainen 2022a).
Similar caution applies for testing whether a regime is of the GMVAR type against the
alternative that it is of the StMVAR type: then νm = ∞ under the null for the regime m
to be tested, which violates the assumption that the parameter value is in the interior of a
compact subset of the parameter space (see Virolainen 2022a, Theorem 3 and Assumption 1).

3Meitz and Saikkonen (2021) have, however, recently developed such tests for mixture models with Gaussian
conditional densities
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4. Quantile residual based model diagnostics

In the GSMVAR models, the empirical counterparts of the error terms εm,t in (8) cannot
be calculated, because the regime that generated each observation is unknown, making the
conventional residual based diagnostics unavailable. Therefore, gmvarkit utilizes so called
quantile residuals, which are suitable for evaluating adequacy of the GSMAR models.

Denote by yt, t = 1, 2, ..., the time series of interest and Ft−1 the σ-algebra generated by
the random variables or vectors ¶yt−j , j > 0♢. Moreover, let θ denote the relevant parameter
vector. Kalliovirta (2012) deĄnes univariate quantile residuals as

Rt,θ = Φ−1(F (yt;θ ♣ Ft−1)), (37)

where Φ(·)−1 is the standard normal quantile function and F (· ♣ Ft−1) is the conditional
distribution function of the considered model.

Kalliovirta and Saikkonen (2010) deĄne multivariate quantile residuals analogously to the
univariate ones but by taking into account the dependence of the component time series
from each other. Denote Aj−1 = σ(y1,t, ..., yj−1,t) and by f(·♣σ(Ft−1, Aj−1)) = fj−1,t−1(·) the
conditional density function conditional on the σ-algebra σ(Ft−1, Aj−1)

The conditional density function of the random vector yt can be expressed in a product form
by conditioning to the components yt in addition to the history Ft−1 as

f(yt; θ♣Ft−1) =
d
∏

j=1

fj−1,t−1(yj,t;θ), (38)

where yj,t is the jth component of yt and f0,t−1(y1,t;θ) = f1,t−1(y1,t;θ) is the marginal
conditional density function of y1,t conditional on Ft−1.

The conditional distribution functions corresponding to the density functions fj−1,t−1(·;θ) in
(38) are of the form

Fj−1,t−1(yj,t;θ) =

∫ yj,t

−∞
fj−1,t−1(u;θ)du. (39)

The multivariate quantile residuals are then deĄned as

Rt,θ =













R1t,θ

R2t,θ
...

Rdt,θ













=


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







Φ−1(F0,t−1(y1,t;θ))
Φ−1(F1,t−1(y2,t;θ))

...
Φ−1(Fd−1,t−1(yd,t;θ))













, (40)

and its empirical counterpart, rt,θ̂, is obtained by replacing the parameter θ with its maximum

likelihood estimate θ̂. Closed form expressions for the quantile residuals of the G-StMVAR
model (which encompasses GMVAR and StMVAR models as special cases) are derived in
Appendix B

For a correctly speciĄed GSMVAR model employing the ML estimator, the empirical coun-
terparts of multivariate quantile residuals are asymptotically multivariate standard normal
(Kalliovirta and Saikkonen 2010, Lemma 3). They can therefore be utilized in graphical
diagnostic simalarly to the conventional PearsonŠs residuals. For the graphical diagnostics,
gmvarkit provides function diagnostic_plot which plots the quantile residual time series,
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auto- and crosscorrelations of the quantile residuals, auto- and crosscorrelations of the squared
quantile residuals, and normal quantile-quantile plots as well as histrograms of the quantile
residuals.

Kalliovirta and Saikkonen (2010) also propose three diagnostic tests for testing normality,
autocorrelation, and conditional heteroskedasticity of the quantile residuals. The tests can be
based either on the data or on a simulation procedure. If the sample is short, tests based on
the data can be too forgiving, so to obtain more reliable test results the simulation procedure
is recommended (with sample size of at least several thousand). The tests can be calculated
with gmvarkit by using the function quantile_residual_tests. The simulation procedure
is employed if the argument nsim is set larger the number of observations (in each component
time series). In this case, nsim sets the length of the sample path used in the simulation proce-
dure. If one is concerned about autocorrelation or conditional heteroskedasticity in a specigic
lag, the (standardized) individual statistics discussed in Kalliovirta and Saikkonen (2010) can
be examined. The function quantile_residual_tests returns them automatically for the
speciĄed lags.

5. Impulse response analysis

5.1. Generalized impulse response function

We consider the generalized impulse response function (GIRF) (Koop, Pesaran, and Potter
1996) deĄned as

GIRF(n, δj , Ft−1) = E[yt+n♣δj , Ft−1] − E[yt+n♣Ft−1], (41)

where n is the chosen horizon, Ft−1 = σ¶yt−j , j > 0♢ as before, the Ąrst term in the RHS is
the expected realization of the process at time t + n conditionally on a structural shock of
magnitude δj ∈ R in the jth element of et at time t and the previous observations, and the
second term in the RHS is the expected realization of the process conditionally on the previous
observations only. GIRF thus expresses the expected difference in the future outcomes when
the speciĄc structural shock hits the system at time t as opposed to all shocks being random.

Due to the p-step Markov property of the SG-StMVAR model, conditioning on (the σ-algebra
generated by) the p previous observations yt−1 ≡ (yt−1, ..., yt−p) is effectively the same as con-
ditioning on Ft−1 at the time t and later. The history yt−1 can be either Ąxed or random, but
with random history the GIRF becomes a random vector, however. Using Ąxed yt−1 makes
sense when one is interested in the effects of the shock in a particular point of time, whereas
more general results are obtained by assuming that yt−1 follows the stationary distribution
of the process. If one is, on the other hand, concerned about a speciĄc regime, yt−1 can be
assumed to follow the stationary distribution of the corresponding component model.

In practice, the GIRF and its distributional properties can be approximated with a Monte
Carlo algorithm that generates independent realizations of the process and then takes the
sample mean for point estimate. If yt−1 is random and follows the distribution G, the GIRF
should be estimated for different values of yt−1 generated from G, and then the sample mean
and sample quantiles can be taken to obtain the point estimate and conĄdence intervals. The
algorithm implemented in gmvarkit is presented in an Appendix of Virolainen (2022b).
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Because the SG-StMVAR model allows to associate speciĄc features or economic interpre-
tations for different regimes, it might be interesting to also examine the effects of a struc-
tural shock to the mixing weights αm,t, m = 1, ..., M . We then consider the related GIRFs
E[αm,t+n♣δj ,yt−1] − E[αm,t+n♣yt−1] for which point estimates and conĄdence intervals can be
constructed similarly to (41).

In gmvarkit, the GIRF can be estimated with the function GIRF which should be supplied
with the estimated SG-StMVAR model or an SG-StMVAR model built with hand-speciĄed
parameter values using the function GSMVAR. The size of the structural shock can be set with
the argument shock_size. If not speciĄed, the size of one standard deviation is used; that is,
the size one. Among other arguments, the function may also be supplied with the argument
init_regimes which speciĄes from which regimesŠ stationary distributions the initial values
are generated from (if more than one regime is speciĄed, the initial values will be generated
from a mixture of the stationary distributions with the relative mixing proportions given by
the mixing weight parameters). If more than one regime is speciĄed, a mixture distribution
with weights given by the mixing weight parameters is used. Alternatively, one may specify
Ąxed initial values with the argument init_values. Note that the conĄdence intervals (whose
conĄdence level can be speciĄed with the argument ci) reĆect uncertainty about the initial
value only and not about the parameter estimates.

Due to the nonlinear nature of the model, GIRFs estimated from different starting values,
or with different sign or magnitude of the shock, generally move the variables differently.
Sometimes it is, however, of interest to scale the impulse responses so that they correspond to
movement of some speciĄc sign and magnitude of some speciĄc variable. In gmvarkit, this is
most conveniently achieved with the arguments scale and scale_type. The argument scale

can be speciĄed in order to scale the GIRFs to some of the shocks so that they correspond
to a speciĄc magnitude of instantaneous or peak response of some speciĄc variable. For
a single shock, it should a length three vector where the shock of interest is given in the
Ąrst element (an integer in 1, ..., d), the variable according to which the GIRFs should be
scaled in the second element (an integer in 1, ..., d), and the magnitude of the given variableŠs
instantaneous or peak response in the third element (a non-zero real number). If the GIRFs
of multiple shocks should be scaled, provide a matrix which has one column for each of
the shocks with the columns being the length three vectors described above. The argument
scale_type should be either "instant" or "peak" specifying whether you want to scale
according to the instantaneous movement of peak response. If "peak", the scale is based on
the largest magnitude of peak response in absolute value. Scaling according to peak response
wonŠt based on values after the horizon speciĄed in the argument "scale_horizon". Note
that if you scale the GIRFs, the scaled GIRFs of mixing weights can be outside the interval
from zero to one.

Because estimating the GIRF and their conĄdence intervals is computationally demanding,
parallel computing is taken use of to shorten the estimation time. The number of CPU cores
used can be set with the argument ncores. The objects returned by the GIRF function have
their own plot and print methods. Also, cumulative impulse responses of the speciĄed
variables can be obtained directly by specifying the argument which_cumulative.

5.2. Generalized forecast error variance decomposition

We consider the generalized forecast error variance decomposition (GFEVD) (Lanne and
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Nyberg 2016) that is deĄned for variable i, shock j, and horizon n as

GFEVD(n, yit, δj , Ft−1) =

∑n
l=0 GIRF(l, δj , Ft−1)2

i
∑d

k=1

∑n
l=0 GIRF(l, δk, Ft−1)2

i

, (42)

where n is the chosen and GIRF(l, δj , Ft−1)i is the ith element of the related GIRF (see also
the notation described for GIRF in the previous section). That is, the GFEVD is otherwise
similar to the conventional forecast error variance decomposition but with GIRFs in the place
of conventional impulse response functions. Because the GFEVDs sum to unity (for each
variable), they can be interpreted in a similar manner to the conventional FEVD.

In gmvarkit, the GFEVD can be estimated with the function GFEVD. As with the GIRF, the
GFEVD is dependent on the initial values. The type of the initial values is set with the
argument initval_type, and there are three options:

1. "data" which estimates the GIRFs for all possible length p histories in the data and
then the GIRFs in the GFEVD are obtained as the sample mean over those GIRFs.

2. "random" which generates the initial values from the stationary distribution of the
process or from the mixture of the stationary distributions of some speciĄc regime(s)
with the relative mixing proportions given by the mixing weight parameters. The initial
regimes can be set with the argument init_regimes. The GIRFs in the GFEVD are
obtained as the sample mean over the GIRFs estimated for the different random initial
values.

3. "fixed" which estimates the GIRFs for a single Ąxed initial value that is set with the
argument init_values.

The shock size is the same for all scalar components of the structural shock and it can be ad-
justed with the argument shock_size. If the GIRFs for some variables should be cumulative
before calculating the GFEVD, specify them with the argument which_cumulative. Finally,
note that the GFEVD objects have their own plot and print methods.

6. Building a GSMVAR model with speciĄc parameter values

The function GSMVAR facilitates building GSMVAR models without estimation, for instance,
in order to simulate observations from a GSMVAR process with speciĄc parameter values.
The parameter vector (of length M(d + d2p + d(d + 1)/2 + 2) − M1 − 1 for unconstrained
reduced form models) has the form θ = (ϑ1, ...,ϑM , α1, ..., αM−1,ν) where

ϑm = (φm,0, vec(Am,1), ..., vec(Am,p), vech(Ωm)), m = 1, ..., M, and (43)

ν = (νM1+1, ..., νM ). (44)

In the GMVAR model (when M1 = M), the vector ν is omitted, as the GMVAR model does
not contain degrees of freedom parameters. For models imposing additional constraints on the
paremeters, the parameter vectors are expressed in a different way. They are only presented
in the package documentation for brevity, because the hand-speciĄed parameter values can
be set to satisfy any constraints as is.
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In a structural GSMVAR model, the parameter vector has the form

θ = (φ1,0, ..., φM,0, vec(A1), ..., vec(AM ), vec(W ),λ1, ...,λM , α1, ..., αM−1,ν), (45)

Am = (vec(Am,1), ..., vec(Am,p)) (46)

λm = (λm1, ..., λmd). (47)

For constrained structural models (including constraints on the structural parameters), see
the documentation of GSMVAR (or any other relevant function).

In addition to the parameter vector, GSMVAR should be supplied with arguments p and M

specifying the order of the model similarly to the estimation function fitGSMVAR discussed
in Section 3.3. If one wishes to parametrize the model with the regimewise unconditional
means (µm) instead of the intercepts (φm,0), the argument parametrization should be set
to "mean" in which case the intercept parameters φm,0 are replaced with µm in the parameter
vector. By default, gmvarkit uses intercept parametrization.

To exemplify, we build a reduced form StMVAR p = 1, M = 1, d = 2 model. The model has
intercept parametrization and parameter values φ1,0 = (0, 1) vec(A1,1) = (0.2, 0.2, 0.2, −0.2),
vech(Ω2) = (1, 0.1, 1), and ν1 = 3. After building the model, we use the print method to
examine it:

R> params112 <- c(0, 1, 0.2, 0.2, 0.2, -0.2, 1, 0.1, 1, 3)

R> mod112 <- GSMVAR(p=1, M=1, d=2, params=params112, model="StMVAR")

R> mod112

Reduced form StMVAR model:

p = 1, M = 1, d = 2, #parameters = 10,

conditional log-likelihood, intercept parametrization, no AR parameter

constraints

Regime 1

Mixing weight: 1.00

Regime means: 0.22, 0.87

Df parameter: 3.00

Y phi0 A1 Omega 1/2

1 y1 = [ 0.00 ] + [ 0.20 0.20 ] y1.1 + ( [ 1.00 0.10 ] ) eps1

2 y2 [ 1.00 ] [ 0.20 -0.20 ] y2.1 ( ARCH_mt [ 0.10 1.00 ] ) eps2

It is possible to include data in the models built with GSMVAR by either providing the data
in the argument data when creating the model or by adding the data afterwards with the
function add_data. When the model is supplied with data, the mixing weights, one-step
conditional means and variances, and quantile residuals can be calculated and included in the
model. The function add_data can also be used to update data to an estimated GSMVAR
model without re-estimating the model.

7. Simulation and forecasting
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7.1. Simulation

gmvarkit implements the S3 method simulate for simulating observations from GSMVAR
processes (see ?simulate.gsmvar). The method requires the process to be given as a class
gsmvar object, which are typically created either by estimating a model with the function
fitGSMVAR or by specifying the parameter values by hand and building the model with the
constructor function GSMVAR. The initial values required to simulate the Ąrst p observations
can be either set by hand (with the argument init_values) or drawn from the stationary
distribution of the process (by default) or from a (mixture of) stationary distribution(s) of
given regime(s). The argument nsim sets the length of the sample path to be simulated.

To give an example, the following code sets the random number generator seed to one and
simulates 500 observations long sample from the StMVAR process built in Section 6:

R> mysim <- simulate(mod112, nsim=500, seed=1)

Our implementation of simulate returns a list containing the simulated sample path in
$sample, the mixture component that generated each observation in $component, and the
mixing weights in $mixing_weights.

7.2. Simulation based forecasting

Deriving multiple-steps-ahead point predictions and prediction intervals analytically for the
GSMVAR models is very complicated, so gmvarkit employs the following simulation-based
method. By using the last p observations of the data up to the date of forecasting as initial
values, a large number of sample paths for the future values of the process are simulated.
Then, sample quantiles from the simulated sample paths are calculated to obtain prediction
intervals, and the median or mean is used for point predictions. A similar procedure is also
applied to forecast future values of the mixing weights, which might be of interest because
the researcher can often associate speciĄc characteristics to different regimes.

Forecasting is most conveniently done with the predict method (see ?predict.gsmvar). The
available arguments include the number of steps ahead to be predicted (n_ahead), the number
sample paths the forecast is based on (nsim), possibly multiple conĄdence levels for prediction
intervals (pi), prediction type (pred_type), and prediction interval type (pi_type). The
prediction type can be either median, mean, or for one-step-ahead forecasts also the exact
conditional mean, cond_mean. The prediction interval type can be any of "two-sided",
"upper", "lower", or "none".

To exemplify, the following code forecasts the two-dimensional time-series of U.S. GDP and
GDP deĆator growth using the G-StMVAR(1, 1, 1) model fit12gs estimated in Section 3.3.
The forecast is 10 steps (quarters in this case) ahead, based on 10000 Monte Carlo repetitions
with the point forecast based on the mean of those repetitions. The prediction intervals are
two-sided with conĄdence levels 0.95 and 0.90. Finally, the argument mix_weights states
that also future values of the the mixing weights should be forecasted. After completing the
forecast, the function plots the results by default.

R> mypred <- predict(fit12gs, n_ahead=10, nsim=10000, pred_type="mean",

+ pi_type="two-sided", pi=c(0.95, 0.90),

+ mix_weights=TRUE)
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Related to Name Description

Estimation fitGSMVAR Estimate a GSMVAR model.
alt_gsmvar Build a GSMVAR model based on re-

sults from any estimation round.
stmvar_to_gstmvar Estimate a G-StMVAR model based

on a StMVAR (or G-StMVAR) model
with large degrees of freedom parame-
ters.

iterate_more Run more iterations of the variable
metric algorithm for a preliminary es-
timated GSMVAR model.

Estimates summary (method) Detailed printout of the estimates.
plot (method) Plot the series with the estimated mix-

ing weights and a kernel density esti-
mates of the (marginal) series with the
(marginal) stationary densities of the
model.

get_foc Calculate numerically approximated
gradient of the log-likelihood function
evaluated at the estimate.

get_soc Calculate eigenvalues of numerically
approximated Hessian of the log-
likelihood function evaluated at the es-
timate.

profile_logliks Plot the graphs of the proĄle log-
likelihood functions.

cond_moment_plot Plot the model implied one-step con-
ditional means or variances.

Diagnostics quantile_residual_tests Calculate quantile residual tests.
diagnostic_plot Plot quantile residual diagnostics.

Forecasting predict (method) Forecast future observations and mix-
ing weights of the process.

Simulation simulate (method) Simulate from a GSMVAR process.
Create model GSMVAR Construct a GSMVAR model based on

speciĄc parameter values.
Hypothesis testing LR_test Calculate likelihood ratio test.

Wald_test Calculate Wald test.
Other add_data Add data to a GSMVAR model

swap_parametrization Swap between mean and intercept
parametrizations

Table 1: Some useful functions in gmvarkit sorted according to their usage. The note "method"
in parentheses after the name of a function signiĄes that it is an S3 method for a class gsmvar

object (often generated by the function fitGSMVAR or GSMVAR).
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Figure 4: The Ągure produced by the predict method applied to the model fit12gs. The
Ąrst top Ągures show the point and interval predictions 10 steps ahaed for the time series,
and the bottom Ągure for the mixing weights. Two-sided prediction intervals with conĄdence
levels 95% and 90%, point forecast based on mean. Prediction based on 10000 Monte Carlo
repetitions.

The resulting plot is presented in Figure 4.

8. Summary

Mixture vector autoregressive models are a valuable tool in modeling multivariate time series
in which the data generating dynamics vary in time. We described the R package gmvarkit,
which accommodates the GMVAR model (Kalliovirta et al. 2016), the StMVAR model (Viro-
lainen 2022a), and the G-StMVAR model (Virolainen 2022a) - an appealing family of mixture
vector autoregressive models that call the GSMVAR models. We discussed several features
provided by gmvarkit for GSMVAR modeling: unconstrained and constrained maximum like-
lihood estimation of the model parameters, hypothesis testing, quantile residual based model
diagnostics, estimation of generalized impulse response function and generalized forecast error
variance decomposition, simulation, forecasting, and more. For convenience, we have collected
some useful functions in gmvarkit to Table 1. For all the exported functions and their usage,
see the reference manual.

Computational details

The results in this paper were obtained using R 4.1.2 and uGMAR 3.4.1 package running on
MacBook Pro 14", 2021, with Apple M1 Pro processor, 16 Gt of uniĄed RAM, and macOS
Monterey 12.1 operating system.

Some of the estimation results (and thereby everything that is calculated based on the esti-
mates) may vary slightly when running the code on different computers. This is likely due to
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the numerical error caused by the limited precision of the Ćoat point representation.
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A. Properties of multivariate Gaussian and StudentŠs t distribution

Denote a d-dimensional real valued vector by y. It is well known that the density function of
a d-dimensional Gaussian distribution with mean µ and covariance matrix Σ is

nd(y; µ, Σ) = (2π)−d/2det(Σ)−1/2 exp



−
1

2
(y − µ)′Σ−1(y − µ)

}

. (48)

Similarly to Meitz et al. (2021) but differing from the standard form, we parametrize the
StudentŠs t-distribution using its covariance matrix as a parameter together with the mean
and the degrees of freedom. The density function of such a d-dimensional t-distribution with
mean µ, covariance matrix Σ, and ν > 2 degrees of freedom is

td(y; µ, Σ, ν) = Cd(ν)det(Σ)−1/2

(

1 +
(y − µ)′Σ−1(y − µ)

ν − 2

−(d+ν)/2

, (49)

where

Cd(ν) =
Γ
(

d+ν
2

)

√

πd(ν − 2)dΓ
(

ν
2

)

, (50)

and Γ (·) is the gamma function. We assume that the covariance matrix Σ is positive deĄnite
for both distributions.

Consider a partition X = (X1, X2) of either Gaussian or t-distributed (with ν degrees of
freedom) random vector X such that X1 has dimension (d1 × 1) and X2 has dimension
(d2 × 1). Consider also a corresponding partition of the mean vector µ = (µ1, µ2) and the
covariance matrix

Σ =



Σ11 Σ12

Σ′
12 Σ22

]

, (51)

where, for example, the dimension of Σ11 is (d1 × d1). In the Gaussian case, X1 then has the
marginal distribution nd1

(µ1, Σ11) and X2 has the marginal distribution nd2
(µ2, Σ22). In the

StudentŠs t case, X1 has the marginal distribution td1
(µ1, Σ11, ν) and X2 has the marginal

distribution td2
(µ2, Σ22, ν) (see, e.g., Ding (2016), also in what follows).

When X has Gaussian distribution, the conditional distribution of the random vector X1

given X2 = x2 is
X1 ♣ (X2 = x2) ∼ nd1

(µ1♣2(x2), Σ1♣2(x2)), (52)

where

µ(x2) ≡ µ1♣2(x2) = µ1 + Σ12Σ−1
22 (x2 − µ2) and (53)

Ω ≡ Σ1♣2(x2) = Σ11 − Σ12Σ−1
22 Σ′

12. (54)

When X has t-distribution, the conditional distribution of the random vector X1 given X2 =
x2 is

X1 ♣ (X2 = x2) ∼ td1
(µ1♣2(x2), Σ1♣2(x2), ν + d2), (55)

where

µ(x2) = µ1♣2(x2) = µ1 + Σ12Σ−1
22 (x2 − µ2) and (56)

Ω(x2) ≡ Σ1♣2(x2) =
ν − 2 + (x2 − µ2)′Σ−1

22 (x2 − µ2)

ν − 2 + d2
(Σ11 − Σ12Σ−1

22 Σ′
12). (57)
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In particular, we have

nd(x; µ, Σ) = nd1
(x1; µ1♣2(x2), Σ1♣2(x2))td2

(x2; µ2, Σ22) and (58)

td(x; µ, Σ, ν) = td1
(x1; µ1♣2(x2), Σ1♣2(x2), ν + d2)td2

(x2; µ2, Σ22, ν). (59)

B. Quantile residuals of the G-StMVAR model

The conditional density function of the d-dimensional G-StMVAR process yt conditional on
Ft−1 is

ft−1(yt;θ) =
M1
∑

m=1

αm,tnd(yt; µm,t, Ωm) +
M
∑

m=M1+1

αm,ttd(yt; µm,t, Ωm,t, νm + dp), (60)

where nd(·; µm,t, Ωm, νm + dp) is the density function of d-dimensional normal distribution
with mean µm,t and covariance matrix Ωm; and td(·; µm,t, Ωm, νm +dp) is the density function
of d-dimensional t-distribution with mean µm,t, covariance matrix Ωm,t, and νm + dp degrees
of freedom.

Denote y
(k)
t = (y1,t, ..., yk,t) (k × 1), k ≤ d, µ

(k)
m,t = (µ1,m,,t, ..., µk,m,t) (k × 1), k ≤ d, and by

Ω
(k)
m,t (Ω

(k)
m ) the upper left (k × k) block matrix of Ωm,t (Ωm). Then, the properties of the

marginal distributions of multivariate Gaussian and t-distributions (see Appendix A) show

that conditional on Ft−1, the random vectors y
(j)
t , j = 1, .., d, follow the distribution that is

a mixture M1 j-dimensional normal distributions (with means µ
(j)
m,t and covariance matrices

Ω
(j)
m ) and M2 ≡ M − M1 j-dimensional t-distributions (with means µ

(j)
m,t, covariance matrices

Ω
(j)
m,t, and νm + dp degrees of freedom). The mixing weights αm,t are not affected, as they are

Ft−1-measurable. Therefore, the marginal density function of y
(j)
t is

ft−1(y
(j)
t ;θ) =

M1
∑

m=1

αm,tnj(y
(j)
t ; µ

(j)
m,t, Ω(j)

m ) +
M
∑

m=M1+1

αm,ttj(y
(j)
t ; µ

(j)
m,t, Ω

(j)
m,t, νm + dp), (61)

The conditional density function f0,t−1(y1,t;θ) in (38) is obtained from (61) by choosing j = 1.
For j = 2, ..., d, the conditional density functions fj−1,t−1(yj,t;θ) are obtained by substituting
the equation (61) to the formula of conditional density function:

fj−1,t−1 (yj,t;θ) =
ft−1(y

(j)
t ;θ)

ft−1(y
(j−1)
t ;θ)

=

∑M1

m=1 αm,tnj(y
(j)
t ; µ

(j)
m,t, Ω

(j)
m ) +

∑M
m=M1+1 αm,ttj(y

(j)
t ; µ

(j)
m,t, Ω

(j)
m,t, νm + dp)

∑M1

n=1 αn,tnj−1(y
(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n , νm + dp)

.

(62)

It follows from the properties of the conditional distributions of multivariate normal distri-
bution that we may express the j-dimensional normal distributions as

nj(y
(j)
t ; µ

(j)
m,t, Ω(j)

m ) = n1(yj,t; µm,t,j♣j−1, Ωm,j♣j−1)nj−1(y
(j−1)
t ; µ

(j−1)
m,t , Ω(j−1)

m ), (63)
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where µm,t,j♣j−1 and Ωm,j♣j−1 are the conditional mean and covariance matrix of yj,t condi-
tional on σ(Aj−1, Ft−1). Likewise, it follows from the properties of the conditional distri-
butions of multivariate t-distribution that we may express the j-dimensional t-distributions
as

tj(y
(j)
t ; µ

(j)
m,t, Ω

(j)
m,t, νm + dp) =t1(yj,t; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)

× tj−1(y
(j−1)
t ; µ

(j−1)
m,t , Ω

(j−1)
m,t , νm + dp),

(64)

where µm,t,j♣j−1 and Ωm,t,j♣j−1 are the conditional mean and covariance matrix of yj,t condi-
tional on σ(Aj−1, Ft−1).

By denoting

βm,t,j ≡
αm,tnj−1(y

(j−1)
t ; µ

(j−1)
m,t , Ω

(j−1)
m )

∑M1

n=1 αn,tnj−1(y
(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n,t , νn + dp)

(65)
for m = 1, .., M1, j = 2, ..., d, and

βm,t,j ≡
αm,ttj−1(y

(j−1)
t ; µ

(j−1)
m,t , Ω

(j−1)
m,t , νm + dp)

∑M1

n=1 αn,tnj−1(y
(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n,t , νn + dp)

(66)
for m = M1 + 1, ..., M , j = 2, ..., d, and using the expressions (63) and (64), we can express
the conditional density function (62) as

fj−1,t−1 (yj,t;θ) =
M1
∑

m=1

βm,t,jn1(yj,t; µm,t,j♣j−1, Ωm,j♣j−1)

+
M
∑

m=M1+1

βm,t,jt1(yj,t; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1), j = 2, .., d.

(67)

For m = 1, ..., M1, the conditional means µm,t,j♣j−1 and covariance matrices Ωm,j♣j−1 are
as in (53) and (54) when for each j = 2, ..., d and m = 1, ..., M we consider the partition

y
(j)
t = (y

(j−1)
t , yj,t), µ

(j)
m,t = (µ

(j−1)
m,t , µj,m,t), and

Ω(j)
m =



Ω
(j−1)
m Ω(j−1),j,m

Ω′
(j−1),j,m Ωm(j, j)

]

, (68)

where Ωm(j, j) is the jjth elementh of Ωm and Ω(j−1),j,m ((j − 1) × 1) consists of the rows
1, ..., j − 1 of the jth column of Ωm. In particular, we have

µm,t,j♣j−1 = µj,m,t + Ω′
(j−1),j,m(Ω(j−1)

m )−1(y
(j−1)
t − µ

(j−1)
m,t ), (69)

Ωm,j♣j−1 = Ωm(j, j) − Ω′
(j−1),j,m(Ω(j−1)

m )−1Ω(j−1),j,m. (70)

For m = M1 + 1, .., M , the conditional means µm,t,j♣j−1 and covariance matrices Ωm,t,j♣j−1

are as in (56) and (57) when for each j = 2, ..., d and m = 1, ..., M we consider the partition

y
(j)
t = (y

(j−1)
t , yj,t), µ

(j)
m,t = (µ

(j−1)
m,t , µj,m,t), and

Ω
(j)
m,t =



Ω
(j−1)
m,t Ω(j−1),j,m,t

Ω′
(j−1),j,m,t Ωm,t(j, j)

]

, (71)
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where Ωm,t(j, j) is the jjth elementh of Ωm,t and Ω(j−1),j,m,t ((j − 1) × 1) consists of the rows
1, ..., j − 1 of the jth column of Ωm,t. In particular, taking use of the relation Ωm,t = ωm,tΩm

(where ωm,t is scalar), we have

µm,t,j♣j−1 = µj,m,t + Ω′
(j−1),j,m,t(Ω

(j−1)
m,t )−1(y

(j−1)
t − µ

(j−1)
m,t )

= µj,m,t + Ω′
(j−1),j,m(Ω(j−1)

m )−1(y
(j−1)
t − µ

(j−1)
m,t ),

(72)

and

Ωm,t,j♣j−1 =
νm + dp + (y

(j−1)
t − µ

(j−1)
m,t )′(Ω

(j−1)
m,t )−1(y

(j−1)
t − µ

(j−1)
m,t )

νm + dp + j − 3
Ω̃m,t,j♣j−1

=
νm + dp + ω−1

m,t(y
(j−1)
t − µ

(j−1)
m,t )′(Ω

(j−1)
m )−1(y

(j−1)
t − µ

(j−1)
m,t )

νm + dp + j − 3
Ω̃m,t,j♣j−1,

(73)

where

Ω̃m,t,j♣j−1 ≡ Ωm,t(j, j) − Ω′
(j−1),j,m,t(Ω

(j−1)
m,t )−1Ω(j−1),j,m,t

= ωm,t(Ωm(j, j) − Ω′
(j−1),j,m(Ω(j−1)

m )−1Ω(j−1),j,m).
(74)

It then remains to Ąnd expressions for the conditional distribution functions Fj−1,t−1(yj,t;θ),
j = 1, ..., d, in (40). For notational convenience, we write

fj−1,t−1(yj,tθ) =
M1
∑

m=1

βm,t,jn1(yj,t; µm,t,j♣j−1, Ωm,j♣j−1)

+
M
∑

m=M1+1

βm,t,jt1(yj,t; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)

(75)

for all j = 1, ..., d by deĄning βm,t,1 ≡ αm,t, µm,t,1♣0 ≡ µ
(1)
m,t, Ωm,1♣0 ≡ Ω

(1)
m , and Ωm,t,1♣0 ≡ Ω

(1)
m,t.

For j = 2, ..., d, these quantities are deĄned in (66), (69), (70), (72), and (73). Then,

Fj−1,t−1(yj,t;θ) =
M1
∑

m=1

βm,t,j

∫ yj,t

−∞
n1(u; µm,t,j♣j−1, Ωm,j♣j−1)du

+
M
∑

m=M1+1

βm,t,j

∫ yj,t

−∞
t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)du,

(76)

where we seek to solve the integrals inside the sums.

Regarding the Ąrst sum, for m = 1, ..., M1, it is easy to see that the integrals can be expressed
using the stardard normal distribution function Φ(·) as

∫ yj,t

−∞
n1(u; µm,t,j♣j−1, Ωm,j♣j−1)du = Φ





yj,t − µm,t,j♣j−1
√

Ωm,j♣j−1



 . (77)

Next, consider the second sum, m = M1 + 1, ..., M . By taking use of the symmetry of the
t-distribution about its mean, we obtain

∫ yj,t

−∞
t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)du

=
1

2
+

∫ yj,t

µm,t,j|j−1

t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)du.
(78)
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By applying the change of variables ũm,t,j = u − µm,t,j♣j−1 in the integral, the RHS of (78)
can be expressed as

1

2
+

Γ
(

νm+dp+j
2

)

√

π(νm + dp + j − 3)Γ
(

νm+dp+j−1
2

)Ω
−1/2
m,t,j♣j−1

∫ ỹm,t,j

0

(

1 +
ũ2

m,t,j

am,t,j

−bm,j

dũm,t,j , (79)

where ỹm,t,j ≡ yj,t −µm,t,j♣j−1, am,t,j ≡ (νm +dp+j −3)Ωm,t,j♣j−1, and bm,j ≡ (νm +dp+j)/2.

Then, by applying the change of variables zm,t,j = ũ2
m,t,j/ỹm,t,j , we can express the integral

in (79) as

∫ ỹm,t,j

0

(

1 +
ũ2

m,t,j

am,t,j

−bm,j

dũm,t,j =
1

2

∫ ỹm,t,j

0

(

ỹm,t,j

zm,t,j

1/2(

1 +
zm,t,j ỹm,t,j

am,t,j

−bm,j

dzm,t,j .

(80)
By applying the third change of variables xm,t,j = zm,t,j/ỹm,t,j and using the properties of
the gamma function, the RHS of (80) can be expressed as

ỹm,t,j

2

∫ 1

0
x

−1/2
m,t,j

(

1 − xm,t,j

(

−
ỹ2

m,t,j

am,t,j

−bm,j

dxm,t,j = ỹm,t,j × 2F1

(

1

2
, bm,j ,

3

2
; −

ỹ2
m,t,j

am,t,j



,

(81)
where the hypergeometric function is deĄned as (Aomoto and Kita 2011, Section 1.3.1)

2F1(a, b, c; x) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
sa−1(1 − s)c−a−1(1 − sx)−bds, (82)

when ♣x♣ < 1, a > 0, and c − a > 0 (when a, c ∈ R).

Using the above result, we have
∫ yj,t

−∞
t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)du

=
1

2
+

Γ
(

νm+dp+j
2

)

√

π(νm + dp + j − 3)Γ
(

νm+dp+j−1
2

)Ω
−1/2
m,t,j♣j−1ỹm,t,j × 2F1

(

1

2
, bm,j ,

3

2
; −

ỹ2
m,t,j

am,t,j



(83)

whenever

∣

∣

∣

∣

−
ỹ2

m,t,j

am,t,j

∣

∣

∣

∣

< 1. That is, the closed form expression (83) exists when

♣yj,t − µm,t,j♣j−1♣ <
√

(vm + dp + j − 3)Ωm,t,j,♣j−1. (84)

If this condition does not hold, the quantile residual are obtained by numerically integrating
the conditional density function t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1). For the hyperge-
ometric function, gmvarkit uses the package gsl (Hankin, Clausen, and Murdoch 2006).
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