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as_data convert other objects to greta arrays

Description

define an object in an R session as a data greta array for use as data in a greta model.

Usage

as_data(x)

Arguments

X

Details

an R object that can be coerced to a greta_array (see details).

as_data() can currently convert R objects to greta_arrays if they are numeric or logical vectors,
matrices or arrays; or if they are dataframes with only numeric (including integer) or logical ele-
ments. Logical elements are always converted to numerics. R objects cannot be converted if they
contain missing (NA) or infinite (-Inf or Inf) values.

Examples

## Not run:

# numeric/integer/logical vectors, matrices and arrays can all be coerced to
# data greta arrays

vec <- rnorm(10)
mat <- matrix(seq_len(3 * 4), nrow = 3)
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arr <- array(sample(c(TRUE, FALSE), 2 * 2 * 2, replace = TRUE),
dim = c(2, 2, 2)

)

(a <- as_data(vec))

(b <- as_data(mat))

(c <- as_data(arr))

# dataframes can also be coerced, provided all the columns are numeric,
# integer or logical
df <- data.frame(

x1 rnorm(10),

x2 = sample(1L:10L),

x3 = sample(c(TRUE, FALSE), 10, replace = TRUE)

)
(d <- as_data(df))

## End(Not run)

calculate calculate greta arrays given fixed values

Description

Calculate the values that greta arrays would take, given temporary, or simulated values for the
greta arrays on which they depend. This can be used to check the behaviour of your model, make
predictions to new data after model fitting, or simulate datasets from either the prior or posterior of
your model.

Usage

calculate(

values = list(),

nsim = NULL,
seed = NULL,
precision = c("double”, "single"),
trace_batch_size = 100
)
Arguments
one or more greta_arrays for which to calculate the value
values a named list giving temporary values of the greta arrays with which target is
connected, or a greta_mcmc_list object returned by memc ().
nsim an optional positive integer scalar for the number of responses to simulate if
stochastic greta arrays are present in the model - see Details.
seed an optional seed to be used in set.seed immediately before the simulation so as

to generate a reproducible sample
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precision the floating point precision to use when calculating values.
trace_batch_size

the number of posterior samples to process at a time when target isagreta_mcmc_list
object; reduce this to reduce memory demands

Details

The greta arrays named in values need not be variables, they can also be other operations or even
data.

At present, if values is a named list it must contain values for all of the variable greta arrays with
which target is connected, even values are given for intermediate operations, or the target doesn’t
depend on the variable. That may be relaxed in a future release.

If the model contains stochastic greta arrays; those with a distribution, calculate can be used to
sample from these distributions (and all greta arrays that depend on them) by setting the nsim
argument to a positive integer for the required number of samples. If values is specified (either
as a list of fixed values or as draws), those values will be used, and remaining variables will be
sampled conditional on them. Observed data with distributions (i.e. response variables defined with
distribution() can also be sampled, provided they are defined as greta arrays. This behaviour
can be used for a number of tasks, like simulating datasets for known parameter sets, simulating
parameters and data from a set of priors, or simulating datasets from a model posterior. See some
examples of these below.

Value

Values of the target greta array(s), given values of the greta arrays on which they depend (either
specified in values or sampled from their priors). If values is a greta_mcmc_list() and nsim
= NULL, this will be a greta_mcmc_list object of posterior samples for the target greta arrays.
Otherwise, the result will be a named list of numeric R arrays. If nsim=NULL the dimensions
of returned numeric R arrays will be the same as the corresponding greta arrays, otherwise an
additional dimension with nsim elements will be prepended, to represent multiple simulations.

Examples
## Not run:
# define a variable greta array, and another that is calculated from it
# then calculate what value y would take for different values of x
x <- normal(@, 1, dim = 3)
a <- lognormal(@, 1)
y <- sum(x"2) + a

calculate(y, values = list(x = c(0.1, 0.2, 0.3), a = 2))

# by setting nsim, you can also sample values from their priors
calculate(y, nsim = 3)

# you can combine sampling and fixed values
calculate(y, values = list(a = 2), nsim = 3)

# if the greta array only depends on data,
# you can pass an empty list to values (this is the default)
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x <- ones(3, 3)
y <= sum(x)
calculate(y)

# define a model

alpha <- normal(@, 1)

beta <- normal(Q, 1)

sigma <- lognormal(1, 0.1)

y <- as_data(iris$Petal.Width)

mu <- alpha + iris$Petal.Length x beta
distribution(y) <- normal(mu, sigma)

m <- model(alpha, beta, sigma)

# sample values of the parameters, or different observation data (y), from
# the priors (useful for prior # predictive checking) - see also

# ?simulate.greta_model

calculate(alpha, beta, sigma, nsim = 100)

calculate(y, nsim = 100)

# calculate intermediate greta arrays, given some parameter values (useful
# for debugging models)

calculate(mu[1:5], values = list(alpha
calculate(mu[1:5], values = list(alpha

1, beta = 2, sigma = 0.5))
-1, beta = 0.2, sigma = 0.5))

# simulate datasets given fixed parameter values
calculate(y, values = list(alpha = -1, beta = 0.2, sigma = 0.5), nsim = 10)

# you can use calculate in conjunction with posterior samples from MCMC, e.g.
# sampling different observation datasets, given a random set of these

# posterior samples - useful for posterior predictive model checks

draws <- mcmc(m, n_samples = 500)

calculate(y, values = draws, nsim = 100)

# you can use calculate on greta arrays created even after the inference on
# the model - e.g. to plot response curves
petal_length_plot <- seq(min(iris$Petal.Length),
max(iris$Petal.Length),
length.out = 100
)
mu_plot <- alpha + petal_length_plot * beta
mu_plot_draws <- calculate(mu_plot, values = draws)
mu_est <- colMeans(mu_plot_draws[[1]1])
plot(mu_est ~ petal_length_plot,

nan

type = "n”,
ylim = range(mu_plot_draws[[1]])
)
apply(mu_plot_draws[[1]1], 1, lines,
x = petal_length_plot, col = grey(0.8)
)
lines(mu_est ~ petal_length_plot, 1lwd = 2)

# trace_batch_size can be changed to trade off speed against memory usage
# when calculating. These all produce the same result, but have increasing
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# memory requirements:

mu_plot_draws_1 <- calculate(mu_plot,
values = draws,
trace_batch_size = 1

)

mu_plot_draws_10 <- calculate(mu_plot,
values = draws,
trace_batch_size = 10

)

mu_plot_draws_inf <- calculate(mu_plot,
values = draws,
trace_batch_size = Inf

## End(Not run)

chol2symm Cholesky Factor to Symmetric Matrix

Description

Evaluate t(x) \%*\% x efficiently, where x is the (upper-triangular) Cholesky factor of a symmetric,
positive definite square matrix. L.e. it is the inverse of chol.

Usage
chol2symm(x)
Arguments
X a square, upper triangular matrix representing the Cholesky factor of a symmet-
ric, positive definite square matrix
Examples

# a symmetric, positive definite square matrix
y <- rWishart(1, 4, diag(3))[, , 11

u <- chol(y)

identical(y, chol2symm(u))
identical(chol2symm(u), t(u) %*% u)

## Not run:

u_greta <- cholesky_variable(3)

y_greta <- chol2symm(u)

## End(Not run)
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distribution define a distribution over data

Description

distribution defines probability distributions over observed data, e.g. to set a model likelihood.

Usage

distribution(greta_array) <- value

distribution(greta_array)

Arguments
greta_array a data greta array. For the assignment method it must not already have a proba-
bility distribution assigned
value a greta array with a distribution (see distributions())
Details

The extract method returns the greta array if it has a distribution, or NULL if it doesn’t. It has no real
use-case, but is included for completeness

Examples

## Not run:

# define a model likelihood

# observed data and mean parameter to be estimated

# (explicitly coerce data to a greta array so we can refer to it later)
y <- as_data(rnorm(5, 0, 3))

mu <- uniform(-3, 3)

# define the distribution over y (the model likelihood)
distribution(y) <- normal(mu, 1)

# get the distribution over y
distribution(y)

## End(Not run)
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distributions probability distributions

Description

These functions can be used to define random variables in a greta model. They return a variable
greta array that follows the specified distribution. This variable greta array can be used to represent
a parameter with prior distribution, combined into a mixture distribution using mixture(), or used
with distribution() to define a distribution over a data greta array.

Usage

uniform(min, max, dim = NULL)

normal(mean, sd, dim = NULL, truncation = c(-Inf, Inf))
lognormal (meanlog, sdlog, dim = NULL, truncation = c(@, Inf))
bernoulli(prob, dim = NULL)

binomial(size, prob, dim = NULL)

beta_binomial(size, alpha, beta, dim = NULL)
negative_binomial (size, prob, dim = NULL)

hypergeometric(m, n, k, dim = NULL)

poisson(lambda, dim = NULL)

gamma(shape, rate, dim = NULL, truncation = c(@, Inf))
inverse_gamma(alpha, beta, dim = NULL, truncation = c(@, Inf))
weibull(shape, scale, dim = NULL, truncation = c(@, Inf))
exponential(rate, dim = NULL, truncation = c(@, Inf))
pareto(a, b, dim = NULL, truncation = c(0, Inf))

student(df, mu, sigma, dim = NULL, truncation = c(-Inf, Inf))
laplace(mu, sigma, dim = NULL, truncation = c(-Inf, Inf))
beta(shapel, shape2, dim = NULL, truncation = c(@, 1))

cauchy(location, scale, dim = NULL, truncation = c(-Inf, Inf))
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chi_squared(df, dim = NULL, truncation = c(@, Inf))

logistic(location, scale, dim = NULL, truncation = c(-Inf, Inf))

f(df1, df2, dim = NULL, truncation = c(@, Inf))

multivariate_normal(mean, Sigma, n_realisations = NULL, dimension = NULL)
wishart(df, Sigma)

lkj_correlation(eta, dimension = 2)

multinomial(size, prob, n_realisations = NULL, dimension = NULL)
categorical(prob, n_realisations = NULL, dimension = NULL)

dirichlet(alpha, n_realisations = NULL, dimension = NULL)

dirichlet_multinomial(size, alpha, n_realisations = NULL, dimension = NULL)

Arguments
min, max scalar values giving optional limits to uniform variables. Like lower and upper,
these must be specified as numerics, they cannot be greta arrays (though see
details for a workaround). Unlike lower and upper, they must be finite. min
must always be less than max.
dim the dimensions of the greta array to be returned, either a scalar or a vector of

positive integers. See details.

mean, meanlog, location, mu
unconstrained parameters

sd, sdlog, sigma, lambda, shape, rate, df, scale, shapel, shape2, alpha, beta, df1, df2, a, b, eta
positive parameters, alpha must be a vector fordirichlet and dirichlet_multinomial.

truncation a length-two vector giving values between which to truncate the distribution,
similarly to the lower and upper arguments to variable()

prob probability parameter (0 < prob < 1), must be a vector for multinomial and
categorical

size, m, n, k positive integer parameter
Sigma positive definite variance-covariance matrix parameter
n_realisations the number of independent realisation of a multivariate distribution

dimension the dimension of a multivariate distribution

Details

The discrete probability distributions (bernoulli, binomial, negative_binomial, poisson, multinomial,
categorical, dirichlet_multinomial) can be used when they have fixed values (e.g. defined as
a likelihood using distribution(), but not as unknown variables.
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For univariate distributions dim gives the dimensions of the greta array to create. Each element of
the greta array will be (independently) distributed according to the distribution. dim can also be
left at its default of NULL, in which case the dimension will be detected from the dimensions of the
parameters (provided they are compatible with one another).

For multivariate distributions (multivariate_normal (), multinomial (), categorical(),dirichlet(),
and dirichlet_multinomial()) each row of the output and parameters corresponds to an inde-
pendent realisation. If a single realisation or parameter value is specified, it must therefore be a

row vector (see example). n_realisations gives the number of rows/realisations, and dimension

gives the dimension of the distribution. I.e. a bivariate normal distribution would be produced

with multivariate_normal(...,dimension =2). The dimension can usually be detected from

the parameters.

multinomial () does not check that observed values sum to size, and categorical() does not
check that only one of the observed entries is 1. It’s the user’s responsibility to check their data
matches the distribution!

The parameters of uniform must be fixed, not greta arrays. This ensures these values can always be
transformed to a continuous scale to run the samplers efficiently. However, a hierarchical uniform
parameter can always be created by defining a uniform variable constrained between 0 and 1, and
then transforming it to the required scale. See below for an example.

Wherever possible, the parameterisations and argument names of greta distributions match com-
monly used R functions for distributions, such as those in the stats or extraDistr packages. The
following table states the distribution function to which greta’s implementation corresponds:

greta reference

uniform stats::dunif

normal stats::dnorm
lognormal stats::dlnorm
bernoulli extraDistr::dbern
binomial stats::dbinom
beta_binomial extraDistr::dbbinom
negative_binomial stats::dnbinom
hypergeometric stats::dhyper
poisson stats::dpois

gamma stats::dgamma
inverse_gamma extraDistr::dinvgamma
weibull stats::dweibull
exponential stats::dexp

pareto extraDistr::dpareto
student extraDistr::dlst
laplace extraDistr::dlaplace
beta stats::dbeta

cauchy stats::dcauchy
chi_squared stats::dchisq
logistic stats::dlogis

f stats::df
multivariate_normal mvtnorm::dmvnorm
multinomial stats::dmultinom
categorical stats::dmultinom (size = 1)

dirichlet extraDistr::ddirichlet
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dirichlet_multinomial extraDistr::ddirmnom
wishart stats::rWishart
lkj_correlation rethinking::dlkjcorr

Examples

## Not run:

# a uniform parameter constrained to be between @ and 1
phi <- uniform(min = @, max = 1)

# a length-three variable, with each element following a standard normal
# distribution
alpha <- normal(@, 1, dim = 3)

# a length-three variable of lognormals
sigma <- lognormal(@, 3, dim = 3)

# a hierarchical uniform, constrained between alpha and alpha + sigma,
eta <- alpha + uniform(@, 1, dim = 3) * sigma

# a hierarchical distribution
mu <- normal(@, 1)

sigma <- lognormal(@, 1)
theta <- normal(mu, sigma)

# a vector of 3 variables drawn from the same hierarchical distribution
thetas <- normal(mu, sigma, dim = 3)

# a matrix of 12 variables drawn from the same hierarchical distribution
thetas <- normal(mu, sigma, dim = c(3, 4))

# a multivariate normal variable, with correlation between two elements
# note that the parameter must be a row vector

Sig <- diag(4)

Sigl[3, 4] <- Sig[4, 3] <- 0.6

theta <- multivariate_normal(t(rep(mu, 4)), Sig)

# 10 independent replicates of that
theta <- multivariate_normal(t(rep(mu, 4)), Sig, n_realisations = 10)

# 10 multivariate normal replicates, each with a different mean vector,
# but the same covariance matrix

means <- matrix(rnorm(40), 10, 4)

theta <- multivariate_normal(means, Sig, n_realisations = 10)
dim(theta)

# a Wishart variable with the same covariance parameter
theta <- wishart(df = 5, Sigma = Sig)

## End(Not run)


https://rdrr.io/github/rmcelreath/rethinking/man/dlkjcorr.html
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extract-replace-combine
extract, replace and combine greta arrays

Description

Generic methods to extract and replace elements of greta arrays, or to combine greta arrays.

Arguments
X a greta array
i, ] indices specifying elements to extract or replace
n a single integer, as in utils: :head() and utils::tail()
nrow, ncol optional dimensions for the resulting greta array when X is not a matrix.
value for [<- a greta array to replace elements, for dim<- either NULL or a numeric

vector of dimensions

either further indices specifying elements to extract or replace ([), or multiple
greta arrays to combine (cbind(), rbind() & c()), or additional arguments
(rep(), head(), tail())

drop, recursive
generic arguments that are ignored for greta arrays

Details

diag() can be used to extract or replace the diagonal part of a square and two-dimensional greta
array, but it cannot be used to create a matrix-like greta array from a scalar or vector-like greta array.
A static diagonal matrix can always be created with e.g. diag(3), and then converted into a greta
array.

Also note that since R 4.0.0, head and tail methods for arrays changed to print a vector rather than
maintain the array structure. The greta package supports both methods, and will do so based on
which version of R you are using.

Usage
# extract
x[i]
x[i, j, ..., drop = FALSE]
head(x, n = 6L, ...)
tail(x, n = 6L, ...)

diag(x, nrow, ncol)

# replace
x[i] <- value
x[i, j, ...]1 <= value

diag(x) <- value
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# combine

cbind(...)

rbind(...)

abind(...)

c(..., recursive = FALSE)

rep(x, times, ..., recursive = FALSE)

# get and set dimensions
length(x)

dim(x)

dim(x) <- value

Examples

## Not run:
x <- as_data(matrix(1:12, 3, 4))

# extract and replace
x[1:3, ]

x[, 2:4] <= 1:9

e <- diag(x)

diag(x) <- e + 1

# combine

cbind(x[, 21, x[, 1D

rbind(x[1, 1, x[3, 1)
abind(x[1, 1, x[3, 1, along = 1)
c(xl, 11, x

rep(x[, 2], times = 3)

## End(Not run)

functions functions for greta arrays

Description

This is a list of functions (mostly from base R) that are currently implemented to transform greta
arrays. Also see operators and transforms.

Details

TensorFlow only enables rounding to integers, so round() will error if digits is set to anything
other than 0.

Any additional arguments to chol(), chol2inv, and solve() will be ignored, see the TensorFlow
documentation for details of these routines.
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sweep () only works on two-dimensional greta arrays (so MARGIN can only be either 1 or 2), and
only for subtraction, addition, division and multiplication.

tapply () works on column vectors (2D greta arrays with one column), and INDEX cannot be a greta
array. Currently five functions are available, and arguments passed to ... are ignored.

cospi(), sinpi(), and tanpi() do not use the computationally more stable routines to compute
cos(x * pi) etc. that are available in R under some operating systems. Similarly trigamma() uses
TensorFlow’s polygamma function, resulting in lower precision than R’s equivalent.

Usage

# logarithms and exponentials
log(x)

exp(x)

logip(x)

expml1 (x)

# miscellaneous mathematics
abs(x)
mean(x)
sqrt(x)
sign(x)

# rounding of numbers
ceiling(x)

floor(x)

round(x, digits = @)

# trigonometry
cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)
cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)
cospi(x)
sinpi(x)
tanpi(x)

# special mathematical functions
lgamma(x)
digamma(x)
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trigamma(x)
choose(n, k)
lchoose(n, k)

# matrix operations

t(x)

chol(x, ...)

chol2inv(x, ...)

cov2cor (V)

solve(a, b, ...)

kronecker(X, Y, FUN = c('x"', '/', '"+', '="))

# reducing operations

sum(..., na.rm = TRUE)
prod(..., na.rm = TRUE)
min(..., na.rm = TRUE)
max(..., na.rm = TRUE)

# cumulative operations
cumsum(x)
cumprod(x)
cummax (x)
cummin(x)

# solve an upper or lower triangular system
backsolve(r, x, k = ncol(r), upper.tri = TRUE,
transpose = FALSE)
forwardsolve(l, x, k = ncol(l), upper.tri = FALSE,
transpose = FALSE)

# miscellaneous operations

aperm(x, perm)

apply(x, MARGIN, FUN = c("sum”, "max", "mean"”, "min",
"prod”, "cumsum”, "cumprod"”))

sweep(x, MARGIN, STATS, FUN = c('-", '+', '/', 'x"))

tapply (X, INDEX, FUN = c(”"sum”, "max", "mean”, "min", "prod"),

Examples

## Not run:

o 0 T v X

<- as_data(matrix(1:9, nrow = 3, ncol = 3))
<- log(exp(x))

<- loglp(expml(x))

<- sign(x - 5)

<- abs(x - 5)

<- t(a)

functions
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y <- sweep(x, 1, e, "-")

## End(Not run)

greta greta: simple and scalable statistical modelling in R

Description

greta lets you write statistical models interactively in native R code, then sample from them effi-
ciently using Hamiltonian Monte Carlo.

The computational heavy lifting is done by TensorFlow, Google’s automatic differentiation library.
So greta is particularly fast where the model contains lots of linear algebra, and greta models can
be run across CPU clusters or on GPUs.

See the simple example below, and take a look at the greta website for more information including
tutorials and examples.

Examples

## Not run:
# a simple Bayesian regression model for the iris data

# priors

int <- normal(@, 5)
coef <- normal(Q, 3)
sd <- lognormal(@, 3)

# likelihood
mean <- int + coef * iris$Petal.Length
distribution(iris$Sepal.Length) <- normal(mean, sd)

# build and sample
m <- model(int, coef, sd)

draws <- mcmc(m, n_samples = 100)

## End(Not run)

greta_notes_install_miniconda_output
Retrieve python installation or error details These functions re-
trieve installation or error information output by python when run-
ning install_miniconda(), conda_create(), conda_install(),
or when encountering a TensorFlow numerical problem.
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Description

Retrieve python installation or error details

These functions retrieve installation or error information output by python when running install_miniconda(),
conda_create(), conda_install(), or when encountering a TensorFlow numerical problem.

Usage
greta_notes_install_miniconda_output()
greta_notes_install_miniconda_error()
greta_notes_conda_create_output()
greta_notes_conda_create_error()
greta_notes_conda_install_output()
greta_notes_conda_install_error()

greta_notes_tf_num_error()

Examples

## Not run:
greta_notes_install_miniconda()
greta_notes_conda_create()
greta_notes_conda_install()
greta_notes_tf_num_error()
greta_notes_tf_error()

## End(Not run)

greta_sitrep Greta Situation Report

Description
This checks if Python, Tensorflow, Tensorflow Probability, and the greta conda environment are
available, and also loads and initialises python

Usage

greta_sitrep()

Value

Message if greta is ready to use
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Examples

## Not run:
greta_sitrep()

## End(Not run)

inference statistical inference on greta models

Description

Carry out statistical inference on greta models by MCMC or likelihood/posterior optimisation.

Usage

mcmc (
model,
sampler = hmc(),
n_samples = 1000,

thin = 1,
warmup = 1000,
chains = 4,
n_cores = NULL,

verbose = TRUE,

pb_update = 50,

one_by_one = FALSE,
initial_values = initials(),
trace_batch_size = 100

)
stashed_samples()

extra_samples(

draws,
n_samples = 1000,
thin = 1,

n_cores = NULL,
verbose = TRUE,
pb_update = 50,
one_by_one = FALSE,
trace_batch_size = 100

)

initials(...)

opt(
model,
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optimiser =

inference

bfgsQ),

max_iterations = 100,

tolerance =

1e-06,

initial_values = initials(),
adjust = TRUE,
hessian = FALSE

Arguments

model
sampler

n_samples

thin

warmup

chains
n_cores
verbose

pb_update

one_by_one

initial_values

greta_model object
sampler used to draw values in MCMC. See samplers() for options.

number of MCMC samples to draw per chain (after any warm-up, but before
thinning)

MCMC thinning rate; every thin samples is retained, the rest are discarded

number of samples to spend warming up the mcmc sampler (moving chains
toward the highest density area and tuning sampler hyperparameters).

number of MCMC chains to run
the maximum number of CPU cores used by each sampler (see details).
whether to print progress information to the console

how regularly to update the progress bar (in iterations). If pb_update is less than
or equal to thin, it will be set to thin + 1 to ensure at least one saved iteration
per pb_update iterations.

whether to run TensorFlow MCMC code one iteration at a time, so that greta
can handle numerical errors as *bad’ proposals (see below).

an optional initials object (or list of initials objects of length chains) giv-
ing initial values for some or all of the variables in the model. These will be
used as the starting point for sampling/optimisation.

trace_batch_size

draws

optimiser
max_iterations

tolerance

adjust

hessian

the number of posterior samples to process at a time when tracing the parameters
of interest; reduce this to reduce memory demands

a greta_mcmc_list object returned by mecmc or stashed_samples

named numeric values, giving initial values of some or all of the variables in the
model (unnamed variables will be automatically initialised)

an optimiser object giving the optimisation algorithm and parameters See optimisers().
the maximum number of iterations before giving up

the numerical tolerance for the solution, the optimiser stops when the (absolute)
difference in the joint density between successive iterations drops below this
level

whether to account for Jacobian adjustments in the joint density. Set to FALSE
(and do not use priors) for maximum likelihood estimates, or TRUE for maximum
a posteriori estimates.

whether to return a list of analytically differentiated Hessian arrays for the pa-
rameters
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Details

For memc () if verbose = TRUE, the progress bar shows the number of iterations so far and the ex-
pected time to complete the phase of model fitting (warmup or sampling). Occasionally, a proposed
set of parameters can cause numerical instability (I.e. the log density or its gradient is NA, Inf or
-Inf); normally because the log joint density is so low that it can’t be represented as a floating point
number. When this happens, the progress bar will also display the proportion of proposals so far
that were "bad’ (numerically unstable) and therefore rejected. Some numerical instability during
the warmup phase is normal, but *bad’ samples during the sampling phase can lead to bias in your
posterior sample. If you only have a few bad samples (<10\%), you can usually resolve this with
a longer warmup period or by manually defining starting values to move the sampler into a more
reasonable part of the parameter space. If you have more samples than that, it may be that your
model is misspecified. You can often diagnose this by using calculate() to evaluate the values of
greta arrays, given fixed values of model parameters, and checking the results are what you expect.

greta runs multiple chains simultaneously with a single sampler, vectorising all operations across
the chains. E.g. a scalar addition in your model is computed as an elementwise vector addition (with
vectors having length chains), a vector addition is computed as a matrix addition etc. TensorFlow
is able to parallelise these operations, and this approach reduced computational overheads, so this
is the most efficient of computing on multiple chains.

Multiple meme samplers (each of which can simultaneously run multiple chains) can also be run
in parallel by setting the execution plan with the future package. Only plan(multisession)
futures or plan(cluster) futures that don’t use fork clusters are allowed, since forked processes
conflict with TensorFlow’s parallelism. Explicitly parallelising chains on a local machine with
plan(multisession) will probably be slower than running multiple chains simultaneously in a
single sampler (with plan(sequential), the default) because of the overhead required to start new
sessions. However, plan(cluster) can be used to run chains on a cluster of machines on a local
or remote network. See future::cluster() for details, and the future.batchtools package to
set up plans on clusters with job schedulers.

If n_cores = NULL and mcmc samplers are being run sequentially, each sampler will be allowed to
use all CPU cores (possibly to compute multiple chains sequentially). If samplers are being run in
parallel with the future package, n_cores will be set so that n_cores * [future::nbrOfWorkers] is
less than the number of CPU cores.

After carrying out mcmc on all the model parameters, mcmc () calculates the values of (i.e. traces)
the parameters of interest for each of these samples, similarly to calculate(). Multiple posterior
samples can be traced simultaneously, though this can require large amounts of memory for large
models. As in calculate, the argument trace_batch_size can be modified to trade-off speed
against memory usage.

If the sampler is aborted before finishing (and future parallelism isn’t being used), the samples
collected so far can be retrieved with stashed_samples(). Only samples from the sampling phase
will be returned.

Samples returned by mecmc() and stashed_samples() can be added to with extra_samples().
This continues the chain from the last value of the previous chain and uses the same sampler and
model as was used to generate the previous samples. It is not possible to change the sampler or
extend the warmup period.

Because opt () acts on a list of greta arrays with possibly varying dimension, the par and hessian
objects returned by opt() are named lists, rather than a vector (par) and a matrix (hessian), as
returned by stats::optim(). Because greta arrays may not be vectors, the Hessians may not be
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matrices, but could be higher-dimensional arrays. To return a Hessian matrix covering multiple
model parameters, you can construct your model so that all those parameters are in a vector, then
split the vector up to define the model. The parameter vector can then be passed to model. See
example.

Value

mcme, stashed_samples & extra_samples - a greta_mcmc_list object that can be analysed
using functions from the coda package. This will contain mcmc samples of the greta arrays used to
create model.

opt - a list containing the following named elements:

* par a named list of the optimal values for the greta arrays specified in model
* value the (unadjusted) negative log joint density of the model at the parameters "par’
* iterations the number of iterations taken by the optimiser

* convergence an integer code, 0 indicates successful completion, 1 indicates the iteration limit
max_iterations had been reached

* hessian (if hessian = TRUE) a named list of hessian matrices/arrays for the parameters (w.r.t.
value)

Examples

## Not run:

# define a simple Bayesian model

x <= rnorm(10)

mu <- normal(@, 5)

sigma <- lognormal(1, 0.1)
distribution(x) <- normal(mu, sigma)
m <- model(mu, sigma)

# carry out mcmc on the model
draws <- mcmc(m, n_samples = 100)

# add some more samples
draws <- extra_samples(draws, 200)

#' # initial values can be passed for some or all model variables
draws <- mcmc(m, chains = 1, initial_values = initials(mu = -1))

# if there are multiple chains, a list of initial values should be passed,
# othewise the same initial values will be used for all chains

inits <- list(initials(sigma = 0.5), initials(sigma = 1))

draws <- mcmc(m, chains = 2, initial_values = inits)

# you can auto-generate a list of initials with something like this:
inits <- replicate(4,

initials(mu = rnorm(1), sigma = runif(1)),

simplify = FALSE
)

draws <- mcmc(m, chains = 4, initial_values = inits)
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# or find the MAP estimate
opt_res <- opt(m)

# get the MLE of the normal variance

mu <- variable()

variance <- variable(lower = @)
distribution(x) <- normal(mu, sqrt(variance))
m2 <- model(variance)

# adjust = FALSE skips the jacobian adjustments used in MAP estimation, to
# give the true maximum likelihood estimates
o <- opt(m2, adjust = FALSE)

# the MLE corresponds to the *unadjusted* sample variance, but differs
# from the sample variance

o$par

mean((x - mean(x))”*2) # same

var(x) # different

# initial values can also be passed to optimisers:
0 <- opt(m2, initial_values = initials(variance = 1))

# and you can return a list of the Hessians for each of these parameters
o <- opt(m2, hessian = TRUE)
o$hessian

# to get a hessian matrix across multiple greta arrays, you must first

# combine them and then split them up for use in the model (so that the
# combined vector is part of the model) and pass that vector to model:

params <- c(variable(), variable(lower = 0))

mu <- params[1]

variance <- params[2]

distribution(x) <- normal(mu, sqrt(variance))

m3 <- model(params)

o <- opt(m3, hessian = TRUE)

o$hessian

## End(Not run)

install_greta_deps Install Python dependencies for greta

Description

This is a helper function to install Python dependencies needed. This includes Tensorflow version
1.14.0, Tensorflow Probability 0.7.0, and numpy version 1.16.4. These Python modules will be
installed into a virtual or conda environment, named "greta-env". Note that "virtualenv" is not
available on Windows.
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Usage
install_greta_deps(
method = c("auto”, "virtualenv”, "conda"),
conda = "auto",

timeout = 5,

)
Arguments
method Installation method ("virtualenv" or "conda")
conda The path to a conda executable. Use "auto” to allow reticulate to automati-
cally find an appropriate conda binary. See Finding Conda for more details.
timeout maximum time in minutes until the installation for each installation component
times out and exits. Default is 5 minutes per installation component.
Optional arguments, reserved for future expansion.
Note

This will automatically install Miniconda (a minimal version of the Anaconda scientific software
management system), create a ’conda’ environment for greta named ’greta-env’ with required
python and python package versions, and forcibly switch over to using that conda environment.

If you don’t want to use conda or the "greta-env" conda environment, you can install these specific
versions of tensorflow (version 1.14.0), and tensorflow-probability (version 0.7.0), and ensure that

the python environment that is initialised in this R session has these versions installed. This is now
always straightforward, so we recommend installing the python packages using install_greta_deps()
for most users.

Examples

## Not run:
install_greta_deps()

## End(Not run)

internals internal greta methods

Description

A list of functions and R6 class objects that can be used to develop extensions to greta. Most users
will not need to access these methods, and it is not recommended to use them directly in model
code.
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Details

This help file lists the available internals, but they are not fully documented and are subject to
change and deprecation without warning (though care will be taken not to break dependent packages
on CRAN). For an overview of how greta works internally, see the fechnical details vignette. See
https://github.com/greta-dev for examples of R packages extending and building on greta.

Please get in contact via GitHub if you want to develop an extension to greta and need more details
of how to use these internal functions.

You can use attach() to put a sublist in the search path. E.g. attach(.internals$nodes$constructors)

will enable you to call op(), vble() and distrib() directly.

Usage

.internals$greta_arrays$unknowns # greta array print methods
.internals$inference$progress_bar # progress bar tools
samplers # MCMC samplers
stash # stashing MCMC samples
.internals$nodes$constructors # node creation wrappers
distribution_classes # R6 distribution classes
mixture_classes # R6 mixture distribution classes
node_classes # R6 node classes
.internals$tensors # functions on tensors
.internals$utils$checks # checking function inputs
colours # greta colour scheme
dummy_arrays # mocking up extract/replace
misc # code simplification etc.
samplers # mcmc helpers
#

.internals$greta_stash

internal information storage

joint

define joint distributions

Description

joint combines univariate probability distributions together into a multivariate (and a priori inde-
pendent between dimensions) joint distribution, either over a variable, or for fixed data.

Usage
joint(..., dim = NULL)
Arguments
scalar variable greta arrays following probability distributions (see distributions());
the components of the joint distribution.
dim the dimensions of the greta array to be returned, either a scalar or a vector of pos-

itive integers. The final dimension of the greta array returned will be determined
by the number of component distributions
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Details

The component probability distributions must all be either continuous or discrete, and must have
the same dimensions.

This functionality is unlikely to be useful in most models, since the same result can usually be
achieved by combining variables with separate distributions. It is included for situations where it
is more convenient to consider these as a single distribution, e.g. for use with distribution or
mixture.

Examples

## Not run:

# an uncorrelated bivariate normal

x <= joint(normal(-3, ©.5), normal(3, 0.5))
m <- model(x)

plot(mecmc(m, n_samples = 500))

# joint distributions can be used to define densities over data

x <= cbind(rnorm(10, 2, 0.5), rbeta(10, 3, 3))

mu <- normal(@, 10)

sd <- normal(@, 3, truncation = c(@, Inf))

a <- normal(@, 3, truncation = c(@, Inf))

b <- normal(@, 3, truncation = c(@, Inf))

distribution(x) <- joint(normal(mu, sd), beta(a, b),
dim = 10

)

m <- model(mu, sd, a, b)

plot(memc(m))

## End(Not run)

mixture mixtures of probability distributions

Description
mixture combines other probability distributions into a single mixture distribution, either over a
variable, or for fixed data.

Usage

mixture(..., weights, dim = NULL)

Arguments

variable greta arrays following probability distributions (see distributions());
the component distributions in a mixture distribution.
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weights a column vector or array of mixture weights, which must be positive, but need
not sum to one. The first dimension must be the number of distributions, the
remaining dimensions must either be 1 or match the distribution dimension.

dim the dimensions of the greta array to be returned, either a scalar or a vector of
positive integers.

Details

The weights are rescaled to sum to one along the first dimension, and are then used as the mixing
weights of the distribution. Il.e. the probability density is calculated as a weighted sum of the
component probability distributions passed in via \dots

The component probability distributions must all be either continuous or discrete, and must have
the same dimensions.

Examples

## Not run:
# a scalar variable following a strange bimodal distibution
weights <- uniform(@, 1, dim = 3)
a <- mixture(normal(-3, 0.5),
normal(3, 0.5),
normal (@, 3),
weights = weights
)
m <- model(a)
plot(mecmc(m, n_samples = 500))

# simulate a mixture of poisson random variables and try to recover the
# parameters with a Bayesian model
x <= c(
rpois(800, 3),
rpois (200, 10)
)

weights <- uniform(@, 1, dim = 2)

rates <- normal(@, 10, truncation = c(@, Inf), dim = 2)

distribution(x) <- mixture(poisson(rates[1]),
poisson(rates[2]),
weights = weights

)

m <- model(rates)

draws_rates <- mcmc(m, n_samples = 500)

# check the mixing probabilities after fitting using calculate()
# (you could also do this within the model)

normalized_weights <- weights / sum(weights)

draws_weights <- calculate(normalized_weights, draws_rates)

# get the posterior means
summary (draws_rates)$statistics[, "Mean"]
summary (draws_weights)$statistics[, "Mean”]
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# weights can also be an array, giving different mixing weights
# for each observation (first dimension must be number of components)
dim <- c(5, 4)
weights <- uniform(@, 1, dim = c(2, dim))
b <- mixture(normal(1, 1, dim = dim),
normal(-1, 1, dim = dim),
weights = weights

)

## End(Not run)

model greta model objects

Description

Create a greta_model object representing a statistical model (using model), and plot a graphical
representation of the model. Statistical inference can be performed on greta_model objects with
mcme ()

Usage

model (..., precision = c("double”, "single"), compile = TRUE)

## S3 method for class 'greta_model'
print(x, ...)

## S3 method for class 'greta_model'
plot(x, y, colour = "#996bc7", ...)

Arguments

for model: greta_array objects to be tracked by the model (i.e. those for which
samples will be retained during mcmc). If not provided, all of the non-data
greta_array objects defined in the calling environment will be tracked. For
print and plot:further arguments passed to or from other methods (currently
ignored).

precision the floating point precision to use when evaluating this model. Switching from
"double” (the default) to "single” may decrease the computation time but
increase the risk of numerical instability during sampling.

compile whether to apply XLA JIT compilation to the TensorFlow graph representing the
model. This may slow down model definition, and speed up model evaluation.

X a greta_model object

y unused default argument

colour base colour used for plotting. Defaults to greta colours in violet.


https://www.tensorflow.org/xla
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Details

model () takes greta arrays as arguments, and defines a statistical model by finding all of the other
greta arrays on which they depend, or which depend on them. Further arguments to model can be
used to configure the TensorFlow graph representing the model, to tweak performance.

The plot method produces a visual representation of the defined model. It uses the DiagrammeR
package, which must be installed first. Here’s a key to the plots:

data variable distribution operation deterministic stochastic

Value

model - a greta_model object.

plot - aDiagrammeR: :grViz() object, with the DiagrammeR: :dgr_graph() object used to create
it as an attribute "dgr_graph”.

Examples

## Not run:

# define a simple model

mu <- variable()

sigma <- normal(@, 3, truncation = c(@, Inf))
X <- rnorm(10@)

distribution(x) <- normal(mu, sigma)

m <- model(mu, sigma)

plot(m)

## End(Not run)

operators arithmetic, logical and relational operators for greta arrays

Description
This is a list of currently implemented arithmetic, logical and relational operators to combine greta
arrays into probabilistic models. Also see functions and transforms.

Details

greta’s operators are used just like R’s the standard arithmetic, logical and relational operators, but
they return other greta arrays. Since the operations are only carried during sampling, the greta array
objects have unknown values.
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Usage

# arithmetic operators
-X

+

> N %
K K K KK

%%y
%/% y
%%% Y

X X X X X X X X

=+

logical operators

xX X -

&y
[y

relational operators

X X X X X X H
N
1

Examples

## Not run:

X <- as_data(-1:12)

# arithmetic
a<-x+1
b<-2x%xx+3

C <-X %% 2
d<-x %/%5

# logical

e<- (x>1) | (x<1)
f<-e& (x<2)
g <- If

# relational
h<-x<1

i <= (=x) >=x

j <-h ==

## End(Not run)
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optimisers optimisation methods

Description

Functions to set up optimisers (which find parameters that maximise the joint density of a model)
and change their tuning parameters, for use in opt (). For details of the algorithms and how to tune
them, see the SciPy optimiser docs or the TensorFlow optimiser docs.

Usage

nelder_mead()
powell ()

cg)

bfgs ()
newton_cg()

1_bfgs_b(maxcor = 10, maxls = 20)

tnc(max_cg_it = -1, stepmx = @, rescale = -1)
cobyla(rhobeg = 1)
slsap()

gradient_descent(learning_rate = 0.01)
adadelta(learning_rate = 0.001, rho = 1, epsilon = 1e-08)
adagrad(learning_rate = 0.8, initial_accumulator_value = 0.1)

adagrad_da(
learning_rate = 0.8,
global_step = 1L,
initial_gradient_squared_accumulator_value = 0.1,
11_regularization_strength = 0,
12_regularization_strength = @

)

momentum(learning_rate = 0.001, momentum = 0.9, use_nesterov = TRUE)

0.999, epsilon = 1e-08)

adam(learning_rate = 0.1, betal = 0.9, beta2


https://docs.scipy.org/doc/scipy-1.8.0/html-scipyorg/reference/optimize.html#optimization
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib
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ftrl(
learning_rate = 1,
learning_rate_power = -0.5,
initial_accumulator_value = 0.1,
11_regularization_strength = 9,
12_regularization_strength = @

proximal_gradient_descent(
learning_rate = 0.01,
11_regularization_strength
12_regularization_strength

)

1nu
[N

proximal_adagrad(
learning_rate = 1,
initial_accumulator_value = 0.1,
11_regularization_strength
12_regularization_strength

)

I n
[SEEN]

rms_prop(learning_rate = 0.1, decay = 0.9, momentum = @, epsilon = 1e-10)

Arguments
maxcor maximum number of ’variable metric corrections’ used to define the approxima-
tion to the hessian matrix
maxls maximum number of line search steps per iteration
max_cg_it maximum number of hessian * vector evaluations per iteration
stepmx maximum step for the line search
rescale log10 scaling factor used to trigger rescaling of objective
rhobeg reasonable initial changes to the variables

learning_rate the size of steps (in parameter space) towards the optimal value
rho the decay rate

epsilon a small constant used to condition gradient updates
initial_accumulator_value
initial value of the accumulator’ used to tune the algorithm

global_step the current training step number
initial_gradient_squared_accumulator_value

initial value of the accumulators used to tune the algorithm
11_regularization_strength

L1 regularisation coefficient (must be O or greater)
12_regularization_strength

L2 regularisation coefficient (must be O or greater)

momentum the momentum of the algorithm
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use_nesterov  whether to use Nesterov momentum
betal exponential decay rate for the 1st moment estimates

beta2 exponential decay rate for the 2nd moment estimates
learning_rate_power
power on the learning rate, must be O or less

decay discounting factor for the gradient

Details

The optimisers powell (), cg(), newton_cg(), 1_bfgs_b(), tnc(), cobyla(), and slsqp() are
deprecated. They will be removed in greta 0.4.0, since they will no longer be available in Tensor-
Flow 2.0, on which that version of greta will depend.

The cobyla() does not provide information about the number of iterations nor convergence, SO
these elements of the output are set to NA

Value

an optimiser object that can be passed to opt ().

Examples

## Not run:

# use optimisation to find the mean and sd of some data
x <= rnorm(100, -2, 1.2)

mu <- variable()

sd <- variable(lower = 0)

distribution(x) <- normal(mu, sd)

m <- model(mu, sd)

# configure optimisers & parameters via 'optimiser' argument to opt
opt_res <- opt(m, optimiser = bfgs())

# compare results with the analytic solution
opt_res$par

c(mean(x), sd(x))

## End(Not run)

overloaded Functions overloaded by greta

Description

greta provides a wide range of methods to apply common R functions and operations to greta_array
objects. A few of these functions and operators are not associated with a class system, so they are

overloaded here. This should not affect normal use of these functions, but they need to be docu-

mented to satisfy CRAN’s check.
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Usage

X %*% Yy
chol2inv(x, size = NCOL(x), LINPACK = FALSE)
cov2cor(V)

identity(x)

colMeans(x, na.rm = FALSE, dims = 1L)

rowMeans(x, na.rm = FALSE, dims = 1L)

colSums(x, na.rm = FALSE, dims 1L)

rowSums(x, na.rm = FALSE, dims = 1L)

sweep(x, MARGIN, STATS, FUN = "-"  check.margin = TRUE, ...)
backsolve(r, x, k = ncol(r), upper.tri = TRUE, transpose = FALSE)
forwardsolve(l, x, k = ncol(l), upper.tri = FALSE, transpose = FALSE)
apply(X, MARGIN, FUN, ...)

tapply (X, INDEX, FUN, ...)

eigen(x, symmetric, only.values, EISPACK)

rdist(x1, x2 = NULL, compact = FALSE)

abind(
along = N,
rev.along = NULL,
new.names = NULL,
force.array = TRUE,
make.names = use.anon.names,
use.anon.names = FALSE,
use.first.dimnames = FALSE,
hier.names = FALSE,
use.dnns = FALSE

)

diag(x = 1, nrow, ncol)
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Arguments
X, ¥, size, LINPACK, V, na.rm, dims, MARGIN, STATS, FUN, check.margin, ..., r, k, upper.tri, transpose, 1, )
arguments as in original documentation
Details

Note that, since R 3.1, the LINPACK argument is defunct and silently ignored. The argument is
only included for compatibility with the base functions that call it.

To find the original help file for these overloaded functions, search for the function, e.g., ?cov2cor
and select the non-greta function.

reinstallers Helpers to remove, and reinstall python environments and miniconda

Description

This can be useful when debugging greta installation to get to "clean slate". There are four functions:

Usage

remove_greta_env()

reinstall_greta_env(timeout = 5)

remove_miniconda()

reinstall_miniconda(timeout = 5)
Arguments

timeout time in minutes to wait until timeout (default is 5 minutes)
Details

* remove_greta_env() removes the ’greta-env’ conda environment
¢ remove_miniconda() removes miniconda installation

* reinstall_greta_env() remove ’greta-env’ and reinstall it using greta_create_conda_env()
(which is used internally).

* reinstall_miniconda() removes miniconda and reinstalls it using greta_install_miniconda()
(which is used internally)

Value

invisible
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Examples

## Not run:
remove_greta_env()
remove_miniconda()
reinstall_greta_env()
reinstall_miniconda()

## End(Not run)

samplers MCMC samplers

Description

Functions to set up MCMC samplers and change the starting values of their parameters, for use in

mcme ().

Usage
hmc(Lmin = 5, Lmax = 10, epsilon = 0.1, diag_sd = 1)
rwmh(proposal = c("normal”, "uniform”), epsilon = 0.1, diag_sd = 1)
slice(max_doublings = 5)

Arguments
Lmin minimum number of leapfrog steps (positive integer, Lmin > Lmax)
Lmax maximum number of leapfrog steps (positive integer, Lmax > Lmin)
epsilon leapfrog stepsize hyperparameter (positive, will be tuned)
diag_sd estimate of the posterior marginal standard deviations (positive, will be tuned).
proposal the probability distribution used to generate proposal states

max_doublings the maximum number of iterations of the ’doubling’ algorithm used to adapt the
size of the slice

Details

During the warmup iterations of mcmc, some of these sampler parameters will be tuned to improve
the efficiency of the sampler, so the values provided here are used as starting values.

For hmc(), the number of leapfrog steps at each iteration is selected uniformly at random from
between Lmin and Lmax. diag_sd is used to rescale the parameter space to make it more uniform,
and make sampling more efficient.

rwmh () creates a random walk Metropolis-Hastings sampler; a a gradient-free sampling algorithm.
The algorithm involves a proposal generating step proposal_state = current_state + perturb
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by a random perturbation, followed by Metropolis-Hastings accept/reject step. The class is imple-
mented for uniform and normal proposals.

slice() implements a multivariate slice sampling algorithm. Currently this algorithm can only be
used with single-precision models (set using the precision argument to model()). The parameter
max_doublings is not tuned during warmup.

Value

a sampler object that can be passed to memc ().

simulate.greta_model  Simulate Responses From greta_model Object

Description

Simulate values of all named greta arrays associated with a greta model from the model priors,
including the response variable.

Usage

## S3 method for class 'greta_model'

simulate(object, nsim = 1, seed = NULL, precision = c("double”, "single"), ...)
Arguments

object a greta_model () object

nsim positive integer scalar - the number of responses to simulate

seed an optional seed to be used in set.seed immediately before the simulation so as

to generate a reproducible sample
precision the floating point precision to use when calculating values.

optional additional arguments, none are used at present

Details

This is essentially a wrapper around calculate() that finds all relevant greta arrays. See that func-
tion for more functionality, including simulation conditional on fixed values or posterior samples.

To simulate values of the response variable, it must be both a named object (in the calling envi-
ronment) and be a greta array. If you don’t see it showing up in the output, you may need to use
as_data to convert it to a greta array before defining the model.

Value

A named list of vectors, matrices or arrays containing independent samples of the greta arrays
associated with the model. The number of samples will be prepended as the first dimension of
the greta array, so that a vector of samples is returned for each scalar greta array, and a matrix is
returned for each vector greta array, etc.
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Examples

## Not run:

# build a greta model
n<-10

y <= rnorm(n)

y <- as_data(y)

library(greta)

sd <- lognormal(1l, 2)

mu <- normal(@, 1, dim = n)
distribution(y) <- normal(mu, sd)
m <- model(mu, sd)

# simulate one random draw of y, mu and sd from the model prior:
sims <- simulate(m)

# 100 simulations of y, mu and sd
sims <- simulate(m, nsim = 100)

## End(Not run)
# nolint start

structures create data greta arrays

Description

These structures can be used to set up more complex models. For example, scalar parameters can
be embedded in a greta array by first creating a greta array with zeros() or ones(), and then
embedding the parameter value using greta’s replacement syntax.

Usage

zeros(...)
ones(...)

greta_array(data = @, dim = length(data))

Arguments

dimensions of the greta arrays to create

data a vector giving data to fill the greta array. Other object types are coerced by
as.vector().

dim an integer vector giving the dimensions for the greta array to be created.
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Details

greta_array is a convenience function to create an R array with array() and then coerce it to a
greta array. l.e. when passed something that can be coerced to a numeric array, it is equivalent to
as_data(array(data,dim)).

If data is a greta array and dim is different than dim(data), a reshaped greta array is returned. This
is equivalent to: dim(data) <-dim.

Value

a greta array object
Examples
## Not run:

# a 3 row, 4 column greta array of 0s
z <- zeros(3, 4)

# a 3x3x3 greta array of 1s
z <- ones(3, 3, 3)

# a 2x4 greta array filled with pi
z <- greta_array(pi, dim = c(2, 4))

# a 3x3x3 greta array filled with 1, 2, and 3
z <- greta_array(1:3, dim = c(3, 3, 3))

## End(Not run)

transforms transformation functions for greta arrays

Description

transformations for greta arrays, which may also be used as inverse link functions. Also see opera-
tors and functions.

Usage

iprobit(x)
ilogit(x)
icloglog(x)

icauchit(x)
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logipe(x)
imultilogit(x)
Arguments
X a real-valued (i.e. values ranging from -Inf to Inf) greta array to transform to a
constrained value
Details

greta does not allow you to state the transformation/link on the left hand side of an assignment, as is
common in the BUGS and STAN modelling languages. That’s because the same syntax has a very
different meaning in R, and can only be applied to objects that are already in existence. The inverse
forms of the common link functions (prefixed with an ’i’) can be used instead.

The log1pe inverse link function is equivalent to log (1 + exp(x)), yielding a positive transformed
parameter. Unlike the log transformation, this transformation is approximately linear for x > 1. i.e.
when x > 1, y is approximately z

imultilogit expects an n-by-m greta array, and returns an n-by-(m+1) greta array of positive reals
whose rows sum to one. This is equivalent adding a final column of Os and then running the softmax
function widely used in machine learning.

Examples
## Not run:
x1 <- normal(1, 3, dim = 10)

# transformation to the unit interval
p1 <- iprobit(x1)

p2 <- ilogit(x1)

p3 <- icloglog(x1)

p4 <- icauchit(x1)

# and to positive reals
y <- loglpe(x1)

# transform from 10x3 to 10x4, where rows are a complete set of
# probabilities

x2 <- normal(1, 3, dim = c(10, 3))

z <- imultilogit(x2)

## End(Not run)
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variable create greta variables

Description

variable() creates greta arrays representing unknown parameters, to be learned during model
fitting. These parameters are not associated with a probability distribution. To create a variable
greta array following a specific probability distribution, see distributions().

Usage
variable(lower = -Inf, upper = Inf, dim = NULL)

cholesky_variable(dim, correlation = FALSE)
simplex_variable(dim)

ordered_variable(dim)

Arguments
lower, upper optional limits to variables. These must be specified as numerics, they cannot
be greta arrays (though see details for a workaround). They can be set to -Inf
(lower) or Inf (upper), though lower must always be less than upper.
dim the dimensions of the greta array to be returned, either a scalar or a vector of
positive integers. See details.
correlation whether to return a cholesky factor corresponding to a correlation matrix (diag-
onal elements equalling 1, off-diagonal elements between -1 and 1).
Details

lower and upper must be fixed, they cannot be greta arrays. This ensures these values can always
be transformed to a continuous scale to run the samplers efficiently. However, a variable parameter
with dynamic limits can always be created by first defining a variable constrained between 0 and 1,
and then transforming it to the required scale. See below for an example.

The constraints in simplex_variable() and ordered_variable() operate on the final dimension,
which must have more than 1 element. Passing in a scalar value for dim therefore results in a row-
vector.

Examples
## Not run:

# a scalar variable
a <- variable()

# a positive length-three variable
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b

#
[

#

<- variable(lower = @, dim = 3)

a 2x2x2 variable bounded between @ and 1
<- variable(lower = @, upper = 1, dim = c(2, 2, 2))

create a variable, with lower and upper defined by greta arrays

min <- as_data(iris$Sepal.Length)
max <- min*2

d

<- min + variable(@, 1, dim = nrow(iris)) * (max - min)

## End(Not run)

#

e_
e_

#
#

4x4 cholesky factor variables for covariance and correlation matrices
cov <- cholesky_variable(dim = 4)
correl <- cholesky_variable(dim = 4, correlation = TRUE)

these can be converted to symmetic matrices with chol2symm
(equivalent to t(e_cov) %x% e_cov, but more efficient)

cov <- chol2symm(e_cov)
correl <- chol2symm(e_correl)

#
f

> H 0 =

ETS

a 4D simplex (sums to 1, all values positive)
<- simplex_variable(4)

a 4D simplex on the final dimension

<- simplex_variable(dim = c(2, 3, 4))

a 2D variable with each element higher than the one in the cell to the left
<- ordered_variable(dim = c(3, 4))

more constraints can be added with monotonic transformations, e.g. an
ordered positive variable
<- exp(ordered_variable(5))
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