Package ‘hadron’

September 10, 2020
Version 3.1.2
Date 2020-09-09
Title Analysis Framework for Monte Carlo Simulation Data in Physics
SystemRequirements Gnu Scientific Library version >= 1.8

Description Toolkit to perform statistical analyses of correlation
functions generated from Lattice Monte Carlo simulations. In
particular, a class 'cf' for correlation functions and
methods to analyse those are defined. This includes (blocked)
bootstrap (based on the 'boot' package) and jackknife, but also an
automatic determination of integrated autocorrelation
times. 'hadron' also provides a very general function
bootstrap.nlsfit() to bootstrap a non-linear least squares fit.
More specific functions are provided to extract hadronic quantities
from Lattice Quantum Chromodynamics simulations, a particular Monte
Carlo simulation,(see e.g. European Twisted Mass Collaboration, P. Boucaud et
al. (2008) <doi:10.1016/j.cpc.2008.06.013>). Here, to determine
energy eigenvalues of hadronic states, specific fitting routines
and in particular the generalised eigenvalue method (see
e.g. B. Blossier et al. (2009) <doi:10.1088/1126-6708/2009/04/094>
and M. Fischer et al. (2020)
<https://inspirehep.net/literature/1792113>) are implemented.
In addition, input/output and plotting routines are available.

Imports abind, boot, dplyr, Rcpp, R6, stringr
LinkingTo Rcpp

Suggests minpack.lm, parallel, rhdf3, knitr, testthat, tictoc,
tikzDevice, hash, numDeriv, staplr, markdown, rmarkdown, errors

License GPL-3

URL https://github.com/HISKP-LQCD/hadron

BugReports https://github.com/HISKP-LQCD/hadron/issues
LazyData true

RoxygenNote 7.1.1
Encoding UTF-8

https://github.com/HISKP-LQCD/hadron
https://github.com/HISKP-LQCD/hadron/issues

2 R topics documented:

VignetteBuilder knitr
NeedsCompilation yes

Author Bartosz Kostrzewa [aut],
Johann Ostmeyer [aut],
Martin Ueding [aut],
Carsten Urbach [aut, cre],
Nikolas Schlage [ctb],
Markus Werner [ctb],
Ferenc Pittler [ctb],
Matthias Fischer [ctb],
Vittorio Lubicz [ctb]

Maintainer Carsten Urbach <urbach@hiskp.uni-bonn.de>
Repository CRAN
Date/Publication 2020-09-10 06:40:02 UTC

R topics documented:

< PP 7
Eraw_CE . . o s 7
U1 8
Fraw_cf . . 8
N A 9
—raw_Cf L e 9
fraw_cf . . 10
add.cf . . . e 10
add.oraw_cf . . . L e 11
addConfIndex2cf e 11
addStat.cf L 12
addStatraw_cf 13
alphas e e e 13
analysis_gradient_flow o 14
analysis_online e 15
avg.ebt.ef . oL 17
block.raw_cf L 18
bootstrap.analysis e e 18
bootstrap.cf 19
bootstrap.effectivemasso 20
DOOLSIIAP.ZEVD . . .« « v o o o e e e e e 22
bootstrap.hankel L 24
bootstrap.hankel_summed L L 25
DOOLSIrap.Meanerror o vt it e e e e e e e e e 26
bootstrap.nlsfit 27
o 30
craw_cf . . . e e 30
cA2.09.48 3pi_I3_0_Alu_l_pc e 31

cdh. . o 31

R topics documented: 3

cdhnew L e e e e e 33
CEXDP . . o e 34
of e 35
cf boOt . . 36
cf_key_meson_2pt L. e e 37
cf_ key_meson_3pt 38
cf meta e 40
cf Orig . . . o e e 41
cf_principal_correlator L 42
cf shifted e 42
cf smeared e 43
cf subtracted e e e e 44
cf_weighted e 44
compute.plothims e 45
computeact e e e e 46
computeDisc L 47
computefps 49
computefpsOS e e 50
concat.ct L e e e 52
concat.raw_Cf L s 52
conj_raw_cf . . . L L 53
construct_onlinemeas_rundir 53
correlatormatrixX e e e e e e e e e 54
correlators_key_meson_2pto o 54
correlators_Key_meson_3pt e e e 55
create_displ_chains L 57
cve_local_loop_key oL 58
cve_read_loops 58
cve_to_raw_cf. . . . L e e e e 60
cyprus_make_key_scalaro 61
cyprus_make_Key_Vector e 61
cyprus_read_loops e e e e 62
disc_3pt e 63
dispersion_relation Lo 64
effectivemass e e e 65
effectivemass.cf L. 66
effmass 68
effmass2 e 68
escapelatexSpecials e e 69
extract.loop L 69
EXIract.obS e e 70
extractSingleCor.cf 72
EXITACT_MASS . . . o v v v e 72
extract_mass.effectivemassfit 73
extract_mass.matrixfit e e e 73
fit.cosh e e e e e 74
fiteffectivemass e e 75

fit.plateau2cf 77

R topics documented:

foldrl e e e 78
fs.a0 . . . e e e e 78
fsmpiaO L 79
fs.qeotdelta 80
- P 81
getorderedconfignumberso L oo oL 81
getorderedfilelist 82
get_plotdata_raw_cf L 83
GEVD . o e 84
gevp.hankel 85
gevp.hankel_summed 86
gevp2amplitude e e 87
gevp2ef . oL oL e 88
SN . Lt e e e 89
SM_INU . o vt e 90
hS_get_dataset e 90
h5_names_exist 91
hadron e e e e 91
hankel2cf 92
hankel2effectivemass 93
hankeldensity2effectivemass 94
has_icf e e e e e 94
dx_matrix.raw_cf e e 95
int_idx_matrix.raw_cf L e 95
invalidate.samples.cf 96
INVCOSh e e e e e e e 96
invertCovMatriX e e 97
1S.Cf L e e e e 98
israw_cf . . . e e e e e e 98
is_empty.ct 99
is_emptyraw_cf L 99
jackknife.cf e 100
jackknife_cov 101
jackknife_error oL 101
loopdata e 102
LoOp_2pt .« o o e e 103
loop_sSpIn_project o e e e e e e 103
loop_stochav e 104
loop_vev_subtract e e e e 105
make_parind L e 105
make_parlist 106
matrixfit L e e e e e e 106
matrixModel L e e e e e 109
mom_combinations 110
mul.cf . . e e 110
mulraw_cf . . . L e e 111
new_matrixfit L e e 111

old_removeTemporal.cf L 113

R topics documented: 5

onlinemeas e e e 114
overview_plot_raw_cf oL 116
parametric.bootstrapo e 117
parametric.bootstrap.Ccovo ..o e e 118
parametric.nlsfito oL 119
parametric.nlsfit.covo Lo 120
PCAC . o o o e e e 121
peactit e e e 122
pcModel Lo 123
plag.sample 124
plotaverx 124
plot.bootstrapfit e 125
plot.ct . . L 126
plot.cfit 126
plot.coshfit e e 127
ploteffectivemass L L e 127
ploteffmass L 128
plot.gevp.amplitude e e 128
plothadronacf L 129
plotmassfit 129
plotmatrixfit 130
Plot.ofit e e e 131
plotoutputdata 131
plotpionff 132
plotraw_cf L e e e 133
PIOLUWEIT o o e e e e e e e e 133
plothlinewitherror 134
plotwitherror 135
plot_eigenvalue_timeseriest e e 137
plot_hankel_spectrum oL e 138
PlOt_tIMESEries e e e 138
pointswithslantederror L. L 139
predict.bootstrapfit oL 140
print.bootstrapfit L. 141
print.cf . . .o 142
printeffectivemassfit L L 142
print.ofit e 143
printraw_cf 143
PSCOL.SAMPIE e e e e e e e e 144
raw_cCf . . . e 144
raw_cf data 145
raw_cf_meta L e 145
raw_cf to_cf 146
readbinarycfo 147
readbinarydisc L. 148
readbinarysamples L L e e 149
reademidisco L. e e e 150

reademifiles L e 151

Index

R topics documented:

readgradflow L 153
readhlcor L L e e e e e 155
readnissatextcf L. L L L 155
readoutputdata L e e e e e 157
readtextcf L 158
removeTemporal.cf 159
resample_hankel L o 160
resampling_is_compatible e 161
resampling_is_concatenable oL 161
residual_plot 162
restore_seed e e 162
samplect L 163
shift.ef . . . o o e 163
shiftraw_cf L L 164
simple.nlsfit e 165
store_correl e e 167
StrNG2EITOr e e 168
subtract.excitedstates L. e 169
summary.bootstrapfit 169
summary.cf e e 170
summary.coshfit 171
summary.effectivemass L e 171
summary.effectivemassfito o 172
summary.gevp.amplitude Lo 172
summary.hadronacf 173
summary.hankel_summed oL 173
summary.matrixfit 174
summary.ofit e e e e 174
summary.raw_cf L e e e 175
SUMMATY.UWEIT .« . o v v v e e et i e e e e e e e e e e e e e e e e 175
swap_seed e e e e e 176
symmetrise.cf e e e 176
takeTimeDiff.cf 177
tex.catwitherror L. e e e e e 177
tikz.finalize 178
tikzanit . . .o e 179
unsymmetrise.cf oL L. 180
UWETT . . v v v v e 181
uwerr.cf . .o e 183
uwerr.raw_cf e 184
weight.cf L 184
weight_shift_reweight.cf 185
ZREAZD '« o o e e e e e e e e e e e e e e e e e e e 186

*cf 7

*.cf Divide two cf objects by each other measurement by measurement

Description

Note that no complex arithmetic is used, real and imaginary parts are treated as seperate and inde-
penent, such that the real part of one is the divided by the real part of the other and similarly for the
imaginary parts.

Usage

S3 method for class 'cf'
cf1 % cf2

S3 method for class 'cf'
cf1 / cf2

Arguments

cf1, cf2 cf_orig objects.

Details

Note that this is generally only allowed on bootstrap samples and mean values, although it makes
sense in some exeptional circumstances. Don’t use this function unless you’re certain that you
should!

Value
The value is
cfl/cf2.
*.raw_cf multiply two raw_cf objects

Description

multiply two raw_cf objects

Usage

S3 method for class 'raw_cf'
cf1 % cf2

Arguments

cf1 first ‘raw_cf’ container with data and meta-data to be multiplied

cf2 second 'raw_cf” container with data and meta-data to be multiplied

Value

raw_cf object with cf$data == cf1$data * cf2$data

+.raw_cf

+.cf Arithmetically add correlators

Description

Arithmetically add correlators

Usage
S3 method for class 'cf'
cf1 + cf2

Arguments

cf1, cf2 cf_orig objects.

Value

The value is
cfl+cf2.

+.raw_cf add two raw_cf objects

Description

add two raw_cf objects

Usage
S3 method for class 'raw_cf'
cf1 + cf2

Arguments

cf1 first ‘raw_cf’ container to be added

cf2 second ‘raw_cf’ container to be added

-.cf

Value

raw_cf object with cf$data == cf1$data + cf2$data

-.cf Arithmetically subtract correlators

Description

Arithmetically subtract correlators

Usage
S3 method for class 'cf'
cf1 - cf2

Arguments

cf1, cf2 cf_orig objects.

Value

The value is

cfl—cf2.

-.raw_cf add two raw_cf objects

Description

add two raw_cf objects

Usage
S3 method for class 'raw_cf'
cf1 - cf2

Arguments

cf1 first ‘raw_cf’ container to be subtracted

cf2 second 'raw_cf’ container to be subtracted

Value

raw_cf object with cf$data == cf1$data -cf2$data

10

add.cf

/.raw_cf

divide two raw_cf objects

Description

divide two raw_cf objects

Usage

S3 method for class 'raw_cf'

cf1 / cf2

Arguments

cf1
cf2

Value

raw_cf’ container with data and meta-data to be the dividend

raw_cf’ container with data and meta-data to be the divisor

raw_cf object with cf$data == cf1$data / cf2$data

add.cf

Arithmetically adds two correlation functions

Description

Arithmetically adds two correlation functions

Usage

add.cf(cf1, cf2, a=1, b=1)

Arguments

cf1, cf2
a, b

Value

The value is

cf_orig object.
Numeric. Factors that multiply the correlation function before the addition.

Since addition is associative, this operates also on the bootstrap samples and
these are thus not invalidated in the process.

aC’1 + bCQ .

add.raw_cf

11

add.raw_cf add two raw_cf objects

Description

add two raw_cf objects

Usage
add.raw_cf(cf1, cf2, a=1, b =1)

Arguments
cf1 first ‘raw_cf’ container with data and meta-data
cf2 second ‘raw_cf’ container with data and meta-data
a Numeric or complex, scaling factor applied to cf1.
b Numeric or complex, scaling factor applied to cf2.
Value

a*cf1$data + bxcf2$data

addConfIndex2cf add a configuration index to an cf object

Description

add a configuration number index to cf object.

Usage
addConfIndex2cf(cf, conf.index)

Arguments

cf and object of class cf

conf.index a configuration index of the same length as cf.
Value

Returns an object of class cf equal to the input but with element conf. index added

Author(s)

Carsten Urbach, <urbach@hiskp.uni-bonn.de>

12 addStat.cf

See Also
cf

Examples

data(samplecf)
conf.index <- c(1:1018)
samplecf <- addConfIndex2cf(samplecf, conf.index=conf.index)

addStat.cf Combine statistics of two cf objects

Description

addStat. cf takes the raw data of two cf objects and combines them into one

Usage

addStat.cf(cf1, cf2)

Arguments
cf1l the first of the two cf objects to be combined
cf2 the second of the two cf objects to be combined
Details

Note that the two cf objects to be combined need to be compatible. Otherwise, addStat.cf will
abort with an error.

Value

an object of class cf with the statistics of the two input cf objects combined

Author(s)

Carsten Urbach, <curbach@gmx . de>

See Also

cf

addStat.raw_cf 13

Examples

data(samplecf)

the following is not useful, but

explains the usage

cfnew <- addStat.cf(cfl=samplecf, cf2=samplecf)

addStat.raw_cf Extend statistics of an existing raw_cf container

Description

Extend statistics of an existing raw_cf container

Usage
addStat.raw_cf(cf1, cf2)

Arguments
cf1 raw_cf container with or without ’data’ and 'meta’ mixins
cf2 raw_cf container with or without ’data’ and 'meta’ mixins
Details

When either of cf1 or cf2 does not contain any data, the other object is returned. (allows empty
raw_cf to be extended). If the dimensions (except for the measurements) of the data fields of the
two containers match, they are concatenated along the measurement dimension.

Value

An object of S3 class raw_cf identical to the input object but with extended statistics.

alphas compute alpha strong at given scale

Description

compute alpha strong («) at given scale p up to N3LO in PT in the RI’ renormalisation scheme.

Usage

alphas(mu, nl = 3, lam@ = 0.25, Nc = 3, Nf = 2, use.cimpl = TRUE)

14 analysis_gradient_flow

Arguments
mu the renormalisation scale i in GeV
nl order in PT, range O to 3
1amo Aqcp in GeV
Nc number of colours V., defaults to 3
Nf number of flavours N, default is 2
use.cimpl Use the C implementation instead of the R implementation, which might im-
prove speed.
Value

returns the value of alpha strong « at scale p

Author(s)

Carsten Urbach, <curbach@gmx.de>, Vittorio Lubicz (of the original Fortran code)

See Also

zetazp

Examples

alphas(mu=2.0, nl=3)

analysis_gradient_flow
analysis_gradient_flow

Description

function to analyse the gradient flow output files generated by the tmLQCD software, see references.

Usage

analysis_gradient_flow(path, outputbasename, basename = "gradflow”,
read.data = TRUE, pl = FALSE, plotsize = 4, skip = 0, start = 0,
scale = 1, dbg = FALSE)

analysis_online 15

Arguments
path string. path to data files
outputbasename string. basename of output files
basename string. basename of input files, for example "gradflow"
read.data boolean. Indicates whether to read data fresh from data files or to use basename.raw.gradflow.Rdata
instead
pl boolean. If set to TRUE plots will be generated
plotsize numeric. Plot sidelength, this is passed to tikz.init.
skip integer. number of measurements to skip
start integer. start value for time
scale numeric. scale factor for the MD time, should be set to the stridelength (in units

of trajectories or configurations) which was used to produce the gradient flow
files, such that the distance between measurements can be interpreted correctly
and the reported autocorrelation times scaled appropriately.

dbg boolean. If set to TRUE debugging output will be provided.

Value

Nothing is returned.

References

K. Jansen and C. Urbach, Comput.Phys.Commun. 180 (2009) 2717-2738

analysis_online analysis_online

Description

analysis_online is a function to analyse the online measurements and output files of the tm-
LQCD software, see references. The function operates on a subdirectory either passed via rundir
or automatically constructed from the various function arguments. Depending on which parts of
the analysis are requested, this subdirectory is expected to contain onlinemeas.%06d files with on-
line correlator measurements, output. data containing the plaquette and energy violation, amongst
others and monomial-%02d.data with measurements of the extremal eigenvalues of the

Usage
analysis_online(L, Time, t1, t2, beta, kappa, mul, cg_col, evals_id, rundir,
cg.ylim, type = "", csw = @, musigma = @, mudelta = @, muh = 0,
addon = "") skip = @, rectangle = TRUE, plaquette = TRUE,

dH = TRUE, acc = TRUE, trajtime = TRUE, omeas = TRUE, plotsize = 5,
debug = FALSE, trajlabel = FALSE, title = FALSE, pl = FALSE,

method = "uwerr"”, fit.routine = "optim”, oldnorm = FALSE, S = 1.5,
stat_skip = @, omeas.samples = 1, omeas.stride = 1, omeas.avg
omeas.stepsize = 1, evals.stepsize = 1, boot.R = 1500, boot.1l
outname_suffix = "", verbose = FALSE)

I n
N =

16

Arguments

L

Time
t1

t2
beta
kappa
mul
cg_col

evals_id

rundir

cg.ylim
type

csw
musigma
mudelta

muh

addon

skip
rectangle
plaquette
dH

acc
trajtime
omeas
plotsize
debug
trajlabel
title

pl

method
fit.routine

oldnorm

analysis_online

integer. spatial lattice extent

integer. temporal lattice extent

integer. initial time of fit range

integer. end time of fit range

numeric. inverse squared gauge coupling

numeric. hopping parameter

numeric. light sea twisted quark mass

integer. column of CG iteration counts from output.data to use

Integer. Monomial ID of the monomial for which eigenvalues are measured.
Function will attempt to open monomial-%02d.data.

string. run directory. If not specified, run directory will be constructed automat-
ically. See construct_onlinemeas_rundir for details.

numeric. y-limits for CG iteration counts

string. Type specifier for the gauge action, this might be *iwa’ for Iwasaki, for
example.

numeric. clover coefficient

numeric. average 1+1 sea twisted quark mass

numeric. splitting 1+1 sea twisted quark mass

numeric. "heavy" twisted mass in the case of a n_f=2+2 run
string. addon to output filenames

integer. number of initial measurements to skip in analysis
boolean. If true, rectangle plaquettes are analysed

boolean. If true, square plaquettes are analysed

boolean. If true, delta H is analysed

boolean. If true, the acceptance rate is analysed

boolean. If true, the time per trajectory is analysed

boolean. If true, online measurements are analysed (onlinemeas.%06d)
numeric. size of plots being generated

boolean. provide debug information

boolean or string. If not FALSE, use as trajectory labels

bolean or string. If not FALSE, use as main title of plots

boolean. If set to TRUE plots will be generated

string. method to compute errors, can be "uwerr", "boot" or "all"
string. minimisation routine for chisq, can be "optim"

boolean. If TRUE, the function assumes that the onlinemeas.%06d are in old
tmLQCD normalisation.

numeric. S parameter of uwerr

avg.cbt.cf

stat_skip

omeas.samples
omeas.stride
omeas.avg

omeas.stepsize

evals.stepsize

boot.R
boot.1
outname_suffix

verbose

Value

17

integer. By passing this parameter, the various timeseries plots will include
stat_skip measurements, but these will be skipped in the corresponding statis-
tical analysis. This maybe useful, for example, to visualise thermalisation.

integer. number of stochastic samples per online measurement
integer. stride length in the reading of online measurements
integer. Block average over this many subsequent measurements.

integer. Number of trajectories between online measurements. Autocorrelation
times of online measurement data will be scaled by this factor.

integer. Numer of trajectories between (strange-charm Dirac opertoar) eigen-
value measurements. Autocorrelation times of eigenvalues will be scaled by
this factor.

integer. number of bootstrap samples to use in bootstrap-based parts of analysis.
integer. bootstrap block size
string. suffix for output files

boolean. If TRUE, function produces verbose output. #’

a list is returned with all the accumulated results. Moreover, a PDF file with statistics and analytics
is created and the results are written into .Rdata files. On the one hand, the result of the call to the
onlinemeas function is written to onlineout.%s.Rdata, where %s is replaced with a label built from
meta information based on the arguments above. On the other hand, summary data across many
calls of this function is silently accumulated in the file omeas. summary.Rdata which contains the
named list ‘resultsum’ with element names based on rundir.

References

K. Jansen and C. Urbach, Comput.Phys.Commun. 180 (2009) 2717-2738

avg.cbt.cf

average close-by-times in a correlation function

Description

"close-by-times" averaging replaces the value of the correlation function at t with the "hypercubic"
average with the values at the neighbouring time-slices with weights 0.25, 0.5 and 0.25 C(t’) = 0.25
C(t-1) + 0.5 C(t) + 0.25 C(t+1) where periodic boundary conditions are assumed in shift.cf

Usage
avg.cbt.cf(cf)

Arguments

cf

object of type cf

18 bootstrap.analysis

Value

Returns an object of class cf.

block.raw_cf Block average correlation function data

Description

Block block_length sequential measurements of the correlation function together. This occurs,
for example, when multiple stochastic noise vectors are used per measurement or multiple source
locations. Alternatively, it can also be used to account for auto-correlations in the data. If the total
number of measurements is not divisible by block_length, the last measurements are discarded.

Usage
block.raw_cf(cf, block_length)

Arguments

cf raw_cf object
block_length Integer, number of successive measurements to average over.

Value

cf raw_cf object with the data member reduced in its first dimension by a factor of block_length
and restricted (at the end) to the number of measurements divisible by block_length.

bootstrap.analysis Performs a Bootstrap with Blocking Analysis of a Timeseries

Description

Performs a Bootstrap with Blocking Analysis of a Timeseries

Usage

bootstrap.analysis(data, skip = @, boot.R = 100, tsboot.sim = "geom”,
pl = FALSE, boot.l = 2)

Arguments
data a numerical vector containing the time series
skip integer value providing the warm up phase length.
boot.R number of bootstrap samples. See also boot, and tsboot.
tsboot.sim the sim parameter of tsboot.
pl logical, indicating whether or not to plot the result.

boot.1 block length for blocked bootstrap.

bootstrap.cf 19

Details

the routine will compute the error, the error of the error and the integrated autocorrelation time for
different block size using a bootstrap analysis. The blocksize is systematically increased starting
from 1 until (length(data)-skip)/blocksize < 20. Note that only data is kept in exact multiples
of the block length.

Value

returns a data frame containing the mean value, the error approximation, the estimate of the error
of the error, the value of tau int and the bias for all block sizes.

Author(s)

Carsten Urbach, <carsten.urbach@liverpool.ac.uk>

See Also

for an alternative way to analyse such time series see uwerr and computeacf

Examples

data(plag.sample)
plag.boot <- bootstrap.analysis(plaq.sample, pl=TRUE)

bootstrap.cf bootstrap a set of correlation functions

Description

bootstrap a set of correlation functions

Usage

bootstrap.cf(cf, boot.R = 400, boot.l = 2, seed = 1234, sim = "geom”,
endcorr = TRUE)

Arguments
cf correlation matrix of class cf e.g. obtained with a call to extrac.obs.
boot.R number of bootstrap samples.
boot.1 block size for autocorrelation analysis

seed seed for the random number generation used for boostrapping.

20 bootstrap.effectivemass

sim The type of simulation required to generate the replicate time series. The pos-
sible input values are ‘"fixed"” (block resampling with fixed block lengths of
‘boot.I’) and ‘"geom"’ (block resampling with block lengths having a geometric
distribution with mean ‘boot.I’). Default is ‘"geom'’. See tsboot for details.

endcorr A logical variable indicating whether end corrections are to be applied when

o "s

‘sim’ is “"fixed"’. When ‘sim’ is ‘"geom"’, ‘endcorr’ is automatically set to
‘TRUE’; ‘endcorr’ is not used when ‘sim’ is ‘"'model"” or ‘"scramble"’. See
tsboot for details.

Value

returns an object of class cf with bootstrap samples added for th correlation function called cf . tsboot.
Moreover, the original average of cf is returned as cf@ and the bootstrap errors as tsboot.se. We
also copy the input parameters over and set bootstrap.samples to TRUE.

Author(s)

Carsten Urbach, <curbach@gmx.de>

See Also

tsboot, jackknife.cf
Examples

data(samplecf)
samplecf <- bootstrap.cf(cf=samplecf, boot.R=99, boot.1=2, seed=1442556)
plot(samplecf, log=c("y"))

bootstrap.effectivemass
Computes effective masses with bootstrapping errors

Description
Generates bootstrap samples for effective mass values computed from an object of class cf (a cor-
relation function)

Usage

bootstrap.effectivemass(cf, type = "solve")

bootstrap.effectivemass 21

Arguments

cf a correlation function as an object of type cf, preferably after a call to bootstrap.cf.
If the latter has not been called yet, it will be called in this function.

type The function to be used to compute the effective mass values. Possibilities
are "acosh", "solve", "log", "temporal", "shifted" and "weighted". While the
first three assume normal cosh behaviour of the correlation function, "tempo-
ral" is desigend to remove an additional constant stemming from temporal states
in two particle correlation functions. The same for "shifted" and "weighted",
the latter for the case of two particle energies with the two particle having
different energies. In the latter case only the leading polution is removed by
removeTemporal . cf and taken into account here.

Details

A number of types is implemented to compute effective mass values from the correlation function:

"solve": the ratio
C(t+1)/C(t) = cosh(—m * (t + 1))/ cosh(—m * t)
is numerically solved for m.

"acosh": the effective mass is computed from
m = acosh((C(t—1)+ C(t+1))/(2C(t)))
Note that this definition is less tolerant against noise.

"log": the effective mass is defined via
m = log(C(t)/C(t+ 1))
which has artifacts of the periodicity at large t-values.

"temporal": the ratio

[C(t)—Ct+1)])/[C(t—1)—C(t)] = [cosh(—m * (t)) — cosh(—m * (t + 1))]/[cosh(—m * (t —
1)) — cosh(—m(t))]

is numerically solved for m(t).

"shifted": like "temporal”, but the differences C'(t) — C(¢ + 1) are assumed to be taken already at
the correlator matrix level using removeTemporal.cf and hence the ratio

[C(t+1)]/[C(t)] = [cosh(—m * (t)) — cosh(—m * (t+1))]/[cosh(—m * (t — 1)) — cosh(—m(t))]
is numerically solved for m(t).

"weighted": like "shifted", but now there is an additional weight factor w from removeTemporal.cf
to be taken into account, such that the ratio

[C(t + 1)]/[C(¥)] = [cosh(—m x (t)) — w * cosh(—m * (t + 1))]/[cosh(—m * (t — 1)) — w *
cosh(—m(t))]

is numerically solved for m(t) with w as input.

Value

An object of class effectivemass is invisibly returned. It has objects: effMass:
The computed effective mass values as a vector of length Time/2. For type="acosh" also the first
value is NA, because this definition requires three time slices.

deffMass:
The computed bootstrap errors for the effective masses of the same length as effMass.

22 bootstrap.gevp

effMass. tsbhoot:
The boostrap samples of the effective masses as an array of dimension RxN, where R=boot .R is the
number of bootstrap samples and N=(Time/2+1).

and boot.R, boot.1, Time

Author(s)

Carsten Urbach, <curbach@gmx.de>

References

arXiv:1203.6041

See Also

fit.effectivemass, bootstrap.cf, removeTemporal.cf

Examples

data(samplecf)

samplecf <- bootstrap.cf(cf=samplecf, boot.R=99, boot.1=2, seed=1442556)
effmass <- bootstrap.effectivemass(cf=samplecf)

summary (effmass)

plot(effmass, ylim=c(0.14,0.15))

bootstrap.gevp perform a bootstrap analysis of a GEVP

Description

perform a bootstrap analysis of a GEVP for a real, symmetric correlator matrix

Usage

bootstrap.gevp(cf, t@ = 1, element.order = 1:cf$nrObs,
sort.type = "vectors”, sort.t@ = TRUE)

Arguments
cf correlation matrix obtained with a call to extrac.obs.
t0 initial time value of the GEVP, must be in between 0 and Time/2-2. Default is

1.

element.order specifies how to fit the n linearly ordered single correlators into the correlator
matrix. element.order=c(1, 2, 3,4) leads to amatrix matrix(cf[element.order],nrow=2).
Double indexing is allowed.

bootstrap.gevp 23

sort.type Sort the eigenvalues either in descending order, or by using the scalar product
of the eigenvectors with the eigenvectors at t = ¢y + 1. Possible values are

"values", "vectors" and "det". The last one represents a time consuming, but in
principle better version of sorting by vectors.

sort.to@ for sort.type "vectors" use ¢t as reference or ¢t — 1.

Details

Say something on "det" sorting method.

Value

Returns an object of class gevp with member objects:

cf:
The input data, if needed bootstrapped with bootstrap.cf.

res.gevp:
The object returned from the call to gevp. For the format see gevp.

gevp. tsboot:
The bootstrap samples of the GEVP. For the format see gevp.

Author(s)

Carsten Urbach, <curbach@gmx . de>

References

Michael, Christopher and Teasdale, 1., Nucl.Phys.B215 (1983) 433, DOI: 10.1016/0550-3213(83)90674-
0
Blossier, B. et al., JHEP 0904 (2009) 094, DOI: 10.1088/1126-6708/2009/04/094, arXiv:0902.1265

See Also

gevp, extract.obs, bootstrap.cf

Examples

data(correlatormatrix)

bootstrap the correlator matrix

correlatormatrix <- bootstrap.cf(correlatormatrix, boot.R=99, boot.1l=1, seed=132435)
solve the GEVP

to <- 4

correlatormatrix.gevp <- bootstrap.gevp(cf=correlatormatrix, t0=t0@, element.order=c(1,2,3,4))
extract the ground state and plot

pcl <- gevp2cf(gevp=correlatormatrix.gevp, id=1)

plot(pcl, log="y")

determine the corresponding effective masses

pcl.effectivemass <- bootstrap.effectivemass(cf=pc1)

pcl.effectivemass <- fit.effectivemass(cf=pcl.effectivemass, t1=5, t2=20)

summary and plot

24

bootstrap.hankel

summary (pc1.effectivemass)
plot(pcl.effectivemass)

we can also use matrixfit with a special model for a principal

correlators

pcl.matrixfit <- matrixfit(pcl, t1=2, t2=24, fit.method="1m", model="pc", useCov=FALSE,
parlist=array(c(1,1), dim=c(2,1)), sym.vec=c("cosh"), neg.vec=c(1))

summary (pcl.matrixfit)

plot(pcl.matrixfit)

the same can be achieved using bootstrap.nlsfit
model <- function(par, x, t0, ...) {
return(exp(-par[1]1*(x-t@))*(par[3]+(1-par[3])*xexp(-par[2]*(x-t0))))

3

ii <- c(2:4, 6:25)

fitres <- parametric.nlsfit(fn=model, par.guess=c(0.5, 1, .9),
y=pcl1$cfolii], dy=pcl$tsboot.sel[ii],
x=1i-1, boot.R=pci1$boot.R, t0=t0)

summary (fitres)

plot(fitres, log="y")

bootstrap.hankel GEVP method based on Hankel matrices.

Description

Alternative method to determine energy levels from correlation matrices. A so-called Hankel matrix
is generated from an input cf object and a generalised eigenvalue problem is solved then. This is
the function to call. It will perform a bootstrap analysis.

Usage

bootstrap.hankel(cf, to =1
tofixed = TRUE, deltat =
element.order = 1)

(cf$Time/2 + 1),

n=2,N-=
= 1, submatrix.size =1,

, Delta

—_ .

Arguments
cf object of type cf
t0 Integer. Initial time value of the GEVP, must be in between 0 and Time/2-n.
Default is 1. Used when t0fixed=TRUE.
n Integer. Size of the Hankel matrices to generate
N Integer. Maximal time index in correlation function to be used in Hankel matrix
tofixed Integer. If set to TRUE, keep tO fixed and vary deltat, otherwise keep deltat fixed

and vary t0.

deltat Integer. value of deltat used in the hankel GEVP. Defaultis 1. Used t@fixed=FALSE

bootstrap.hankel_summed 25

Delta integer. Delta is the time shift used in the Hankel matrix.

submatrix.size Integer. Submatrix size to be used in build of Hankel matrices. Submatrix.size
> 1 is experimental.

element.order Integer vector. specifies how to fit the n linearly ordered single correlators into
the correlator matrix for submatrix.size > 1. element.order=c(1, 2, 3,4) leads
to a matrix matrix(cf[element.order],nrow=2). Matrix elements can occur
multiple times, such as c(1, 2,2, 3) for the symmetric case, for example.

Details

See vignette(name="hankel",package="hadron")

Value

List object of class "hankel". The eigenvalues are stored in a numeric vector t@, the corresonding
samples in t. The reference input time t@ is stored as reference_time in the returned list.

See Also

Other hankel: bootstrap.hankel_summed(), gevp.hankel_summed(), gevp.hankel(), hankel2cf (),
hankel2effectivemass(), plot_hankel_spectrum()

Examples

data(correlatormatrix)

correlatormatrix <- bootstrap.cf(correlatormatrix, boot.R=99, boot.1=1, seed=132435)

to <- 4

correlatormatrix.gevp <- bootstrap.gevp(cf=correlatormatrix, t0=t@, element.order=c(1,2,3,4))
pcl <- gevp2cf(gevp=correlatormatrix.gevp, id=1)

pcl.hankel <- bootstrap.hankel(cf=pc1, t0=1, n=2)

hpcl <- hankel2cf(hankel=pc1.hankel, id=1)

plot(hpcl, log="y")

heffectivemass1 <- hankel2effectivemass(hankel=pc1.hankel, id=1)

bootstrap.hankel_summed
GEVP method based on Hankel matrices.

Description

Alternative method to determine energy levels from correlation matrices. A so-called Hankel matrix
is generated from an input cf object and a generalised eigenvalue problem is solved then. This is
the function to call. It will perform a bootstrap analysis.

Usage

bootstrap.hankel_summed(cf, t@values = c(1:(N - 2 * n - deltat)),
deltat =1, n =2, N = cf$Time/2 + 1)

26 bootstrap.meanerror

Arguments
cf object of type cf
tOvalues Integer vector. The tO values to sum over. Default is c(1:max). All elements
must be larger or equal to zero and smaller or equal than max=N-2*n-deltat
deltat Integer. value of deltat used in the hankel GEVP. Default is 1.
n Integer. Size of the Hankel matrices to generate, default is 2.
N Integer. Maximal time index in correlation function to be used in Hankel matrix
Details

See vignette(name="hankel"”,package="hadron")

Value

List object of class "hankel.summed". The eigenvalues are stored in a numeric vector t@, the cor-
resonding samples in t. The reference input times t@values is stored as t@values in the returned
list. In addition, deltat is stored in the returned list.

See Also

Other hankel: bootstrap.hankel(), gevp.hankel_summed(), gevp.hankel(), hankel2cf (),
hankel2effectivemass(), plot_hankel_spectrum()

Examples

data(correlatormatrix)

correlatormatrix <- bootstrap.cf(correlatormatrix, boot.R=99, boot.1=1, seed=132435)

to <- 4

correlatormatrix.gevp <- bootstrap.gevp(cf=correlatormatrix, t0=t0@, element.order=c(1,2,3,4))
pcl <- gevp2cf(gevp=correlatormatrix.gevp, id=1)

pcl.hankel <- bootstrap.hankel_summed(cf=pc1, t@=c(1:15), n=2)

bootstrap.meanerror Compute the bootstrap error of the mean

Description

Compute the bootstrap error of the mean

Usage

bootstrap.meanerror(data, R = 400, 1 = 20)

bootstrap.nlsfit 27

Arguments
data Original data to bootstrap
R Number of bootstrap replicates.
1 Block length.

Value

Returns a numeric vector with the estimated standard error of the mean.

bootstrap.nlsfit Bootstrap a non-linear least-squares fit
Description
Performs and bootstraps a non-linear least-squares fit to data with y and x errors.
Usage
bootstrap.nlsfit(fn, par.guess, y, x, bsamples, priors = list(param = c(), p

= c(), psamples = c()), ..., lower = rep(x = -Inf, times =
length(par.guess)), upper = rep(x = +Inf, times = length(par.guess)), dy,
dx, CovMatrix, gr, dfn, mask, use.minpack.lm = TRUE, parallel = FALSE,
error = sd, cov_fn = cov, maxiter = 500, success.infos = 1:3,
relative.weights = FALSE, na.rm = FALSE)

Arguments

fn fn(par,x, ...). The (non-linear) function to be fitted to the data. Its first argu-
ment must be the fit parameters named par. The second must be x, the explain-
ing variable. Additional parameters might be passed to the function. Currently
we pass boot.r which is @ for the original data and the ID (1, ...) of the boot-
strap sample otherwise. As more parameters might be added in the future it is
recommended that the fit function accepts ... as the last parameter to be for-
ward compatible.

par.guess initial guess values for the fit parameters.

y the data as a one-dimensional numerical vector to be described by the fit func-
tion.

X values of the explaining variable in form of a one-dimensional numerical vector.

bsamples bootstrap samples of y (and x, if applicable). Must be provided as array of

dimensions c(boot.R,n) with n equals to length(y) in case of ’yerrors’ and
For ’xyerrors’ to length(y) + length(x).

28

priors

lower

upper

dy, dx

CovMatrix

gr

dfn

mask

use.minpack.1lm

parallel

error

cov_fn

maxiter

success.infos

bootstrap.nlsfit

List possessing the elements param, p and psamples. The vector param in-
cludes the indices of all fit parameters that are to be constrained and the vector
p the corresponding paramater values (e.g. known from a previous fit). The list
element psamples is a matrix of dimensions (boot.R,length(param)) and
contains the corresponding bootstrap samples. If this list is not specified priors
are omitted within the fit.

Additional parameters passed to fn, gr and dfn.

Numeric vector of length length(par.guess) of lower bounds on the fit pa-
rameters. If missing, -Inf will be set for all.

Numeric vector of length length(par.guess) of upper bounds on the fit pa-
rameters. If missing, +Inf will be set for all.

Numeric vector. Errors of the dependent and independent variable, respectively.
These do not need to be specified as they can be computed from the bootstrap
samples. In the case of parametric bootstrap it might would lead to a loss of
information if they were computed from the pseudo-bootstrap samples. They
must not be specified if a covariance matrix is given.

complete variance-covariance matrix of dimensions c(length(y),length(y))
or c(length(y)+length(x),length(y)+length(x)) depending on the error-
model. Pass NULL if the matrix has to be calculated from the bsamples. In that
case, if the number of boostrap samples is small compared to the number of
variables, singular value decomposition with small eigenvalue replacement will
be used (see invertCovMatrix) to attempt a clean inversion. In case a variance-
covariance matrix is passed, the inversion will simply be attempted using solve
on the Cholesky decomposition. Finally, if CovMatrix is missing, an uncorre-
lated fit will be performed.

gr(par,x,...). gr=d(fn) / d(par) is a function to return the gradient of fn.
It must return an array with length(x) rows and length(par) columns.

dfn(par,x,...). dfn=d(fn) / dx is the canonical derivative of fn by x and
only relevant if x-errors are provided.

logical or integer index vector. The mask is applied to select the observations
from the data that are to be used in the fit. It is applied to x, y, dx, dy, bsamples
and CovMatrix as applicable.

use the minpack. 1m library if available. This is usually faster than the default
optim but somtimes also less stable.

parallelise over bootstrap samples. The package parallel is required.

Function that takes a sample vector and returns the error estimate. This is a
parameter in order to support different resampling methods like jackknife.

function. Function to compute the covariance (matrix). Default is cov.

integer. Maximum number of iterations that can be used in the optimization
process.

integer vector. When using minpack. 1m there is the info in the return value.
Values of 1, 2 or 3 are certain success. A value of 4 could either be a success
or a saddle point. If you want to interpret this as a success as well just pass 1:4
instead of the default 1: 3.

bootstrap.nlsfit 29

relative.weights
are the errors on y (and x) to be interpreted as relative weights instead of absolute
ones? If TRUE, the covariance martix of the fit parameter results is multiplied
by chi*2/dof. This is the default in many fit programs, e.g. gnuplot.

na.rm logical. If set to true, NAs in y and dy will be ignored. If x-errors are taken
into account, NAs in x and dx will be ignored, too.

Value

returns a list of class "bootstrapfit’. It returns all input parameters and adds in addition the following:

t0 the one dimensional numerical vector of length npar+1. npar is the number of
fit parameters. In case of ’yerrors’ this equals length(par.guess). For 'xy-
errors’ this equals length(par.guess) + length(x). t@ contains the best fit
parameters obtained on the original data. The last element in t0 is the chisquare

value.

t an array of dimensions (npar+1,boot.R) with npar as in t@. The rows contain
the individual bootstrap observations.

bsamples the bootstrap samples used as an array of dimensions (length(y),boot.R) or
(length(y)+length(x),boot.R) depending on the error model with npar as
in to.

Qval the p-value of the fit on the original data

chisqr the residual chisqr value.

dof the residual degrees of freedom of the fit.

nx the number of x-values.

tofn the original . .. list of parameters to be passed on to the fit function

mask original mask value

See Also

Other NLS fit functions: parametric.bootstrap.cov(), parametric.bootstrap(), parametric.nlsfit.cov(),
parametric.nlsfit(), plot.bootstrapfit(), predict.bootstrapfit(),print.bootstrapfit(),
simple.nlsfit(), summary.bootstrapfit()

Examples

Declare some data.

value <- ¢c(0.1, 0.2, 0.31)
dvalue <- c(0.01, 0.01, 0.015)
x <- c(1, 2, 3)

dx <- c(0.1, 0.1, 0.1)

boot.R <- 1500

fn <- function (par, x, boot.r, ...) par[1] + par[2] * x
Before we can use the fit with this data, we need to create bootstrap

samples. We do not want to use the correlation matrix here. Note that you
can simply use the parametric.nlsfit function as a convenient wrapper of

30

c.raw_cf

the two steps.
bsamples <- parametric.bootstrap(boot.R, c(value, x), c(dvalue, dx))
head(bsamples)

fit.result <- bootstrap.nlsfit(fn, c(1, 1), value, x, bsamples)
summary(fit.result)

plot(fit.result, main = 'Ribbon on top')

plot(fit.result, ribbon.on.top = FALSE, main = 'Ribbon below')
residual_plot(fit.result, main = 'Residual Plot')

c.cf Concatenate correlation function objects

Description

Concatenate correlation function objects

Usage
S3 method for class 'cf'
c(...)
Arguments
Zero or multiple objects of type cf.
Value

Returns an object of class cf representing the concatenation of all the input objects of class cf.

c.raw_cf Concatenate raw_cf correlation function objects

Description

Us

Concatenate raw_cf correlation function objects

age

S3 method for class 'raw_cf'

c(...)

Arguments

Zero or multiple objects of type raw_cf.

cA2.09.48 3pi I3 0_Alu_1_pc 31

Value

Returns an object of S3 class raw_cf, the concatenation of the input objects.

CcA2.09.48_3pi_I3_0_Alu_1_pc
A three pion correlator with significant thermal states.

Description

A three pion correlator with significant thermal states.

Usage

CcA2.09.48_3pi_I3_0_Alu_1_pc

Format

An object of class 1ist (inherits from cf, cf_meta, cf_boot, cf_principal_correlator) of
length 19.

cdh finite size corrections a la Colangelo, Duerr, Haefeli

Description

finite size corrections a la Colangelo, Duerr, Haefeli

Usage

cdh(parm = rep(@, times = 6), rev = -1, aLamb1 = 0.055, aLamb2 = 0.58,
aLamb3, alamb4, ampiV, afpiV, aF@, a_fm, L, printit = FALSE,
incimé = FALSE, rtilde = c(-1.5, 3.2, -4.2, -2.5, 3.8, 1),
use.cimpl = TRUE)

Arguments
parm parameters
rev rev = —1 corrects from L to L = oo, rev = +1 the other way around
aLamb1 The four low energy A;_4constants in lattice units.
aLamb2 see aLamb1.
aLamb3 see aLamb1.
alLamb4 see aLamb1.

ampiV pseudo scalar mass values to be corrected

32 cdh

afpiVv pseudo scalar decay constant values to be corrected

aFo a fo in lattice units

a_fm the value of the lattice spacing in fermi

L the lattice spatial extent

printit if set to TRUE the corrections are printed

incimé in- or exclude the NNNLO correction for the mass

rtilde the low energy constants 7, needed only if incim6=TRUE

use.cimpl use the four times faster direct ¢ Implementation of the correction routine
Details

see reference for details. We use the simplyfied formulae for the S quantities, see eq. (59) in the

reference.
Value

a list with the corrected values for mpi and fpi

Author(s)

Carsten Urbach curbach@gmx.de

References

Gilberto Colangelo, Stephan Durr, Christoph Haefeli, Nucl.Phys.B721:136-174,2005. hep-1at/0503014

Examples

L <- c(24, 24, 24, 24, 32)

mps <- c(0.14448, 0.17261, 0.19858, 0.22276, 0.14320)

fps <- c(0.06577, 0.07169, 0.07623, 0.07924, 0.06730)

aLamb1 <- 0.05

aLamb2 <- 0.5

aLamb3 <- 0.38

aLamb4 <- 0.66

cdhres <- cdh(rev=+1, aLambl=alLamb1, alLamb2=alamb2, alamb3=alLamb3, alLamb4=alLamb4,
ampiV=mps, afpiV=fps, aF0=fps, a_fm=0.08, L=L, printit=TRUE,
incim6=FALSE)

cdhres$mpiFV

cdhres$fpiFV

mailto:curbach@gmx.de

cdhnew 33

cdhnew finite size corrections a la Colangelo, Duerr, Haefeli, but re-expanded
as series in the quark mass

Description

finite size corrections a la Colangelo, Duerr, Haefeli, but re-expanded as series in the quark mass

Usage

cdhnew(parm = rep(@, times = 6), rev = -1, alambl = 0.055,
aLamb2 = 0.58, alLamb3, alLamb4, ampiV, afpiV, aFe@, a2Bomu, L,
printit = FALSE, use.cimpl = TRUE)

Arguments
parm m parameters
rev rev = —1 corrects from L to L = oo, rev = +1 the other way around
aLamb1 The four low energy A;_4constants in lattice units.
aLamb?2 see aLamb1.
aLamb3 see aLamb1.
aLamb4 see aLamb1.
ampiV pseudo scalar mass values to be corrected
afpiVv pseudo scalar decay constant values to be corrected
aFo a fo in lattice units
a2Bomu 2By in lattice units, where p is the quark mass and By a low energy constant
L the lattice spatial extent
printit if set to TRUE the corrections are printed
use.cimpl use the four times faster direct ¢ Implementation of the correction routine
Details
see reference for details. We use the simplyfied formulae for the S quantities, see eq. (59) in first
reference.
Value

a list with the corrected values for mpi and fpi

Author(s)

Carsten Urbach curbach@gmx.de

mailto:curbach@gmx.de

34 CExp

References

Gilberto Colangelo, Stephan Durr, Christoph Haefeli, Nucl.Phys.B721:136-174,2005. hep-1at/0503014
and
R. Frezzotti, V. Lubicz, S. Simula, arXiv:0812.4042 hep-lat

Examples

mu <- c(0.004, 0.006, 0.008, 0.010, 0.004)

L <- c(24, 24, 24, 24, 32)

mps <- c(0.14448, 0.17261, 0.19858, 0.22276, 0.14320)
fps <- c(0.06577, 0.07169, 0.07623, 0.07924, 0.06730)

aLamb1 <- 0.05
aLamb2 <- 0.5

aLamb3 <- 0.38
aLamb4 <- 0.66
aFo <- 0.051
a2B <- 5.64

cdhres <- cdhnew(rev=+1, alLambl=alLamb1, alamb2=alLamb2, alamb3=alLamb3,
aLamb4=alLamb4, ampiV=mps, afpiV=fps, aF0=aFo,
a2BOmu=a2B*mu, L=L, printit=TRUE)

cdhres$mpiFV
cdhres$fpiFV
CExp Cosh Or Sinh Build Out Of Two Exps
Description
Evaluates)

f(z) = 5(exp(=m(T - 2)) £ exp(-mz))
for given mass m, vector x and time extent 7. This form is better usable in x? fitting than cosh or
sinh.

Usage
CExp(m, Time, x, sign = 1)
Arguments
m mass value
Time Time extent
X vector of values on which to evaluate the function

sign with sign=1 cosh is evaluated, with sign=-1 sinh

cf 35

Value

vector f(x)

Author(s)

Carsten Urbach <carsten.urbach@liverpool.ac.uk>

Examples

m<-0.1

Time <- 48

x <- seq(0, 48, 1)
CExp(m=m, Time=Time, x=x)

cf Correlation function container

Description

This function cf () creates containers for correlation functions of class cf. This class is particularly
designed to deal with correlation functions emerging in statistical and quantum field theory simula-
tions. Arithmetic operations are defined for this class in several ways, as well as concatenation and
is.cf.

Usage
cfQ)

Details

And last but not least, these are the fields that are used somewhere in the library but we have not
figured out which mixin these should belong to:

* conf.index: TODO

* N: Integer, number of measurements.
* blockind: TODO

e jack.boot.se: TODO

Value

returns an object of S3 class cf derived from a list

See Also

Other cf constructors: cf_boot (), cf_meta(), cf_orig(), cf_principal_correlator(), cf_shifted(),
cf_smeared(), cf_subtracted(), cf_weighted()

36 cf_boot

Examples

newcf <- cf()

cf_boot Bootstrapped CF mixin constructor

Description

Bootstrapped CF mixin constructor

Usage

cf_boot(.cf = cf(), boot.R, boot.l, seed, sim, endcorr, cf.tsboot,
icf.tsboot = NULL, resampling_method)

Arguments
.cf cf object to extend.
boot.R Integer, number of bootstrap samples used.
boot.1 Integer, block length in the time-series bootstrap process.
seed Integer, random number generator seed used in bootstrap.
sim Character, sim argument of tsboot.
endcorr Boolean, endcorr argumetn of tsboot.
cf.tsboot List, result from the tsboot function for the real part.
icf. tsbhoot List, result from the tsboot function for the imaginay part.

resampling_method
Character, either "bootstrap’ or ’jackknife’

Details

The following fields will also be made available:

* cf0: Numeric vector, mean value of original measurements, convenience copy of cf. tsboot$t@.
* tsboot.se: Numeric vector, standard deviation over bootstrap samples.

* boot.samples: Logical, indicating whether there are bootstrap samples available. This is dep-
recated and instead the presence of bootstrap samples should be queried with inherits(cf, 'cf_boot").

* error_fn: Function, takes a vector of samples and computes the error. In the bootstrap
case this is just the sd function. Use this function instead of a sd in order to make the code
compatible with jackknife samples.

Value

returns the input object of class cf with the bootstrap mixin added

cf_key_meson_2pt 37

See Also

Other cf constructors: cf_meta(), cf_orig(), cf_principal_correlator(), cf_shifted(),
cf_smeared(), cf_subtracted(), cf_weighted(), cf()

cf_key_meson_2pt Generate key string to identify a meson 2pt function

Description

Generate key string to identify a meson 2pt function

Usage

cf_key_meson_2pt(fwd_flav, bwd_flav, snk_gamma, src_gamma, src_p, snk_p)

Arguments
fwd_flav String, "forward" quark flavour identifier.
bwd_flav String, "backward" quark flavour identifier.
snk_gamma Integer, CVC convention gamma matrix identifier at the source.
src_gamma Integer, CVC convention gamma matrix identified at the sink.
src_p Integer vector of length 3. (X,y,z) components of the source momentum vector
in lattice units.
snk_p Integer vector of length 3. (X,y,z) components of the sink momentum vector in
lattice units.
Value

A character vector with the HDF5 key.

38

cf_key_meson_3pt

cf_key_meson_3pt

Generate HDF5 key for CVC ’correlators’ meson 3pt
function with a local or derivative insertion The key for
a meson three-point function has the form: /sud+-g-u-
g/t10/dt12/gf5/pfx0pfyOpfz0/gc0/Ddim0_dir0/Ddim1_dir1/D.../gi5/pix0piyOpiz0
where, from left to right:

e 'u’ is the flavour of the "backward" propagator

e ’d’ is the flavour of the "sequential" propagator

e '+’ indicates that ’sud’ is daggered

e ’g’indicates a gamma insertion

* 'u’ is the flavour of the foward propagator

e ’g’indicates a Dirac structure at the source

e 'tXX’ is the source time slice

e ’dtYY’ is the source-sink separation

e 'gfN’ gamma structure at the sink in CVC indexing

o ‘pfxXpfyYpfzZ’ is the sink momentum in CVC convention (sink
and source phases are both e"ipx)

e ’gcN’ gamma structure at the current insertion point in CVC in-
dexing

e ’'DdimJ_dirK’ covariant displacement applied in dimension 'J’,
direction 'K’ where it should be noted that this is. in operator
notation, i.e., the right-most displacement is the one applied first.

e 'giN’ gamma structure at the souce in CVC indexing

e ‘pixXpiyYpizZ’ at the source in CVC convention

Description

Generate HDF5 key for CVC ’correlators’ meson 3pt function with a local or derivative insertion

The key for a meson three-point function has the form:
/sud+-g-u-g/t10/dt12/gf5/pfx0pfyOpfz0/gc0/Ddim0_dir0/Ddim1_dir1/D.../gi5/pix0piyOpiz0

where, from left to right:

* ’u’ is the flavour of the "backward" propagator

 ’d’ is the flavour of the "sequential" propagator

* '+’ indicates that ’sud’ is daggered

* ’g’ indicates a gamma insertion

* ’u’ is the flavour of the foward propagator

 ’g’ indicates a Dirac structure at the source

cf_key_meson_3pt

39

e ’tXX’ is the source time slice

* ’dtYY’ is the source-sink separation

» ’gfN’ gamma structure at the sink in CVC indexing

* 'pfxXpfyYpfzZ’ is the sink momentum in CVC convention (sink and source phases are both

eMNpx)

* ’gcN’ gamma structure at the current insertion point in CVC indexing

* ’DdimJ_dirK’ covariant displacement applied in dimension ’J’, direction ’K’ where it should
be noted that this is. in operator notation, i.e., the right-most displacement is the one applied

first.

* *giN’ gamma structure at the souce in CVC indexing

* ’pixXpiyYpizZ’ at the source in CVC convention

Usage

cf_key_meson_3pt(fwd_flav, bwd_flav, seq_flav, dt, snk_gamma, cur_gamma,
cur_displ_dim = NA, cur_displ_dir = NA, src_gamma, src_p, snk_p)

Arguments

fwd_flav
bwd_flav
seq_flav
dt
snk_gamma
cur_gamma

cur_displ_dim

cur_displ_dir

src_gamma

src_p

snk_p

Value

String, "forward" quark flavour identifier.

String, "backward" quark flavour identifier.

String, "sequential” quark flavour identifier.

Integer, source-sink separation.

Integer, CVC convention gamma matrix identifier at the source.
Integer, CVC convention gamma matrix identified at the insertion.

Integer vector of dimensions (0,1,2,3 <-> t,x,y,z) in which covariant displace-
ments have been applied. This vector will be parsed in reverse order, such that
the first element here is the first displacement applied to the spinor in the cal-
culation and the right-most element in the key. Length must be matched to
“cur_displ_dir’. Defaults to "NA’ for no displacements.

Integer vector of directions (forward, backward) <-> (0,1) in which the covariant
displacements have been applied. Parsing as for ’cur_displ_dim’. Length must
be matched to ’cur_displ_dim’. Defaults to "NA’ for no displacements.

Integer, CVC convention gamma matrix identified at the sink.

Integer vector of length 3. (x,y,z) components of the source momentum vector
in lattice units.

Integer vector of length 3. (x,y,z) components of the sink momentum vector in
lattice units.

A character vector with the HDF5 key.

40 cf_meta

cf_meta CF metadata mixin constructor

Description

CF metadata mixin constructor

Usage

cf_meta(.cf = cf(), nrObs = 1, Time = NA, nrStypes = 1, symmetrised = FALSE)

Arguments
.cf cf object to extend.
nrobs Integer, number of different measurements contained in this correlation func-
tion. One can use c.cf to add multiple observables into one container. This is for
instance needed when passing to the gevp function.
Time Integer, full time extent.
nrStypes Integer, number of smearing types.
symmetrised Logical, indicating whether the correlation function has been symmetrized.
Value

returns the input object of class cf with the metadata mixin added

See Also

Other cf constructors: cf_boot(), cf_orig(), cf_principal_correlator(), cf_shifted(),
cf_smeared(), cf_subtracted(), cf_weighted(), cf()

Examples

newcf <- cf_orig(cf=array(rnorm(25x100), dim=c(100, 25)))
newcf <- cf_meta(newcf, nrObs=1, Time=48, symmetrised=TRUE)

cf_orig 41

cf_orig Original data CF mixin constructor

Description

Original data CF mixin constructor

Usage

cf_orig(.cf = cf(), cf, icf = NULL)

Arguments
.cf cf object to extend. Named with a leading period just to distinguish it from the
member also named cf.
cf Numeric matrix, original data for all observables and measurements.
icf Numeric matrix, imaginary part of original data. Be very careful with this as
quite a few functions just ignore the imaginary part and drop it in operations.
Value

returns the input object of class cf with the original data mixin added

See Also

Other cf constructors: cf_boot(), cf_meta(), cf_principal_correlator(), cf_shifted(),
cf_smeared(), cf_subtracted(), cf_weighted(), cf()

Examples

newcf <- cf_orig(cf=array(rnorm(25%100), dim=c(100, 25)))
newcf <- cf_meta(newcf, nrObs=1, Time=48, symmetrised=TRUE)
newcf <- bootstrap.cf(newcf)

plot(newcf)

42 cf shifted

cf_principal_correlator
Principal correlator CF mixin constructor

Description

Principal correlator CF mixin constructor

Usage

cf_principal_correlator(.cf = cf(), id, gevp_reference_time)

Arguments
.cf cf object to extend.
id Integer, number of the principal correlator from the GEVP. Ascending with

eigenvalue, so id = 1 is the lowest state.
gevp_reference_time
Integer, reference time % that has been used in the GEVP.
Value

returns the input object of class cf with the principal correlator mixin added

See Also

Other cf constructors: cf_boot (), cf_meta(), cf_orig(), cf_shifted(), cf_smeared(), cf_subtracted(),
cf_weighted(), cf()

cf_shifted Shifted CF mixin constructor

Description

Shifted CF mixin constructor

Usage
cf_shifted(.cf = cf(), deltat, forwardshift)

Arguments
.cf cf object to extend.
deltat TODO

forwardshift Logical, TODO

cf_smeared 43

Details
The following fields will also be made available:
» shifted: Logical, whether the correlation function has been shifted This is deprecated and
instead the presence of a shift should be queried with inherits(cf, 'cf_shifted").
Value

returns the input object of class cf with the shifted mixin added

See Also

Other cf constructors: cf_boot (), cf_meta(), cf_orig(), cf_principal_correlator(), cf_smeared(),
cf_subtracted(), cf_weighted(), cf()

cf_smeared Smeared CF mixin constructor

Description

Smeared CF mixin constructor

Usage

cf_smeared(.cf = cf(), scf, iscf = NULL, nrSamples, obs)

Arguments
.cf cf object to extend.
scf Like cf, but with the smeared data.
iscf Like icf, but with the smeared data.
nrSamples TODO
obs TODO

Details

The following fields will also be made available:
» smeared: Logical, whether the correlation function has smeared data. This is deprecated and
instead the presence of bootstrap samples should be queried with inherits(cf, 'cf_smeared").
Value

returns the input object of class cf with the smeared mixin added

See Also

Other cf constructors: cf_boot (), cf_meta(), cf_orig(), cf_principal_correlator(), cf_shifted(),
cf_subtracted(), cf_weighted(), cf()

44 cf_weighted

cf_subtracted Subtracted CF mixin constructor

Description

Subtracted CF mixin constructor

Usage

cf_subtracted(.cf = cf(), subtracted.values, subtracted.ii)

Arguments

.cf cf object to extend.
subtracted.values
Numeric matrix, TODO

subtracted.ii Integer vector, TODO

Value

returns the input object of class cf with the subtracted mixin added

See Also

Other cf constructors: cf_boot (), cf_meta(), cf_orig(), cf_principal_correlator(), cf_shifted(),
cf_smeared(), cf_weighted(), cf()

cf_weighted Weighted CF mixin constructor

Description

Weighted CF mixin constructor

Usage

cf_weighted(.cf = cf(), weight.factor, weight.cosh)

Arguments

.cf cf object to extend.
weight.factor TODO
weight.cosh TODO

compute.plotlims 45
Details
The following fields will also be made available:

* weighted: Logical, indicating whether the correlation function has been weighted. This is
deprecated and instead the presence of this should be queried with inherits(cf, 'cf_weighted"').

Value

returns the input object of class cf with the weighted mixin added

See Also

Other cf constructors: cf_boot (), cf_meta(), cf_orig(), cf_principal_correlator(), cf_shifted(),
cf_smeared(), cf_subtracted(), cf()

compute.plotlims compute.plotlims

Description

Computes limits for plots

Usage

compute.plotlims(val, logscale, cumul.dval, cumul.mdval)

Arguments
val Numeric. Value.
logscale Boolean.
cumul.dval Numeric. Cumulative error.
cumul.mdval Numeric. Cumulative error.
Value

The computed plot limits are returned as a two component numeric vector.

46 computeact

computeacf Computes The ACF and Integrated AC Time

Description

Computes the ACF and integrated autocorrelation time of a time series. It also estimates the corre-
sponding standard errors.

Usage

computeacf(tseries, W.max, Lambda = 100)

Arguments

tseries the time series.

W.max maximal time lag to be used.

Lambda cut-off needed to estimate the standard error of the ACF.
Details

The standard error of the ACF is computed using equation (E.11) of M. Luescher, hep-1at/0409106.
The error of the integrated autocorrelation time using the Madras Sokal formula, see also hep-
1at/0409106.

Value

It returns a list of class hadronacf with members

lags time lags of the integrated autocorrelation function
Gamma normalised autocorrelation function
dGamma error of normalised autocorrelation function
W.max max time lag used for the call of acf
W the cut-off up to which the ACF is integrated for the integrated autocorrelation
time
tdata the original time series
tau the estimated integrated autocorrelation time
dtau the estimated error of the integrated autocorrelation time
Author(s)

Carsten Urbach, <curbach@gmx . de>

computeDisc 47

References

’Monte Carlo errors with less errors’, Ulli Wolff, http://arxiv.org/abs/hep-1at/0306017hep-1at/0306017

’Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD’, Martin Luescher, http://arxiv.org/abs/hep-
1at/0409106hep-1at/0409106

N. Madras, A. D. Sokal, J. Stat. Phys. 50 (1988) 109

See Also

uwerr, acf bootstrap.analysis
Examples

data(plag.sample)

myacf <- computeacf(plaqg.sample, 300)
plot(myacf)

summary (myacf)

computeDisc computes a disconnected correlation function from loops

Description

The dimension of cf$cf and cf$icf must be dim(Time,S,N), where Time is the time extent, S is
the number of samples and N the number of measurements (gauges). cf2 is the same, but needed
only for cross-correlators.

Usage

computeDisc(cf, cf2, real = TRUE, real2 = TRUE, smeared = FALSE,
smeared2 = FALSE, subtract.vev = TRUE, subtract.vev2 = TRUE,
subtract.equal = TRUE, use.samples, use.samples2, type = "cosh”,
verbose = FALSE)

Arguments
cf loop data as produced by readcmidisc or readbinarydisc.
cf2 second set of loop data as produced by readcmidisc or readbinarydisc. This
is needed for cross-correlators
real use the real part cf$cf, if set to TRUE, otherwise the imaginary part cf$icf.
real2 use the real part cf2$cf, if set to TRUE, otherwise the imaginary part cf2$icf.
smeared use the loops instead of the local ones for cf.

smeared?2 use the loops instead of the local ones for cf2.

48

subtract.vev

subtract.vev?2

subtract.equal

use.samples

use.samples2

type

verbose

Details

computeDisc

subtract a vacuum expectation value. It will be estimated as mean over all sam-
ples, gauges and times available.

subtract a vacuum expectation value for the second set of loops. It will be esti-
mated as mean over all samples, gauges and times available.

subtract contributions of products computed on identical samples. This will
introduce a bias, if set to FALSE for missing cf2 or if cf and cf2 are computed
on the same set of random sources.

If set to an integer, only the specified number of samples will be used for cf,
instead of all samples.

Same like use. samples, but for cf2.

The correlation function can either be symmetric or anti-symmetric in time.
Anti-symmetric is of course only possible for cross-correlators. In this case
with type="cosh" it is assumed to be symmetric, anti-symmetric otherwise.

Print some debug output, like the VEVs of the loops.

If subtract.vev=TRUE the vev is estimated as the mean over all gauges, samples and times avail-
able and subtracted from the original loop data. (Same for subtrac.vev2.

The correlation is computed such as to avoid correlation between equal samples, unless nrSamples

is equal to 1.

cf and cf2 must agree in Time, number of gauges and number of samples. Matching of gauges is
assumed. If this is not the case results are wrong.

Value

Returns an object of type cf derived from a 1ist with elements cf, an array of dimension dim(N, Time),

where N is the number of samples and Time the time extent, integers Time for the time extent,
nrStypes and nrObs for the available smearing types and operators, and finally nrSamples, the
number of samples used to generate the correlation function cf.

Author(s)

Carsten Urbach, <curbach@gmx.de>

See Also

readcmidisc, readbinarydisc, bootstrap.cf, add.cf, c.cf

Examples

data(loopdata)

Cpiov4 <- computeDisc(cf=loopdata, real=TRUE, subtract.vev=TRUE)
Cpi@v4 <- bootstrap.cf(Cpi@v4, boot.R=99, boot.l=1, seed=14556)

computefps 49

computefps Computes the pseudoscalar decay constant for the twisted mass case
from the pseudoscalar amplitude and mass

Description

From a mass and amplitude determination (using matrixfit or fit.effectivemass, bootstrap.gevp
and gevp2amplitude the pseudoscalar decay constant is determined for the case of Wilson twisted
mass fermions from the pseudoscalar amplitude and mass

Usage

computefps(mfit, PP, mass, mul, mu2, Kappa, normalisation = "cmi"”,
disprel = "continuum”, boot.fit = TRUE)

Arguments

mfit An object of type matrixfit or gevp.amplitude generated with matrixfit or
gevp2amplitude, respectively.

PP If mfit is missing this must contain the value for the pseudoscalar amplitude.

mass If mfit is missing this must contain the value for the pseudoscalar mass.

mul, mu2 The values for the twisted quark masses involved in the pseudoscalar meson. If
mu2 is missing it will be assumed to be equal to mu1.

Kappa The x-value of the run, needed only if normalisation="cmi".

normalisation normalisation of the correlators. If set to "cmi" the « value must be specified.

disprel One of "continuum" or "lattice". Indicates whether the formula for the decay
constant should take into account the lattice dispersion relation for the meson.
Theoretically this can reduce lattice artefacts for heavy mesons.

boot.fit If set to FALSE, the computation is not bootstrapped, even if the matrixfit or
gevp.amplitude contain bootstrap samples. This is a useful time-saver if error
information is not strictly necessary. Of course, this affects the return values
related to the bootstrap, which are set to NA.

Details
The pseudoscalar decay constant is computed from

PP

= 2r(p1 + S
Ips (1 uz)\/ﬁ mPS3

for normalisation="cmi” or
PP
fps = (m +M2)ﬁ

2./mps

50 computefpsOS

expecting physical normalisation of the amplitudes.

When disprel="1lattice",
3
\/ Mps

v/mps sinh mpg

which can reduce lattice artefacts for heavy meson masses.

is replaced with

Value

If mfit ist missing the value of fps will printed to stdout and returned as a simple numerical value.

If mfit is available, this object will be returned but with additional objects added: fps, fps.tsboot,
mul,mu2, normalistaion and Kappa if applicable.

Author(s)

Carsten Urbach, <curbach@gmx . de>

See Also

matrixfit, gevp2amplitude,

Examples

cfnew <- extractSingleCor.cf(correlatormatrix, id=1)

cfnew <- bootstrap.cf(cfnew, boot.R=99, boot.1=1)

cfnew.fit <- matrixfit(cf=cfnew, t1=12, t2=20, parlist=array(c(1,1),
dim=c(2,1)), sym.vec=c("cosh”), neg.vec=c(1))

cfnew.fps <- computefps(mfit=cfnew.fit, mu1=0.004, normalisation="new")

summary (cfnew. fps)

computefps0S Computes the pseudoscalar decay constant for the Osterwalder Seiler
case from the pseudoscalar amplitude and mass

Description

From a mass and amplitude determination (using matrixfit) the pseudoscalar decay constant is
determined for the case of Osterwalder Seiler (OS) fermions from the AS and SS amplitude (in the
twisted basis), ZA and the OS pion mass.

Usage

n s

computefps0S(mfit, Kappa = sqrt(@0.5), normalisation = "cmi”,
boot.fit = TRUE, ZA = 1, ZAboot, dZA)

computefpsOS 51

Arguments
mfit An object of type matrixfit generated with matrixfit. The correlation matrix
(SS, SA, AS, AA) must have been analysed, where the correlators are in the
twisted basis.
Kappa The x-value of the run, needed only if normalisation="cmi".

normalisation normalisation of the correlators. If set to "cmi" the x value must be specified.

boot.fit If set to FALSE, the computation is not bootstrapped, even if the matrixfit or
gevp.amplitude contain bootstrap samples. This is a useful time-saver if error
information is not strictly necessary. Of course, this affects the return values
related to the bootstrap, which are set to NA.

ZA The value of the renormalisation constant Z 4.

ZAboot Bootstrap samples for Z 4. If they are provided, they are used for computing fps,
if not, bootstrap samples are generated from dZA. If both are missing, the error
of Z 4 is not taken into account.

dzZA The value of the (normally distributed) error of the renormalisation constant Z 4.

Details

The pseudoscalar decay constant is computed from

0lA
0S :ZA\/§m< |Alm)
mpgs

for normalisation="cmi” or
(0[Alr)

mps

OS __
ps = ZA

expecting physical normalisation of the amplitudes.

Value

If mfit is available, this object will be returned but with additional objects added: fps0S, fps0S. tsboot,
normalistaion, ZA, ZAboot and kappa if applicable.

Author(s)

Carsten Urbach, <curbach@gmx.de>

See Also

matrixfit

52 concat.raw_ct

concat.cf Concatenate two correlation function objects

Description

Concatenate two correlation function objects

Usage

concat.cf(left, right)

Arguments

left, right cf objects to concatenate.

Value

Returns an object of class cf representing the concatenation of the two input objects of class cf.

concat.raw_cf Concatenate two raw_cf correlation function objects

Description

The data of the 1eft and right objects is concatenated along the second array dimension such that
the output contains the tensor slices of right after the slices of left

Usage

concat.raw_cf(left, right)

Arguments
left raw_cf object to be concatenated with right
right raw_cf object to be concatenated with left
Value

Returns an object of S3 class raw_cf, the concatenation of the two input objects.

conj_raw_cf 53

conj_raw_cf Take the complex conjugate of a raw_cf object

Description

Take the complex conjugate of a raw_cf object

Usage

conj_raw_cf(cf)

Arguments

cf raw_cf cotnainer with data

Value

raw_cf

construct_onlinemeas_rundir
Construct a run directory string for analysis_online

Description

Construct a run directory string for analysis_online

Usage

construct_onlinemeas_rundir(type, beta, L, Time, kappa = 0, mul = 0,
csw = @, musigma = @, mudelta = @, muh = @, addon = "",
debug = FALSE)

Arguments
type String. Short identifier for gauge action type. For example, iwa for Iwasaki
gauge action.
beta Numeric. Inverse gauge coupling.
L Integer. Spatial lattice extent.
Time Integer. Temporal lattice extent.
kappa Numeric. Sea quark action hopping parameter.
mul Numeric. Sea light quark twisted mass.
csw Numeric. Sea quark action clover parameter.

musigma Numeric. Sea 1+1 "heavy" average twisted quark mass.

54 correlators_key_meson_2pt

mudelta Numeric. Sea 1+1 "heavy" splitting twisted quark mass.
muh Numeric. In case of n_f=2+2 run, "heavy" twisted quark mass.
addon String. Arbitratry string which will be suffixed to the constructed run directory.
debug Boolean. If TRUE, the constructed directory name is printed to screen.
Value

String. Directory name constructed out of the various function parameters. See source code for
details.

correlatormatrix Sample correlator matrix

Description

Sample data for a correlation function for a 24 cube times 48 lattice QCD simulation representing
a pion propagation. It is stored in form of an object of class cf, which is derived from list.

Format

list of 7 elements: "nrObs" "Time" "nrStypes” "symmetrised" "cf" "icf" "cf0"

Examples

data("correlatormatrix")

correlators_key_meson_2pt
Generate HDF5 key for CVC ’correlators’ meson 2pt function

Description

Generate HDF5 key for CVC ’correlators’ meson 2pt function

Usage

correlators_key_meson_2pt(fwd_flav, bwd_flav, src_ts, snk_gamma, src_gamma,
src_p, snk_p)

correlators_key_meson_3pt 55

Arguments

fwd_flav
bwd_flav
src_ts
snk_gamma
src_gamma
src_p

snk_p

Value

String, "forward" quark flavour identifier.

String, "backward" quark flavour identifier.

Integer, source time slice.

Integer, CVC convention gamma matrix identifier at the source.

Integer, CVC convention gamma matrix identified at the sink.

Integer vector of length 3. (x,y,z) components of the source momentum vector
in lattice units.

Integer vector of length 3. (X,y,z) components of the sink momentum vector in
lattice units.

A character vector with the HDF5 key.

correlators_key_meson_3pt

Generate HDF5 key for CVC ’correlators’ meson 3pt
function with a local or derivative insertion The key for
a meson three-point function has the form: /sud+-g-u-
g/t10/dt12/gf5/pfx0pfyOpfz0/gc0/Ddim0_dir0/Ddim1_dir1/D.../gi5/pixOpiyOpiz0
where, from left to right:

* 'u’ is the flavour of the "backward" propagator

e ’d’ is the flavour of the "sequential” propagator

e '+’ indicates that ’sud’ is daggered

e ’g¢’indicates a gamma insertion

e 'u’ is the flavour of the foward propagator

* ’g’indicates a Dirac structure at the source

* 'tXX' is the source time slice

* ’dtYY’ is the source-sink separation

e 'gfN’ gamma structure at the sink in CVC indexing

o ‘pfxXpfyYpfzZ’ is the sink momentum in CVC convention (sink
and source phases are both e ipx)

* ’gcN’ gamma structure at the current insertion point in CVC in-
dexing

e 'DdimJ_dirK’ covariant displacement applied in dimension 'J’,
direction 'K’ where it should be noted that this is. in operator
notation, i.e., the right-most displacement is the one applied first.

e 'giN’ gamma structure at the souce in CVC indexing

* 'pixXpiyYpizZ’ at the source in CVC convention

56 correlators_key_meson_3pt

Description

Generate HDFS5 key for CVC ’correlators’ meson 3pt function with a local or derivative insertion
The key for a meson three-point function has the form:
/sud+-g-u-g/t10/dt12/gf5/pfx0pfyOpfz0/gc0/DdimO0_dir0/Ddim1_dirl/D.../gi5/pix0piyOpiz0

where, from left to right:

* ’u’ is the flavour of the "backward" propagator

* ’d’ is the flavour of the "sequential" propagator
 ’+’ indicates that ’sud’ is daggered

* ’¢’ indicates a gamma insertion

* ’u’ is the flavour of the foward propagator

 ’g’ indicates a Dirac structure at the source

* ’tXX’ is the source time slice

* ’dtYY’ is the source-sink separation

» ’gfN’ gamma structure at the sink in CVC indexing

o pfxXpfyYpfzZ’ is the sink momentum in CVC convention (sink and source phases are both
eMNipx)

* ’gcN’ gamma structure at the current insertion point in CVC indexing

* 'DdimJ_dirK’ covariant displacement applied in dimension ’J’, direction 'K’ where it should
be noted that this is. in operator notation, i.e., the right-most displacement is the one applied
first.

* ’giN’ gamma structure at the souce in CVC indexing

* ’pixXpiyYpizZ’ at the source in CVC convention

Usage

correlators_key_meson_3pt(fwd_flav, bwd_flav, seq_flav, src_ts, dt, snk_gamma,
cur_gamma, cur_displ_dim = NA, cur_displ_dir = NA, src_gamma, src_p,

snk_p)
Arguments
fwd_flav String, "forward" quark flavour identifier.
bwd_flav String, "backward" quark flavour identifier.
seq_flav String, "sequential” quark flavour identifier.
src_ts Integer, source time slice.
dt Integer, source-sink separation.
snk_gamma Integer, CVC convention gamma matrix identifier at the source.

cur_gamma Integer, CVC convention gamma matrix identified at the insertion.

create_displ_chains 57

cur_displ_dim Integer vector of dimensions (0,1,2,3 <-> t,x,y,z) in which covariant displace-
ments have been applied. This vector will be parsed in reverse order, such that
the first element here is the first displacement applied to the spinor in the cal-
culation and the right-most element in the key. Length must be matched to
“cur_displ_dir’. Defaults to "NA’ for no displacements.

cur_displ_dir Integer vector of directions (forward, backward) <-> (0,1) in which the covariant
displacements have been applied. Parsing as for cur_displ_dim’. Length must
be matched to *cur_displ_dim’. Defaults to "NA’ for no displacements.

src_gamma Integer, CVC convention gamma matrix identified at the sink.

src_p Integer vector of length 3. (x,y,z) components of the source momentum vector
in lattice units.

snk_p Integer vector of length 3. (X,y,z) components of the sink momentum vector in
lattice units.

Value

A character vector with the HDFS5 key.

create_displ_chains create list of chains of displacements Multilpe covariant displace-
ments, when applied in order, form a list of displacments. Each con-
sists of a direction and a dimension.

Description
create list of chains of displacements Multilpe covariant displacements, when applied in order, form
a list of displacments. Each consists of a direction and a dimension.

Usage

create_displ_chains(max_depth, dims = c(0:3), dirs = c(0, 1))

Arguments
max_depth Positive integer, number of displacement combinations to construct.
dims Integer vector, which lattice dimensions to consider. Default 0:3
dirs Integer vector, which displacement directions to consider. Default forward and
backward <-> ¢(0,1)
Value

List of data frames, each with columns ’dim’ and ’dir’ of *'max_depth’ rows.

58 cvc_read_loops

cvc_local_loop_key Generate HDF5 key for a momentum and spin-projected CVC loop

Description

Generate HDFS5 key for a momentum and spin-projected CVC loop

Generate key to identify a momentum and spin-projected loop

Usage

cvc_local_loop_key(loop_type, istoch, gamma, p)

cvc_local_loop_key(loop_type, istoch, gamma, p)

Arguments
loop_type String, loop type.
istoch Integer, index of the stochastic sample.
gamma Integer, CVC convention gamma matrix identifier.
p Integer vector of length 3, (x,y,z) components of the momentum vector in lattice
units.
Value

A character vector with the HDFS5 key.
A character vector with the HDFS5 key.

cvc_read_loops read HDF5 loop files in the CVC loop format

Description

The CVC naive_loops code produces HDFS5 files which contain a matrix of momenta and the data
for the loops (without spin projection) organised by stochastic sample. Currently, the reading code
assumes that there is a single configuration stored per file and the "trajectory" parameter in Cal-
cLoops is assumed to take its default value of ’4’.

Usage

cvc_read_loops(selections, files, Time, nstoch, verbose = FALSE,
check_group_names = FALSE)

cvc_read_loops 59

Arguments

selections Named list with names from the list *Naive’, ’Scalar’, ’dOp’, ’Loops’ "LpsDw’,
’LpsDwCv’, *LoopsCv’ specifying the requesetd loop types. The elements of
this list are in turn expected be data frames of the form

60 cve_to_raw_cf

ax qy qz
0 0 1
-2 I -3

specifying the momentum combinations to be extracted for each loop type.

files Vector of strings, list of HDFS5 files to be processed.

Time Integer, time extent of the lattice.

nstoch Integer, number of stochastic samples to be expected in file.

verbose Boolean, output I/O time per file. Requires ’tictoc’ package. Default FALSE.

check_group_names
Boolean, check if the group names that we’re about to read actually exist in the
file. This is quite slow because it uses rhdf5: :h51s. Default FALSE.

Value

Named nested list of the same length as selections containg the loop data in the raw_cf format.
Each named element corresponds to one loop type and each element of the underlying numbered
list corresponds to one momentum combination as specified via selections for this loop type in
the same order.

cve_to_raw_cf Convert correlation function read from CVC HDF5 or AFF format to
raw_cf’

Description

Given a numeric vector of alternating real and imaginary parts of a correlation function, creates an
object of class 'raw_cf’ with a single measurement, inferring Time from the passed numeric vector
while the shape of the internal dimensions has to be specified explicitly if larger than one by one

(c(1,1)).

Usage

cve_to_raw_cf(cf_dat, dims = c(1, 1))

Arguments
cf_dat Numeric vector of alternating real and imaginary parts of a correlation function.
Ordering of the input should be complex, internal dimensions, time (left to right,
fastest to slowest).
dims Integer vector with the sizes of the internal dimensions. For example, c(4,4)

for spin correlators.

cyprus_make_key_scalar 61

Value

raw_cf object with a data member which contains the data (as complex numbers) in the shape
c(1,nts,dims), where nts is the number of time slices inferred from the length of cfdat and the
product of the internal dimensions dims.

cyprus_make_key_scalar
HDFS5 key for Cyprus CalcLoops scalar-type loops

Description

Generates an HDFS5 key (full path) for the scalar type loops from the Cyprus CalcLoops application.

Usage

cyprus_make_key_scalar(istoch, loop_type, cid = 4, accumulated = FALSE)

Arguments
istoch Integer, index of the stochastic sample that the key should be generated for.
loop_type String, name of loop type. Allowed values: ’Scalar’, ’dOp’
cid Integer, configuration number, internally produced by the CalcLoops tool via
the "trajectory"” input flag. The default is ’4’ as this is often not used in practice.
accumulated Boolean, depending on whether the loop data was accumulated over the stochas-
tic source d.o.f. or not, the keys are different. Default: FALSE
Value

A character vector with the HDF5 key.

cyprus_make_key_vector
HDFS5 key for Cyprus CalcLoops derivative-type loops

Description
Generates an HDFS5 key (full path) for the derivative type loops from the Cyprus CalcLoops appli-
cation.

Usage

cyprus_make_key_vector(istoch, loop_type, dir, cid = 4, accumulated = FALSE)

62 cyprus_read_loops

Arguments
istoch Integer, index of the stochastic sample that the key should be generated for.
loop_type String, name of loop type. Allowed values: ’Loops’, ’LpsDw’, "LpsDwCv’,
"LoopsCv’
dir Integer, lattice direction of the derivative. Allowed values: @ == x, 1 ==y, 2 ==
z,3==1t.
cid Integer, configuration number, internally produced by the CalcLoops tool via
the "trajectory” input flag. The default is *4’ as this is often not used in practice.
accumulated Boolean, depending on whether the loop data was accumulated over the stochas-
tic source d.o.f. or not, the keys are different. Default: FALSE
Value

A character vector with the HDFS5 key.

cyprus_read_loops read HDF5 loop files in the Cyprus CalcLoops format

Description

The CalcLoops code produces HDFS5 files which contain a matrix of momenta and the data for the
loops (without spin projection) organised by stochastic sample. Currently, the reading code assumes
that there is a single configuration stored per file.

Usage

cyprus_read_loops(selections, files, Time, nstoch, accumulated = TRUE,
legacy_traj = TRUE, verbose = FALSE, check_group_names = FALSE,
spin_project = FALSE, project_gamma = NULL, use_parallel = TRUE)

Arguments
selections Named list with names from the list *Naive’, ’Scalar’, ’dOp’, "Loops’ "LpsDw’,
"LpsDwCv’, "LoopsCv’ specifying the requesetd loop types. The elements of
this list are in turn expected be data frames of the form
PX Py Ppz
0 O 1
2 1 -3
specifying the momentum combinations to be extracted for each loop type.
files Vector of strings, list of HDFS5 files to be processed.
Time Integer, time extent of the lattice.

nstoch Integer, number of stochastic samples to be expected in file.

disc_3pt 63

accumulated Boolean or vector of boolean, specifies whether the loops, as organised by
stochastic sample, are accumulated, such that, say, element n corresponds to
the sum over the first n stochastic samples. If specified as TRUE, the data is post-
processed to recover the measurements for the particular samples. In case this
is specified as a vector, it must be of the same length as files. Default: TRUE.

legacy_traj Boolean. The root group for the loop data is *conf_xxxx’, where *xxxx’ corre-
sponds to what is passed via the ’traj’ flag to CalcLoops. When left empty, this
defaults to *0004°. If this was left emtpy when the loop files were generated,
set this to TRUE and the paths will be constructed with ’conf_0004’ as their root
group. When specified as a vector, it must be of length length(files) giving
the integer configuration indices, such as c(9,2,4,6) Default: TRUE.

verbose Boolean, output I/O time per file. Requires ’tictoc’ package. Default FALSE.

check_group_names
Boolean, employ rhdf5: :h51s to check if all the group names that we want to
read are actually in the file. This can be slow for large files. Default: FALSE.

spin_project Boolean, whether the loops should be spin projected after being read. Must be
provided to together with project_gamma! Default: FALSE

project_gamma Named list of the same length as selections containing, for each selected loop
type a 4x4 complex-valued projection matrix. For vector loop types, one matrix
must be provided per direction (so project_gamma$loop_type is a numbered
list with indices c(1, 2, 3,4). Default: NULL

use_parallel Boolean, whether to parallelise over the files using the mclapply from the parallel
package.

Value

Named nested list of the same length as selections containg the loop data in the raw_cf format.
Each named element corresponds to one loop type. For scalar-valued loop types, each element of the
underlying numbered list corresponds to one momentum combination as specified via selections
for this loop type in the same order. For the vector-valued loop types, the first level of the underlying
numbered list has four elements corresponding to the four derivative directions in the order t,x,y,z.
At the next level, the underlying numbered list corresponds to the momentum combinations for this
loop type and derivative direction, just as for the scalar type.

disc_3pt disconnected contribution to current insertion three-point function

Description

Computes the quark-line disconnected contribution to a three-point function of the form
CS (t; At = tsnk - tsrc) = C2 (tsnk7 tsrc) * L(t)

Vt considering only the case t_snk > t_src.

64 dispersion_relation

Usage

disc_3pt(cf_2pt, loop, src_ts, dt, reim_loop = "both", reim_2pt = "both",
vev_subtract = FALSE)

Arguments

cf_2pt ‘raw_cf’ container holding two-point part of three-point function in lattice-absolute
coordinates (not relative to source!)

loop raw_cf’ container holding loop contribution, suitably spin-projected and aver-
aged over stochastic samples.

src_ts Integer vector, the source time slices that were used for the computation of the
two-point function in lattice-absolute coordinates. Must be of the same length
as the number of measurements in cf_2pt.

dt Integer, the source-sink separation that should be computed.

reim_loop String, one of ’real’, ’imag’ or ’both’. Specifies whether just the real or imagi-
nary part should be considered when constructing the correlation with the two-
point function.

reim_2pt String, same as reim_loop but for the two-point contribution to the three-point

function.

vev_subtract Boolean, whether the loop contains a vev which should be subtracted.

Value

raw_cf container with the product of loop and 2pt function, shifted in time to be relative to source
using the info from src_ts

dispersion_relation Continuum dispersion relation for CM to lattice frame

Description
Converts a center of mass (CM) frame energy to the lattice frame using the continuum dispersion
relation.

Usage

dispersion_relation(energy, momentum_d, extent_space, plus = TRUE,
lattice_disp = FALSE)

Arguments
energy double. CM energy in lattice units, a F.
momentum_d integer. Total momentum squared of the moving frame in lattice units, d?.

extent_space integer. Spatial extent of the lattice as a dimensionless quantity, L/a.
plus Boolean. Sign of a”2 artefacts.

lattice_disp Boolean. Use the lattice dispersion relation instead of the continuum one

effectivemass

Value

double. Energy in the lattice frame, aV.

65

effectivemass effectivemass

Description

computes the effective mass with error analysis using UWerr

Usage

effectivemass(from, to, Time, Z, pl = TRUE, S, ...)
Arguments

from integer. Fit in fitrange (from, to)

to integer. see from.

Time integer. time extent of the lattice

Z data

pl boolean. plot

S numeric. see uwerr

additional parameters passed to uwerr

Value

Returns a data.frame with named columns t, mass, dmass, ddmass, tauint and dtauint.

See Also

uwerr

66 effectivemass.cf

effectivemass.cf Computes effective mass values for a correlation function

Description

Computes effective mass values for a correlation function using different type of definitions for the
effective mass. This function is mainly indented for internal usage by bootstrap.effectivemass.

Usage

effectivemass.cf(cf, Thalf, type = "solve”, nrObs = 1,
replace.inf = TRUE, interval = c(1e-06, 2), weight.factor = NULL,
deltat = 1, tmax = Thalf - 1)

Arguments

cf The correlation function either as a vector of length nrObs*(Thalf+1) or as an
array of dimension NxnrObsx(Thalf+1), where N is the number of observa-
tions. N will be averaged over.

Thalf Half of the time extent of the lattice

type The function to be used to compute the effective mass values. Possibilities are
"acosh", "solve", "log", "temporal", "shifted" and "weighted". While the first
three assume normal cosh behaviour of the correlation function, "temporal” is
desigend to remove an additional constant stemming from temporal states in
two particle correlation functions. The same for "subtracted" and "weighted",
the latter for the case of two particle energies with the two particle having
different energies. In the latter case only the leading polution is removed by

removeTemporal . cf and taken into account here.
nrobs The number of "observables" included in the correlator

replace.inf If set to TRUE, all Inf values will be replaced by NA. This is needed for instance
for bootstrap.effectivemass.

interval initial interval for the uniroot function when numerically solving for the effec-
tive mass.

weight.factor relative weight for type "weighted" only, see details

deltat time shift for shifted correlation functions
tmax t-value up to which the effectivemass is to be computed
Details

A number of types is implemented to compute effective mass values from the correlation function:

"solve": the ratio
C(t+1)/C(t) = cosh(—m * (t + 1))/ cosh(—m * t)
is numerically solved for m(t).

effectivemass.cf 67

"acosh": the effective mass is computed from

m(t) = acosh((C(t — 1)+ C(t +1))/(2C(t)))

Note that this definition is less tolerant against noise.

"log": the effective mass is defined via

m(t) =log(C(t)/C(t +1))

which has artifacts of the periodicity at large t-values.

"temporal": the ratio

[C#)—Ct+1)])/[C(t—1)—C(t)] = [cosh(—m * (t)) — cosh(—m * (t + 1))]/[cosh(—m * (t —
1)) — cosh(—m(t))]

is numerically solved for m(t).

"subtracted": like "temporal”, but the differences C(t) — C'(¢t + 1) are assumed to be taken already
at the correlator matrix level using removeTemporal.cf and hence the ratio

[C(t+1)]/[C(t)] = [cosh(—m*(t)) — cosh(—m (t +1))]/[cosh(—m * (t — 1)) — cosh(—m(t))]
is numerically solved for m(t).

"weighted": like "subtracted", but now there is an additional weight factor w from removeTemporal . cf
to be taken into account, such that the ratio
[C(t + 1)]/[C(t)] = [cosh(—m x (t)) — w * cosh(—m * (t + 1))]/[cosh(—m * (t — 1)) — w *
cosh(—m(t))]
is numerically solved for m(t) with w as input.

Value
Returns a vector of length Thalf with the effective mass values for t-values running from O to
Thalf-1

Author(s)

Carsten Urbach, <curbach@gmx.de>

References

arXiv:1203.6041

See Also

bootstrap.effectivemass
Examples

data(correlatormatrix)

cfnew <- extractSingleCor.cf(correlatormatrix, id=1)
cfnew <- bootstrap.cf(cfnew, boot.R=99, boot.1=1)

X <- effectivemass.cf(cfnew$cf, Thalf=25, tmax=24)

68

effmass2

effmass effmass

Description

computes the effective mass via the inverse cosh

Usage

effmass(data, timeextent, t)

Arguments
data numeric vector. data vector of length 4
timeextent integer. time extent of the lattice
t integer. physical time at which to evaluate the cosh
Value

Returns the effective mass as a single numeric value.

effmass2 effmass2

Description

computes the effective mass via the inverse cosh

Usage

effmass2(data, timeextent, t)

Arguments
data numeric vector. data vector of length 4
timeextent integer. time extent of the lattice
t integer. physical time at which to evaluate the cosh
Value

Returns the effective mass as a single numeric value.

escapeLatexSpecials 69

escapelLatexSpecials Escape special LaTeX characters for use in LaTleX labels

Description

Escape special LaTeX characters for use in LaTeX labels

Usage

escapelLatexSpecials(x)

Arguments
X String or vector of strings.
Value
String or vector of strings with all occurences of "#", "$", "%", "&", "~","_", "A", ">" "<" replaced

by escaped counterparts which should render fine when used in a tikz plot, for example.

References

from https://stackoverflow.com/questions/36338629/escaping-special-latex-characters-in-r

extract.loop Extract a single loop from an object of class cmiloop

Description
Extracts all loop values from an object of class cmiloop for all available times, samples and con-
figurations.

Usage

extract.loop(cmiloop, obs = 9, ind.vec = c(2, 3, 4, 5, 6, 7, 8, 1), L)

Arguments
cmiloop input object of class cmiloop generated for instance with readcmiloopfiles.
obs the observable to extract
ind.vec index vector to be used during extraction with ind.vec[1] the column with

the observable number, ind.vec[2] the time values, ind.vec[3] the sample
numbers, ind.vec[4] the real part of the local loop, ind.vec[5] the imaginary
part of the local loop, ind.vec[6] and ind.vec[7] the same for fuzzed (or
smeared) loops and ind. vec[8] for the configuraton number.

L The spatial lattice extent needed for normalisation. If not given set to Time/2.

70

Value

extract.obs

a list with elements as follows:

cf: real part of the local loop

icf: imaginary part of the local loop

scf: real part of the smeared loop

iscf: imaginary part of the smeared loop

Time=Time, nrSamples, nrObs=1, nrStypes=2, obs=obs and conf.index. The last is the list of
configurations corresponding to the loops.

Author(s)

Carsten Urbach, <curbach@gmx . de>

See Also

readcmiloopfiles

extract.obs

Extract One or More Gamma Combinations from am CMI Correlator

Description

Extracts one or more gamma matrix combinations (observables) from a correlator stored in cmi

format

Usage

extract.obs(cmicor, vec.obs = c(1), ind.vec = c(1, 2, 3, 4, 5), sym.vec,
sign.vec, verbose = FALSE, symmetrise = TRUE)

Arguments

cmicor
vec.obs

ind.vec

sym.vec

an correlator object in cmi format
vector containing the numbers of observables to be extracted.

Index vector indexing the column numbers in cmicor to be used. The first must
be the observable index, the second the smearing type index, the third the time,
the fourth C(+t) and the fifth C(-t).

Index vector indexing the column numbers in cmiloop to be used. The first must
be the observable index, the second the smearing type index, the third the time,
the fourth ReTL, the fifth ImTL, the sixth ReTF and the seventh ImTF.

a vector of bools of length equal to the number of observables indicating whether
C(t) is symmetric in t, i.e. whether C(+t) and C(-t) should be added or subtracted.
If not given C(+t) and C(-t) will be assumed to be symmetric.

extract.obs 71

sign.vec a sign vector of length equal to the number of observables indicating whether
the corresponding correlation function should be multiplied by +-1.

verbose Increases verbosity of the function.

symmetrise if set to TRUE, the correlation function will be averaged for t and Time-t, with

the sign depending on the value of sym. Note that currently the correlator with
t-values larger than Time/2 will be discarded.
Details

C(t) and C(-t) are averaged as indicated by sym. vec.

Value

returns a list containing

cf for extract.obs: array containing the correlation function with dimension
number of files times (nrObsnrStypes(Time/2+1)). C(t) and C(-t) are averaged
according to sym. vec.

for extract.loop: ReTL

icf for extract.loop only: ImTL

scf for extract.loop only: ReTF

sicf for extract.loop only: ImTF

Time The time extent of the correlation functions.

nrStypes The number of smearing combinations.

nrobs The number of observables.

nrSamples for extrac.loop only: the number of samples found in the files.
Author(s)

Carsten Urbach, <curbach@gmx.de>

See Also

readcmicor, readcmidatafiles,
Examples

files <- paste@(system.file(package="hadron"), "/extdata/outprcvn.dddd.00.0000")
X <- readcmifiles(files, skip=0,
colClasses=c("integer”, "integer"”,"integer","numeric”,"numeric"))
Y <- extract.obs(X)
Y

72 extract_mass

extractSingleCor.cf extract one single correlator object as cf object from a large cf object.

Description
cf objects are capable of storing several correlation functions in form of a correlation matrix.
extractSingleCor.cf lets one extract one of them.

Usage

extractSingleCor.cf(cf, id = c(1))

Arguments

cf input object of class cf

id id of the correlators in cf to be extracted
Value

A cf object containing only the single correlator

Returns an object of class cf corresponding ot the ids element in the input object cf

Author(s)

Carsten Urbach <curbach@gmx . de>

See Also
cf

extract_mass generic function to extract a fitted mass

Description

One of the main analysis tasks in hadron is the estimation of energy levels or masses from correla-

tion functions. The corresponding analysis functions return objects, typically lists, containing the

masses or energy levels. extract_mass is a generic function to extrac such fitted mass values.
Usage

extract_mass(object)

Arguments

object Object to extract the mass from.

extract_mmass.effectivemassfit 73

Value

Numeric. The mass value.

extract_mass.effectivemassfit
specialisation of extract_mass to objects of type effectivemassfit

Description

specialisation of extract_mass to objects of type effectivemassfit

Usage
S3 method for class 'effectivemassfit'
extract_mass(object)

Arguments

object Object of type effectivemassfit to extract the mass from.

Value

Numeric. The mass value.

extract_mass.matrixfit
specialisation of extract_mass to objects of type matrixfit

Description

specialisation of extract_mass to objects of type matrixfit

Usage
S3 method for class 'matrixfit'
extract_mass(object)

Arguments

object Object of type matrixfit to extract the mass from.

Value

Numeric. The mass value.

74 fit.cosh

fit.cosh Fits a sum of several cosh-functions

Description

Performs a correlated fit of a sum of several cosh-functions), a; cosh(m;t) to data generated
with bootstrap.effectivemass. Requires the same input and produces analogous output as
fit.effectivemass. The fit itself is performed by bootstrap.nlsfit.

Usage
fit.cosh(effMass, cf, t1, t2, useCov = FALSE, m.init, par, n.cosh = 2,
adjust.n.cosh = FALSE, every, ...)
Arguments
effMass An object of class ef fectivemass generated by a call to bootstrap.effectivemass.

Either effMass or cf has to be provided, but not both!

cf An object of class cf_boot generated by a call to bootstrap.cf. Either cf or
effMass has to be provided, but not both!

t1 The fit range. If several correlators are fitted, this is automatically replicated
accordingly. The fit range is adjusted such that NAs are removed from the fit.
They must fulfill ¢; < ¢2. For symmetric correlators, they must both run from 0
to T/2-1, otherwise from O to T-1.

t2 see tl

useCov Use the correlated chisquare. This works only for not too noisy data.

m.init Initial guess of the effective mass, i.e. the smallest m_i.

par Array of length 2xn. cosh with initial guesses for the effective masses in the first

n.cosh entries and initial guesses for the amplitudes in the last n. cosh entries.
n.cosh Number of cosh-functions summed over.

adjust.n.cosh Only relevant, if n.cosh=2. If set to TRUE, n. cosh can be adjusted to n.cosh=1
automatically in case the excited state cannot be resolved.

every Fit only a part of the data points. Indices that are not multiples of every are
skipped. If no value is provided, all points are taken into account.

Additional parameters passed to the fit function. But the fit function is fixed and
does not accept any arguments, so it will just crash. Therefore, don’t use this!

Value

An object with class coshfit is returned. It contains all the data of the input object effMass or the
cf object as a member. The following member objects are added:

t0: the object returned by the optim on the original data. The format is as in par.

t: the bootstrap values of the results.

fit.effectivemass 75

se: errors calculated via bootstrap on the results.
ii: the index array of data used in the fit.
invCovMatrix: the inverse covariance matrix.
dof: the degrees of freedom of the fit.

chisqr: Chi squared value of the fit.

Qval: p-value of the fit.

Author(s)

Johann Ostmeyer, <ostmeyer@hiskp.uni-bonn.de>

See Also

bootstrap.effectivemass, bootstrap.gevp, invertCovMatrix, bootstrap.nlsfit, fit.effectivemass
Examples

data(samplecf)

samplecf <- bootstrap.cf(cf=samplecf, boot.R=99, boot.1=2, seed=1442556)
effmass <- fit.cosh(bootstrap.effectivemass(cf=samplecf), t1=15, t2=23)
summary (effmass)

plot(effmass, ylim=c(0.14,0.15))

fit.effectivemass Fits a constant to effective mass data

Description

Performs a correlated fit of a constant to data generated with bootstrap.effectivemass.

Usage

fit.effectivemass(cf, t1, t2, useCov = FALSE, replace.na = TRUE,
boot.fit = TRUE, autoproceed = FALSE, every)

Arguments
cf An object of class effectivemass generated by a call to bootstrap.effectivemass.
t1, t2 The fit range. If several correlators are fitted, this is automatically replicated

accordingly. The fit range is adjusted such that NAs are removed from the fit.
They must fulfill ¢; < ¢9. For symmetric correlators, they must both run from 0
to Time/2-1, otherwise from O to Time-1.

useCov Use the correlated chisquare. This works only for not too noisy data.

76

replace.na

boot.fit

autoproceed

every

Details

fit.effectivemass

The functions inverted to determine the effective mass values might, due to fluc-
tuations, return NA. If replace.na=TRUE, these are reaplaced in the bootstrap
samples by randomly chosen values from the distribution that are not NA. Other-
wise the fits in which the NA values occur will fail.

If set to FALSE, the effective mass fit is not bootstrapped, even though bootstrap
samples are still used to estimate the variance-covariance matrix for the corre-
lated fit. This is a useful time-saver if error information is not strictly necessary.
Of course, this affects the return values related to the bootstrap, which are set to
NA.

‘When the inversion of the variance-covariance matrix fails, the default behaviour
is to abort the fit. Setting this to TRUE means that the fit is instead continued with
a diagonal inverse of the variance-covariance matrix.

Fit only a part of the data points. Indices that are not multiples of every are
skipped. If no value is provided, all points are taken into account.

A correlated chisquare minimisation is performed on the original data as well as on all bootstrap
samples generated by bootstrap.effectivemass. The inverse covariance matrix is generated as
described in hep-1at/9412087 in case of too little data to relibably estimate it.

Value

An object with class effectivemassfit is returned. It contains all the data of the input object
effMass with the following additional member objects:

opt.res: the object returned by the optim on the original data.

massfit.tsboot: the bootstrap values of the mass and the chisquare function.

ii: the index array of data used in the fit.

invCovMatrix: the inverse covariance matrix.

dof: the degrees of freedom of the fit.

t1, t2: the fit range.

Author(s)

Carsten Urbach, <curbach@gmx.de>

References

C.Michael, A.McKerrell, Phys.Rev. D51 (1995) 3745-3750, hep-1at/9412087

See Also

bootstrap.effectivemass, bootstrap.gevp, gevp2cf, invertCovMatrix

fit.plateau2cf 77

Examples

data(samplecf)

samplecf <- bootstrap.cf(cf=samplecf, boot.R=99, boot.1=2, seed=1442556)
effmass <- fit.effectivemass(bootstrap.effectivemass(cf=samplecf), t1=15, t2=23)
summary (effmass)

plot(effmass, ylim=c(0.14,0.15))

fit.plateau2cf fits a plateau to an object of class cf

Description

where applicable, a plateau is fitted to the averaged data in cf using a (correlated) chisquare fit.

Usage
fit.plateau2cf(cf, t1, t2, useCov = FALSE)

Arguments

cf input object of class cf

t1 starting t-value for the fit

t2 final t-value for the fit.

useCov perform a correlated chisquare fit or not.
Value

Returns a list with elements

plateau the fitted plateau value
dplateau its error
Author(s)

Carsten Urbach <curbach@gmx.de>

See Also
cf

Examples

data(correlatormatrix)

cfnew <- extractSingleCor.cf(correlatormatrix, id=1)
cfnew <- bootstrap.cf(cfnew, boot.R=99, boot.1=1)

X <- fit.plateau2cf(cfnew, t1=13, t2=20)

78 fs.a0

foldri Folds the non-empty list with the binary function

Description

A right fold without the need for a neutral element. Does not work with empty lists.

Usage
foldr1(f, xs)

Arguments
f function. A binary function that takes two elements of the type contained in
xs and returns another such element.
XS list or vector. Homogenious list or vector of elements.
There is a Reduce function in base R that does left and right folds. It always
needs a starting element, which usually is the neutral element with respect to the
binary operation. We do not want to specify such a neutral element for certain
operations, like +. cf. Still a functional programming style should be supported
such that one can use maps and folds.
Examples

We generate some random numbers.
numbers <- rnorm(10)

The sum is easiest computed with the ‘sum‘ function:
sum(numbers)

If we wanted to implement ‘sum‘ ourselves, we can use a right fold to do
so:
Reduce(*+", numbers, 0.0)

With this new function we do not need a neutral element any more, but give
up the possibility to fold empty lists.
foldr1(*+", numbers)

fs.a0 Finite Size Corrections to q cot d for I=2 7 near threshold

Description

fs.qcotdelta computes the finite size corrections to ¢ cot § while fs.mpia@ computes the corre-
sponding finite size corrections to M aq directly using the Gasser Leutwyler result from M.

fs.mpia0 79

Usage
fs.a0(a0, mps, L)

Arguments

a0 scattering length at finite L

mps pion mass as a scalar variable (must not be a vector)

L spatial lattice extent as a scalar variable (must not be a vector)
Value

returns a numeric value representing the finite size correction or in case of f's. a@ the corrected value
for a0.

Author(s)

Carsten Urbach, <curbach@gmx.de>

References

For the original formula see Eq. (31) from hep-1at/0601033

Examples

fs.a0(a0=1., mps=0.123, L=24)

fs.mpia@ Finite Size Corrections to q cot 6 for I=2 mw near threshold

Description

fs.qgcotdelta computes the finite size corrections to ¢ cot § while f's.mpia@ computes the corre-
sponding finite size corrections to M aq directly using the Gasser Leutwyler result from M.

Usage
fs.mpia@(mps, fps, L)

Arguments
mps pion mass as a scalar variable (must not be a vector)
fps pion decay constant as a scalar variable (must not be a vector)
L spatial lattice extent as a scalar variable (must not be a vector)
Value

returns a numeric value representing the finite size correction or in case of f's. a0 the corrected value
for a0.

80 fs.qgcotdelta

Author(s)

Carsten Urbach, <curbach@gmx.de>

References

For the original formula see Eq. (31) from hep-1lat/0601033

Examples

fs.mpia@(mps=0.123, fps=0.2, L=24)

fs.qgcotdelta Finite Size Corrections to q cot § for I=2 wm near threshold

Description

fs.qcotdelta computes the finite size corrections to ¢ cot § while fs.mpia@ computes the corre-
sponding finite size corrections to M ag directly using the Gasser Leutwyler result from M.

Usage

fs.qgcotdelta(mps, L)

Arguments

mps pion mass as a scalar variable (must not be a vector)

L spatial lattice extent as a scalar variable (must not be a vector)
Value

returns a numeric value representing the finite size correction or in case of f's. a0 the corrected value
for a0.

Author(s)

Carsten Urbach, <curbach@gmx . de>

References

For the original formula see Eq. (31) from hep-1at/0601033
Examples

fs.qcotdelta(mps=0.123, L=24)

gl 81

g1 gl

Description

Implementation of the Gasser-Leutwyler function g_1 for computing finite volume effects.

Usage

g1(x)

Arguments

X Numeric. x-value

getorderedconfignumbers
Creates an ordered vector of gauge config file numbers

Description

These functions generate an ordered list of config numbers by using a path and a basename and **’.

Usage
getorderedconfignumbers(path = "./", basename = "onlinemeas"”,
last.digits = 4, ending = "")
Arguments
path the path to be searched
basename the basename of the files
last.digits the number of last characters in each filename to be used for ordering the list.
ending the file extension after the digits.
Details

All filenames are assumend to have equal length.

Value

returns the ordered list of gauge config numbers as a numeric vector.

Author(s)

Carsten Urbach, <curbach@gmx . de>

82 getorderedfilelist

See Also

readcmidatafiles, extract.obs

Examples

confignumbers <- getorderedconfignumbers(path=paste@(system.file(package="hadron"), "/extdata/"),
basename="testfile"”, last.digits=3, ending=".dat")
confignumbers

getorderedfilelist Creates an ordered filelist from a basename and a path

Description

These functions generate an ordered filelist and an order list of config numbers by using a path and
a basename and **’.

Usage
getorderedfilelist(path = "./", basename = "onlinemeas”, last.digits = 4,
ending = "")
Arguments
path the path to be searched
basename the basename of the files
last.digits the number of last characters in each filename to be used for ordering the list.
ending the file extension after the digits.
Details

All filenames are assumend to have equal length.

Value

returns the ordered list of strings.

Author(s)

Carsten Urbach, <curbach@gmx . de>

See Also

readcmidatafiles, extract.obs

get_plotdata_raw_ct 83

Examples

filelist <- getorderedfilelist(path=paste@(system.file(package="hadron"), "/extdata/"),
basename="testfile"”, last.digits=3, ending=".dat")
filelist

get_plotdata_raw_cf extract data from 'raw_cf’ in format convenient to plot

Description

When dealing with with tensorial raw_cf objects pre-processing and reshaping is always required
to prepare the data for plotting (or similar). This function conveniently prepares a named list of
prepared data. The list elements are themselves lists which contain val and dval members with
the central value and error of the element in question. These are in turn arrays of dimension c(
cfnts,cfdim) and thus lack the first index compared to cf$data.

Usage

get_plotdata_raw_cf(cf, reim, tauint, relerr)

Arguments
cf raw_cf object with meta-data and data.
reim String, one of ’real’, ’imag’ or ’both’. Specifies whether the real and/or imagi-
nary parts should be extracted.
tauint Boolean, specifies if the tensor of auto-correlation times and corresponding er-
rors should be extracted.
relerr Boolean, specifies if the return value should also include estimates of the relative
error and its error.
Value

List of up to six named elements (depending on what was passed for reim, tauint, relerr) con-
taining the central values and errors of the real and/or imaginary part of cf$data as well as the
corresponding arrays of auto-correlation times and relative errors. The list elements come in the
order real, imag, relerr_real, relerr_imag, tauint_real, tauint_imag if reim is both and
tauint and relerr are TRUE. The val and dval members of these list elements are arrays of di-
mension c(cfnts,cfdim) and thus lack the first index compared to cf$data.

84 gevp

gevp solve GEVP for correlator matrix

Description

solve GEVP for a real, symmetric correlator matrix

Usage

gevp(cf, Time, t@ = 1, element.order = 1:cf$nrObs, for.tsboot = TRUE,
sort.type = "vectors”, sort.t@ = TRUE)

Arguments

cf correlation matrix preferably obtained with a call to extrac. obs (or at leas with
the same structure) or an already averaged one.
cf is supposed to be an array of dim=c(N,nx(Time/2+1)), where N is the num-
ber of observations and n is the number of single correlators in the matrix. E.g.
for a 2x2 matrix n would be 4.

Time time extent of the lattice.

t0 initial time value of the GEVP, must be in between 0 and Time/2-2. Default is

1.

element.order specifies how to fit the n linearly ordered single correlators into the correlator
matrix. element.order=c(1, 2, 3,4) leads to amatrix matrix(cf[element.order],nrow=2).

for.tsboot for internal use of bootstrap.gevp. Alters the returned values, see details.

sort. type Sort the eigenvalues either in descending order, or by using the scalar product
of the eigenvectors with the eigenvectors at ¢ = ¢y + 1. Possible values are

non

"values", "vectors" or "det".

sort.to if true (default), sort with respect to data at t0, otherwise with respect to t-1.

Details

The generalised eigenvalue problem

C(t)v(t to) = C(to)A(t, to)v(t, to)

is solved by performing a Cholesky decomposition of C(tq) = L!L and transforming the GEVP
into a standard eigenvalue problem for all values of ¢. The matrices C' are symmetrised for all ¢. So
we solve for A

(LH7IC(t) L™ w = \w

with

w = Lo or the wanted v = L~ !w.

The amplitudes can be computed from

A () = > Cij(t)vj(-n)(t, to)/(v/ (™, Co™M)(exp(—mt) + exp(—m(t — t)))) and this is what
the code returns up to the factor

1/+/exp(—mt) & exp(—m(t — t)) The states are sorted by their eigenvalues when "values" is cho-
sen. If "vectors" is chosen, we take max(} _,(v(to, %), v(t, j))) with v the eigenvectors. For sort type
"det" we compute max(...)

gevp.hankel 85

Value

Returns a list with the sorted eigenvalues, sorted eigenvectors and sorted (reduced) amplitudes for
all t > t0.

In case for.tsboot=TRUE the same is returned as one long vector with first all eigenvalues con-
catenated, then all eigenvectors and then all (reduced) amplitudes concatenated.
Author(s)

Carsten Urbach, <curbach@gmx.de>

References

Michael, Christopher and Teasdale, 1., Nucl.Phys.B215 (1983) 433, DOI: 10.1016/0550-3213(83)90674-
0
Blossier, B. et al., JHEP 0904 (2009) 094, DOI: 10.1088/1126-6708/2009/04/094, arXiv:0902.1265

See Also

boostrap.gevp, extract.obs

gevp.hankel GEVP method based on Hankel matrices.

Description

Alternative method to determine energy levels from correlation matrices. A so-called Hankel matrix
is generated from an input real numeric vector and a generalised eigenvalue problem is solved then.

Usage

gevp.hankel(cf, t@ = 1, deltat = 1, n, N, submatrix.size =1,
element.order = c(1, 2, 3, 4), Delta = 1)

Arguments
cf Numeric vector (this will generally be the time slices of a correlation function).
t0 Integer. Initial time value of the GEVP, must be in between 0 and Time/2-2.
Default is 1.
deltat Integer. Time shift to be used to build the Hankel matrix
n Integer. Size of the Hankel matrices to generate
N Integer. Maximal time index in correlation function to be used in Hankel matrix

submatrix.size Integer. Submatrix size to be used in build of Hankel matrices. Submatrix.size
> 1 is experimental.

86 gevp.hankel_summed

element.order Integer vector. specifies how to fit the n linearly ordered single correlators into
the correlator matrix for submatrix.size > 1. element.order=c(1, 2, 3,4) leads
to a matrix matrix(cf[element.order],nrow=2). Matrix elements can occur
multiple times, such as c(1, 2,2, 3) for the symmetric case, for example.

Delta integer. Delta is the time shift used in the Hankel matrix.
Value

A complex vector of length n + n*2 which contains the eigenvalues in the first n elements and the
eigenvectors in the remaining n*2 elements.

A vector of NAs of n + n*2 is returend in case the QR decomposition fails.

See Also

Other hankel: bootstrap.hankel_summed(), bootstrap.hankel(), gevp.hankel_summed(),
hankel2cf (), hankel2effectivemass(), plot_hankel_spectrum()

gevp.hankel_summed GEVP method based on Hankel matrices.

Description
Alternative method to determine energy levels from correlation matrices. A so-called Hankel matrix
is generated from an input real numeric vector and a generalised eigenvalue problem is solved then.
Usage

gevp.hankel_summed(cf, t@values = c(1), deltat =1, n, N)

Arguments
cf Numeric vector (this will generally be the time slices of a correlation function).
tovalues Integer vector. The t0 values to sum over.
deltat Integer. The value of the time shift to use to build the Hankel matrices.
n Integer. Size of the Hankel matrices to generate
N Integer. Maximal time index in correlation function to be used in Hankel matrix
Value

A complex vector of length n + n*2 which contains the eigenvalues in the first n elements and the
eigenvectors in the remaining n*2 elements.

A vector of NAs of n + n*2 is returend in case the QR decomposition fails.
See Also

Other hankel: bootstrap.hankel_summed(), bootstrap.hankel(), gevp.hankel (), hankel2cf (),
hankel2effectivemass(), plot_hankel_spectrum()

gevp2amplitude 87

gevp2amplitude Extracts physical amplitudes from a GEVP

Description

Given a GEVP generated with bootstrap.gevp and masses determined from the principle corre-
lator with given id, the physical amplitudes are extracted and bootstraped. The man amplitude is
determined from a constant fit to the data in the specified time range.

Usage

gevp2amplitude(gevp, mass, id = 1, op.id = 1, type = "cosh", t1, t2,
useCov = TRUE, fit = TRUE)

Arguments
gevp An object of class gevp as generated with a call to bootstrap.gevp.
mass Optimally, this is an object either of class effectivemassfit generated using
fit.effectivemass or of class matrixfit generated with matrixfit to the
principal correlator extracted using gevp2cf applied to gevp using the same
value of id.
It can also be given as a numerical vector with the bootstrap samples as entries.
The mean will then be computed as the bootstrap mean over this vector. The
number of samples must agree with the number of bootstrap samples in gevp.
id The index of the principal correlator to extract, i.e. the physical state to extract.
op.id The index of the operator for which to extract the amplitude.
type The symmetry of the pricipal correlator in time, can be either "cosh" or "sinh".
t1, t2 The time range in which to fit the amplitude starting with 0. If not given it will
be tried to infer these from the mass object.
useCov Use the covariance matrix for fitting the constant to the amplitude data.
fit perform a fit to the data.
Value

Returns an object of S3 class gevp.amplitude, generated as a list with named elements amplitude

the numeric vector of amplitudes, amplitude. tsboot the corresponding bootstrap samples, damplitude
the estimates for the standard errors, fit the object returned by the fit routine, meanAmplitude and
meanAmplitude. tsboot mean amplitude and its bootstrap samples, chisqr the residual sum of
squares, dof the numberi of degrees of freedom, t1 and t2 the fit range, and then all the input
objects.

Author(s)

Carsten Urbach, <curbach@gmx . de>

88 gevp2cf

See Also

matrixfit, fit.effectivemass, gevp, gevp2cf, computefps

Examples

data(correlatormatrix)

bootstrap the correlator matrix

correlatormatrix <- bootstrap.cf(correlatormatrix, boot.R=99, boot.1=1, seed=132435)

solve the GEVP

to <- 4

correlatormatrix.gevp <- bootstrap.gevp(cf=correlatormatrix, t0=t0, element.order=c(1,2,3,4))

extract the ground state and plot

pion.pcl <- gevp2cf(gevp=correlatormatrix.gevp, id=1)

pion.pcl.effectivemass <- bootstrap.effectivemass(cf=pion.pc1, type="solve")

pion.pcl.effectivemass <- fit.effectivemass(pion.pcl.effectivemass, t1=8, t2=23,

useCov=FALSE)

now determine the amplitude

pion.pcl.amplitude <- gevp2amplitude(correlatormatrix.gevp, pion.pcl.effectivemass,
useCov=FALSE, t1=8, t2=14)

plot(pion.pcl.amplitude)

summary (pion.pcl.amplitude)

gevp2cf Extracts a principle correlator from a GEVEP

Description

Extracts a principle correlator from a GEVP and converts it into an object of class cf

Usage
gevp2cf(gevp, id = 1)

Arguments

gevp An object returned by bootstrap.gevp.

id The index of the principal correlator to extract.
Value

An object of class cf, which contains bootstrap samples already. So a call to bootstrap.cf is
neither needed nor possible. It can be treated further by bootstrap.effectivemass or matrixfit
to extract a mass value.

Author(s)

Carsten Urbach, <curbach@gmx . de>

&m 89

See Also

gevp, matrixfit, bootstrap.effectivemass

Examples

data(correlatormatrix)

bootstrap the correlator matrix

correlatormatrix <- bootstrap.cf(correlatormatrix, boot.R=99, boot.1=1, seed=132435)

solve the GEVP

to <- 4

correlatormatrix.gevp <- bootstrap.gevp(cf=correlatormatrix, t0=t@, element.order=c(1,2,3,4))
extract the ground state and plot

pcl <- gevp2cf(gevp=correlatormatrix.gevp, id=1)

no,n

plot(pcl, log="y")

gm List of arrays of gamma structures

Description

List of arrays of 4x4 complex gamma matrices in the tmLQCD chiral gamma basis, where v° =

~Oyty2y3 =diag(c(1,1,-1,-1)) and the UKQCD gamma basis, where ° = ~0v14243,

The index mappings are as follows

» gm[['chiral_tmlgcd'11[1,,1°
e gm[['chiral_tmlqcd'11[2,,]1~!
o gm[['chiral_tmlqcd'11[3,,]1~?
e gm[['chiral_tmlqcd'11[4,,]1~3
e gm[['chiral_tmlqcd'11[5,,1~°
« gn[['chiral_tmlgcd'11[6,] positive parity projector % (1 +~°)
e gm[['chiral_tmlqgcd']1][7,,] negative parity projector %(1 -9

e gm[['ukqcd'11[1,,]1~!
o gm[['ukqcd'11[2,,]1~?
 gm[['ukqcd'11[3,,1+3
* gn[['ukqcd'11C4,,1~*
 gm[['ukqcd'11[5,,1~°
* gm[['ukqed'11L6,] positive parity projector 3 (1 +~*)
* gn[['ukged'11[7,,] negative parity projector (1 —~*)

The function gm_mu can be used to access its elements using a more "natural” indexing.

90 h5_get_dataset

gm_mu Accessor function for gm

Description

Retrieve the entries of the gm list of three-index arrays containing various gamma structures in a
natural indexing.

Usage
gm_mu(mu, basis = "chiral_tmlgcd")
Arguments
mu Number or string denoting
¢ Lorentz index (0,1,2,3,4) for v*
* 5 fory°
* "Pp" or "Pm" for the positive and negative parity projectors respectively
basis String, gamma basis to use. Possible values
’ukqed’: UKQCD gamma basis with 7%,i € [1,2,3,4] and ° = y1y2y3+4,
suchthatl = x,4 = ¢.
>chiral_tmlqed’: Chiral gamma basis used by tmLQCD withv*, i € [0,1, 2, 3]
and v° = v99142~3 such that 0 = ¢, 3 = 2.
Value

Returns the requested « matrix as a 4x4 complex valued array, see gm.

h5_get_dataset get dataset from HDF'S file

Description

get dataset from HDFS file

Usage

h5_get_dataset(h5f, key, check_exists = TRUE)

Arguments
h5f HDFS5 file opened with rhdf5: :HSFopen
key String, full path to dataset.

check_exists Boolean, check if key actually exists (keep in mind overhead).

h5 names_exist 91

Value

Returns the requested dataset, if successfully read from file.

h5_names_exist check if group names exist in HDF5 file

Description

The group names in an HDFS5 file are stored as full paths as well as a flat vector. It is thus possible
to check if a particular set of group names exist in the file by parsing the name member of the output
of rhdf5: :h51s. This function does just that.

Usage

h5_names_exist(h5f, nms_to_find)

Arguments

h5f HDFS5 file handle openend with rhdf5: : HSFopen

nms_to_find Vector of strings, group names (not full paths) which are to be located in the file.
Value

Vector of booleans of the same length as nms_to_find indicating whether the name at the same
index position was located in the file.

hadron The Hadron Package

Description

An R implementation of fitting routines used in lattice QCD. It provides useful functions for extrac-
tion hadronic quantities and such like.

Details

Toolkit to perform statistical analyses of correlation functions generated from Lattice Monte Carlo
simulations. In particular, a class cf for correlation functions and methods to analyse those are
defined. This includes (blocked) bootstrap and jackknife, but also an automatic determination of
integrated autocorrelation times. hadron also provides a very general function bootstrap.nlsfit
to bootstrap a non-linear least squares fit. More specific functions are provided to extract hadronic
quantities from Lattice Quantum Chromodynamics simulations, a particular Monte Carlo simu-
lation,(see e.g. European Twisted Mass Collaboration, P. Boucaud et al. (2008) doi: 10.1016/
j-cpc.2008.06.013). Here, to determine energy eigenvalues of hadronic states, specific fitting rou-
tines and in particular the generalised eigenvalue method (see e.g. B. Blossier et al. (2009)
doi: 10.1088/11266708/2009/04/094 and M. Fischer et al. (2020) https://inspirehep.net/
literature/1792113) are implemented. In addition, input/output and plotting routines are avail-
able.

https://doi.org/10.1016/j.cpc.2008.06.013
https://doi.org/10.1016/j.cpc.2008.06.013
https://doi.org/10.1088/1126-6708/2009/04/094
https://inspirehep.net/literature/1792113
https://inspirehep.net/literature/1792113

92 hankel2cf

Author(s)

Carsten Urbach, <urbach@hiskp.uni-bonn.de>

hankel2cf hankel2cf

Description

hankel2cf

Usage

hankel2cf (hankel, id = c(1), range = c(0, 1), eps = le-16,
sort.type = "values”, sort.t@ = TRUE)

Arguments
hankel object as returned from bootstrap.hankel
id Integer. Index of eigenvalue to consider, 1 < id < n.
range Numeric vector. Value-range for the real part of the eigenvalues (not the ener-
gies). If outside this range, the eigenvalue will be discarded
eps Numeric. Cut-off: if the imaginary part of the generalised eigenvalues is larger
than eps, the eigenvalue is discarded.
sort.type the sort algorithm to be used to sort the eigenvalues. This can be either simply
"values", or the eigenvector information is used in addition with "vectors"
sort.to Boolean. Whether to use the eigenvector at tO or the one at deltat-1 for sorting
Value

Returns an object of S3 class cf.

See Also

input is generated via bootstrap.hankel alternatively use hankel2effectivemass. For the cf class see
cf

Other hankel: bootstrap.hankel_summed(), bootstrap.hankel(), gevp.hankel_summed(),
gevp.hankel(), hankel2effectivemass(), plot_hankel_spectrum()

hankel2effectivemass 93

hankel2effectivemass hankel2effectivemass

Description
hankel2effectivemass
Usage
hankel2effectivemass(hankel, id = c(1), type = "log", range = c(0, 1),
eps = le-16, sort.type = "values"”, sort.t@ = TRUE)
Arguments
hankel object as returned from bootstrap.hankel
id Integer. Index of eigenvalue to consider, 1 < id < n.
type Character vector. Type of effective mass to use. Must be in c("log", "acosh")
range Numeric vector. Value-range for the real part of the eigenvalues (not the ener-

gies). If outside this range, the eigenvalue will be discarded

eps Numeric. Cut-off: if the imaginary part of the generalised eigenvalues is larger
than eps, the eigenvalue is discarded.

sort.type the sort algorithm to be used to sort the eigenvalues. This can be either simply
"values", or the eigenvector information is used in addition with "vectors"

sort.to Boolean. Whether to use the eigenvector at tO or the one at deltat-1 for sorting

Value

Returns an object of S3 class effectivemass.

See Also

input is generated via bootstrap.hankel alternatively use hankel2cf. See also bootstrap.effectivemass

Other hankel: bootstrap.hankel_summed(), bootstrap.hankel(), gevp.hankel_summed(),
gevp.hankel(), hankel2cf (), plot_hankel_spectrum()

94 has_icf

hankeldensity2effectivemass
hankeldensity2effectivemass

Description

computes the density of all bootstrap replicates of effective masses

Usage
hankeldensity2effectivemass(hankel, range = c(@, 1), method = "median")
Arguments
hankel object as returned from bootstrap.hankel
range Numeric vector. Value-range for the real part of the eigenvalues. If outside this
range, the eigenvalue will be discarded
method Character vector. Method to be used to determine the central value of the effec-
tive mass. Must be "median" (default) or "density"
Value

Returns an object of S3 class effectivemass. #

See Also

bootstrap.effectivemass, hankel2effectivemass

has_icf Checks whether the cf object contains an imaginary part

Description

Checks whether the cf object contains an imaginary part

Usage
has_icf(.cf)

Arguments

.cf cf object

Value

Returns TRUE if the . cf object has an element icf, which is the imaginary component of the corre-
lation function.

idx_matrix.raw_cf 95

idx_matrix.raw_cf Construct the tensor index set for the entire raw correlator

Description

Construct the tensor index set for the entire raw correlator

Usage

idx_matrix.raw_cf(cf, component)

Arguments
cf raw_cf’ container with data and meta-data
component Integer vector. Optional argument to obtain a subset of the index matrix to access
a particular element of the interior dimensions. Must of the the same length as
cf$dim.
Value

An object of type matrix is returned containing the tensor index set.

int_idx_matrix.raw_cf Construct tensor index set for the internal degrees of freedom

Description

Construct tensor index set for the internal degrees of freedom

Usage

int_idx_matrix.raw_cf(cf)

Arguments

cf raw_cf container

Value

Returns a matrix containing the above mentioned index set.

96 invcosh

invalidate.samples.cf [Invalidate samples

Description

When a correlation function is modified, any resampling should be invalidated. We could instead

also choose to properly work with the samples, but most computations are done with the original
data anyway.

Usage

invalidate.samples.cf(cf)

Arguments

cf cf object.

Value

Returns an object of class cf with all resampling removed.

invcosh numerically invert the cosh function for the mass

Description

numerically invert the cosh function for the mass

Usage

invcosh(ratio, timeextent, t, eps = 1e-09, maxiterations = 1000)

Arguments
ratio Numeric. The value of the ratio.
timeextent Integer. Time extent of the lattice.
t Integer. The t-value where the ratio was taken.
eps Numeric. Precision of the numerical solution

maxiterations Integer. Maximal number of iterations to be used in the iterative solver.

Value

A single numeric value is returned corresponding to the mass.

invertCovMatrix 97

Examples

invcosh(1.2, timeextent=24, t=12)

invertCovMatrix Inverts the covariance matrix for noisy data

Description

The covariance matrix of noisy data is inverted. Special care is taken in treating spurious small
modes of the matrix, which are likely to arise from too much noise in the data.

Usage

invertCovMatrix(cf, boot.1l = 1, boot.samples = FALSE, cov_fn = cov)

Arguments
cf The data for which the covariance matrix is to be computed. It is expected to be
an array or matrix with dimension RxN, where R is the number of observations
and N the number of observables.
cf can be either real data or bootstrap data. In the latter case boot . samples=TRUE
must be set for proper normalisation of the inverse matrix.
boot.1 If set to a value larger than 1 the data will be blocked with blocklength boot .1

before the covariance matrix is computed.
boot.samples If set to TRUE the data is treated a pseudo data from a bootstrap procedure.

cov_fn Function that computes the covariance matrix from the given samples.

Details

The inverse covariance matrix is estimated. If the number of observations is too small the procedure
described in the reference is used to remove spuriously small eigenvalues of the covariance matrix.

We always keep the /R largest eigenvalues exactly and replace the remaining smallest ones by
their mean.

Value

Returns the inverse covariance matrix as an object of class matrix.

Author(s)

Carsten Urbach, <curbach@gmx.de>

References

C.Michael, A.McKerrell, Phys.Rev. D51 (1995) 3745-3750, hep-1at/9412087

98

See Also

cov, matrix

Examples

X <- array(rnorm(4000), dim=c(1000, 4))
invertCovMatrix(cf=X, boot.samples=TRUE)

M <- invertCovMatrix(cf=X, boot.samples=TRUE)
M

is.raw_cf

is.cf Checks whether an object is a cf

Description

Checks whether an object is a cf

Usage
is.cf(x)

Arguments

X Object, possibly of class cf.

Value

Returns TRUE if the input object is of class cf, FALSE otherwise.

is.raw_cf check if an object is of class raw_cf

Description

check if an object is of class raw_cf

Usage

is.raw_cf(x)

Arguments

X object to be checked

Value

Returns TRUE if x is an object of class raw_cf, FALSE otherwise.

is_empty.ct

99

is_empty.cf Checks whether the cf object contains no data

Description

Checks whether the cf object contains no data

Usage

is_empty.cf(.cf)

Arguments

.cf cf object.

Value

returns FALSE if . cf contains no data, TRUE otherwise

Examples

The empty cf object must be empty:
is_empty.cf(cf())

The sample cf must not be empty:
is_empty.cf(samplecf)

is_empty.raw_cf check if an obect is of class raw_cf and empty otherwise

Description

check if an obect is of class raw_cf and empty otherwise

Usage

is_empty.raw_cf(x)

Arguments

X object to be checked

Value

Returns TRUE if x is an empty object of class raw_cf, FALSE otherwise.

100 Jjackknife.cf

jackknife.cf Jjackknife a set of correlation functions

Description

jackknife a set of correlation functions

Usage
jackknife.cf(cf, boot.1 = 1)

Arguments
cf correlation matrix of class cf e.g. obtained with a call to extrac.obs.
boot.1 block size for autocorrelation analysis

Value

returns an object of class cf with blocked jackknife samples added for the correlation function called
cf.jackknife. Currently, only the moving block jackknife approach is implemented. Moreover,
the original average of cf is returned as cf@ and the bootstrap errors as jackknife.se. We also
copy the input parameters over and set jackknife.samples to TRUE.

Author(s)

Carsten Urbach, <curbach@gmx.de>

References

H.R. Kiinsch, "The jackknife and the bootstrap for general stationary observations", The Annals of
Statistics, 1989, Vol. 17, No. 3, 1217-1241

S.N. Lahiri, "On the jackknife-after-bootstrap method for dependent data and its consistency prop-
erties", Econometric Theory, 2002, Vol. 18, 79-98

See Also

boot: :tsboot, bootstrap.cf

Examples

data(samplecf)
samplecf <- jackknife.cf(samplecf, boot.1=1)

no,n

plot(samplecf, log="y")

Jjackknife_cov 101

jackknife_cov Jjackknife_cov

Description

Computes covariance matrix for jackknife samples.

Usage
jackknife_cov(x, y = NULL, na.rm = FALSE, ...)
Arguments
X a numeric vector, matrix or data frame.
y ‘NULL’ (default) or a vector, matrix or data frame with compatible dimensions
to ‘x’. The default is equivalent to ‘y = x’ (but more efficient).
na.rm logical. The rows containing any NA will be deleted if this option is set.
parameters to be forwarded to cov.
Value

returns a matrix corresponding to the jackknife estimate of the covariance matrix

jackknife_error Estimates error from jackknife samples

Description

Computes the jackknife error which is just

N
> (@i —2)?
i=0

Internally we use
N —1)?

(N) sd(X)

in order to benefit from the optimized standard deviation function.

The width of the bootstrap distribution does not change with the number of elements. The jackknife
distribution crucially depends on the number of measurements that one started with. Therefore we
cannot just drop the NA values and are done with it. Instead we need to rescale with the /N/m
where IV is the number of original measurements and m is the number of non-NA values. With NA
values removed we would otherwise underestimate the uncertainty.

102 loopdata

Usage

jackknife_error(samples, boot.1 = 1, na.rm = FALSE)

Arguments
samples Numeric vector.
boot.1 Block length for bootstrapping.
na.rm Logical. Determines whether NA values shall be removed, see Description for
details.
Details

Currently this uses the mean over the jackknife samples in order to compute the error. It would
be better in the case of a bias to use the mean over the original data instead. This would require
a second parameter and therefore is incompatible with the previously used sd everywhere for the
bootstrap samples. As the sd for the bootstrap samples also does not include the original data, this
likely is similar in terms of bias.

Value

returns a single numeric representing the jackknife estimate of error

loopdata Sample loop data

Description

Sample data for fermion loops for a 24 cube times 48 lattice QCD simulation. It is stored in form
of a list.

Format

non

list of 10 elements: "nrObs" "Time" "nrStypes” "symmetrised" "cf" "icf" "scf" "iscf" "nrSamples”

obs"

"

Examples

data("loopdata”)

loop_2pt 103

loop_2pt compute two-point correlation function between quark loops

Description

compute two-point correlation function between quark loops

Usage

loop_2pt(loop_snk, loop_src, random_vectors_outer_product = FALSE,
nstoch_to_avg = "all")

Arguments

loop_snk

‘raw_cf’ container with spin-projected quark loop at sink (see loop_spin_project)
loop_src

‘raw_cf’ container with spin-projected quark loop at source (see loop_spin_project)
random_vectors_outer_product

Boolean. For testing purposes, the average over all random sample combinations

can be carried out explicitly as >, ; Tr[['snkM;]Tr[IsrcM;] instead of the

(much faster) equivalent (3, T'r[CsnkM;])*(3_; Tr[UsreM;]) =52 (Tr[LsnkM;]|Tr[LsreM;])
nstoch_to_avg String or integer, how many of the available stochastic samples should be aver-

aged over. See loop_stochav for details.
Value

’raw_cf’ container with two-point function of these two quark loops. In the calculation, both averag-
ing over all source locations and the average over all stochastic sample combinations are performed.

loop_spin_project spin projection of quark loop data

Description
Implements the operation
L= Qa * (szMkz)

to give the trace of a quark loop M multiplied by a gamma structure I' and scaled by a complex
factor a.

Usage

loop_spin_project(loop, gamma, reim = "both"”, stochav = FALSE,
scale_factor =

as.complex(1), herm_conj = FALSE)

104

Arguments

loop
gamma

reim

stochav

scale_factor

herm_conj

Value

loop_stochav

raw_cf” container with loop data
4x4 complex matrix

String, one of ’real’, ’imag’ or ’both’. After the spin projection and trace, the
result can be restricted to just the real or imaginary part, if desired. Useful for
the cases in which it is clear that only one or the other contains any signal.

Boolean, specifies whether the average over stochastic samples should be per-
formed. This makes the projection much faster but of course prevents the pro-
jected loop data to be used for the construction of diagrams with multiple quark
loops.

Complex scaling factor to be applied.

Boolean, optionally the loop matrix M can be hermitian conjugated before the
spin projection is performed.

Returns an object of class raw_cf.

loop_stochav

average over stochastic samples of loop

Description

Perform mean over the third dimension of the loop data.

Usage

loop_stochav(loop, nstoch_to_avg = "all")
Arguments

loop raw_cf” container with loop data

nstoch_to_avg

Value

String or integer, number of stochastic samples to average over. Only possi-
ble string is ’all’. If an integer is supplied, it must be at least *1’ and at most
consistent with the number of stochastic samples in loop.

Returns the input 1oop object with named elemens data and dim added.

loop_vev_subtract 105

loop_vev_subtract subtract vev from loop data

Description

Convenience function to subtract any possible vacuum-expectation value from a loop matrix. The
expectation value of each component of the internal dimensions is subtracted individually. Averag-
ing over stochstic samples can be restricted to a subset, see nstoch_to_avg input parameter.

Usage

loop_vev_subtract(loop, nstoch_to_avg = "all")
Arguments

loop raw_cf” container with loop data

nstoch_to_avg String or integer, number of stochastic samples to average over. Only possi-
ble string is ’all’. If an integer is provided it must be at least *1’ and at most
consistent with the number of stochastic samples in loop.

Value

Returns the input loop object with added data.

make_parind Create a parameter index matrix for matrixfit

Description

Create a parameter index matrix for matrixfit

Usage

make_parind(parlist, length_time, summands = 1)

Arguments
parlist integer array. Parameter list generated with make_parlist.
length_time integer. Number of time slices per correlator.
summands integer. Number of summands in the fit model that shall be fitted. The signal
counts as one summand, each explicit pollution term with independent ampli-
tudes counts as its own summand.
Value

Returns an array with the parameter indices.

106 matrixfit

make_parlist Create a parameter list for matrixfit

Description

Create a parameter list for matrixfit

Usage

make_parlist(corr_matrix_size)

Arguments
corr_matrix_size
integer. Number of correlators in the matrix. This must be a the square of an
integer.
Value

Returns a square, integer-valued matrix.

matrixfit Routine For A Factorising Matrix Fit

Description

Performs a factorising fit on a correlation matrix

Usage

matrixfit(cf, t1, t2, parlist, sym.vec, neg.vec, useCov = FALSE,
model = "single", boot.fit = TRUE, fit.method = "optim”,
autoproceed = FALSE, every)

Arguments
cf correlation matrix obtained with a call to extrac. obs.
t1 lower bound for the fitrange in time (t1,t2). Counting starts with 0.
t2 upper bound for the fitrange in time (t1,t2). Counting starts with 0.
parlist a two dimensional array of dimension 2 times number of correlators in cf. Every

column assigns a pair of fit parameters to the corresponding correlator in cf. In
case this is missing there are defaults provided for certain matrix sizes.

matrixfit

sym.vec

neg.vec

useCov
model

boot.fit

fit.method

autoproceed

every

Details

107

a vector of length number of correlators in cf indicating whether the correlation
function is a cosh, a sinh or an exponential. Possible values are "cosh”, "sinh”
and "exp”. In case this is missing there are defaults provided for certain matrix
sizes.

a vector of length number of correlators in cf indicating whether the correlation
function is to be multiplied globally with a minus sign. In case this is missing
there are defaults provided for certain matrix sizes.

use correlated or uncorrelated chisquare. Default is useCov=FALSE.

Sets the fit model to be used in the fit. The default model is

0.5p;p;(exp(—FEt) + ¢ * exp(—E(Time — t)))

with sign depending on "cosh” or "sinh". c equals one except for the "exp”
functional dependence. When model is set to "shifted"”, the fit uses the func-
tion

pip; (exp(—E(t +1/2)) F ¢ * exp(—E(Time — (¢ +1/2)))

which is useful when the original correlation function or matrix is shifted, see
e.g. bootstrap.gevp.

In case only a single principal correlator from a GEVP is to be fitted the addi-
tional model "pc” is available. It implements

exp(—E(t —t9))(A+ (1 — A) exp(—DeltaE(t — to))

with ¢ the reference timesclice of the GEVP. See bootstrap.gevp for details.

If set to FALSE, the fit is not bootstrapped, even if the bootstrapping parameters
have been set and the correlation function has been bootstrapped. This is a useful
time-saver if error information is not strictly necessary. Of course, this affects
the return values related to the bootstrap, which are set to NA.

Can be either "optim” or "1m". The latter works only if the library "minpack. 1m"
can be loaded. Default and fallback is "optim”.

‘When the inversion of the variance-covariance matrix fails, the default behaviour
is to abort the fit. Setting this to TRUE means that the fit is instead continued with
a diagonal inverse of the variance-covariance matrix.

Fit only a part of the data points. Indices that are not multiples of every are
skipped. If no value is provided, all points are taken into account.

The routine expects in cf$cf a set of correlation functions. The mapping of this linear construct to
a matrix or a part of a matrix is achieved via parlist. The symmetry properties of the individual
correlation functions must be encoded in sym. vec.

matrixfit will fit to every correlator in cf$cf a function p;p; f(t). The indices ¢, j are determined
from parlist and f is either cosh or sinh, depending on sym. vec.

The inverse covariance matrix is computed using a singular value decomposition. If the sample size
N is too small, only sqrt(N) eigenvalues of the matrix are kept exactly, while all others are replaced
by the mean of the rest. This helps to reduce instabilities induced by too small eigenvalues of the

covariance matrix.

Value

returns an object of class matrixfit with entries:

108

CF

M

L

parind
sign.vec

ii

opt.res
to

se

useCov
invCovMatrix
Qval

chisqr

dof

mSize

cf

boot.R
boot.1
t1

t2
parlist

sym.vec

seed
model
fit.method

matrixfit

object of class cf which contains the mean correlation functions

inverse variance-covariance matrix for weighted Chi squared minimization
squre root of M.

indices in the parameter vector used for the different matrix combinations
vector of signs

vector of vector indices giving the columns of the correlation function arrays
(CF above, say), which are contained in the fit range

return value of the minimization (see ?optim) on the original data.

Result of the chisqr fit on the original data. t@ is a vector of length npar+1,
where npar the number of fit parameters. The last value is the chisqr value.

Bootstrap samples of the R Chi squared minimizations of length(par)+1. t has
dimension Rz (npar + 1), where R is the number of bootstrap samples and npar
the number of fit parameters. The last column corresponds to the chisquare
values.

Bootstrap estimate of standard error for all parameters. se is a vector of length
npar, where npar the number of fit parameters.

whether covariances in the data were taken into account

inverse of covariance matrix or inverse variance weighted if useCov=FALSE
real number between 0 and 1 giving the "quality" of the fit

total Chi squared of the fit

fit degrees of freedom

integer size of the matrix which was fitted

object of type cf which contains, amongst other objects, cf$cf which is a con-
catenated array of raw correlation functions where each row is one of N obser-
vations and there are mSize*Time columns (see ?extract.obs)

number of bootstrap samples

block size for blocked bootstrap

beginning of fit range

end of fit range

array of parameter combinations for the matrix fit

vector of strings indicating the functional form of correlation functions which
were fitted

RNG seed for bootstrap procedure
see input.

see input.

reference_time The GEVP reference time for the principal correlator model

Author(s)

Carsten Urbach, <curbach@gmx . de>

matrixModel 109

References

C. Michael, hep-1at/9412087hep-1at/9412087

See Also

cf, bootstrap.cf

Examples

data(samplecf)

samplecf <- bootstrap.cf(cf=samplecf, boot.R=99, boot.1=2, seed=1442556)

fitres <- matrixfit(cf=samplecf, t1=16, t2=24, useCov=FALSE,
parlist=array(c(1,1), dim=c(2,1)),
sym.vec=c("cosh"), fit.method="1m")

summary(fitres)

plot(fitres)

matrixModel Correlator matrix model.

Description

Correlator matrix model.

Usage

matrixModel(par, t, Time, parind, sign.vec, ov.sign.vec, deltat = 0)

Arguments
par Numeric vector: Fit parameters of the model. In an object of type matrixfit,
this should be located at $opt.res$par.
t integer vector: Time of interest.
Time integer: Time extent of the lattice.
parind See matrixfit.
sign.vec Numeric vector: Relative sign between forward and backwards propagating part.
A plus makes it cosh, a minus makes it sinh.
ov.sign.vec Numeric vector: Overal sign.
deltat Numeric: time shift.
Value

Returns a numeric vector with the same length as the input vector t containing the model evaluation
for these t-values.

110 mul.cf

See Also

matrixfit

mom_combinations Generate table of momentum component combinations

Description

Generate table of momentum component combinations

Usage

mom_combinations(psgmax)

Arguments

psgmax Integer, maximum p”2 = px"2 + py”2 + pz”\2 to be included in momentum list

Value

Returns a data.frame with all possible momentum combinations.

mul.cf Arithmetically scale a correlator by a scalar a

Description

Note that this function is fundamentally different from *. cf.

Usage
mul.cf(cf, a = 1)

Arguments

cf cf_orig objects.

a Numeric, scaling factor.
Value

Returns an object of class cf.

mul.raw_cf 111

mul.raw_cf scale raw_cf data

Description

scale raw_cf data

Usage

mul.raw_cf(cf, a = 1)

Arguments
cf raw_cf’ container with data to be scaled by the factor a
a Numeric or complex scaling factor, although it could also be an array of dimen-
sions compatible with cf$data
Value

raw_cf object with res$data == axcf$data

new_matrixfit perform a factorising fit of a matrix of correlation functions

Description

Modernised and extended implementation of matrixfit

Usage

new_matrixfit(cf, t1, t2, parlist, sym.vec = rep(1, cf$nrObs),
neg.vec = rep(”cosh”, cf$nrObs), useCov = FALSE, model = "single",
boot.fit = TRUE, fit.method = "optim”, autoproceed = FALSE, par.guess,
every, higher_states = list(val = numeric(@), boot = matrix(nrow = @, ncol

= Q), ampl = numeric(@)), ...)
Arguments
cf Object of class cf with cf_meta and cf_boot.
t1 Integer, start time slice of fit range (inclusive).
t2 Integer, end time slie of fit range (inclusive).
parlist Numeric vector, list of parameters for the model function.
sym.vec Integer, numeric or vectors thereof specifying the symmetry properties of the

correlation functions stored in cf. See matrixfit for details.

112

neg.vec
useCov

model

boot.fit
fit.method
autoproceed
par.guess

every

higher_states

Details

new_matrixfit

Integer or integer vector of global signs, see matrixfit for details.
Boolean, specifies whether a correlated chi2 fit should be performed.

String, specifies the type of model to be assumed for the correlator. See below
for details.

Boolean, specifies if the fit should be bootstrapped.
String, specifies which minimizer should be used. See matrixfit for details.

Boolean, if TRUE, specifies that if inversion of the covariance matrix fails, the
function should proceed anyway assuming no correlation (diagonal covariance
matrix).

Numeric vector, initial values for the paramters, should be of the same length as
parlist.

Integer, specifies a stride length by which the fit range should be sparsened,
using just everyth time slice in the fit.

List with elements val and boot. Only used in the n_particles fit model. The
member val must have the central energy values for all the states that are to be
fitted. The boot member will be a matrix that has the various states as columns
and the corresponding bootstrap samples as rows. The length of val must be
the column number of boot. The row number of boot must be the number of
samples.

Further parameters.

There are different fit models available. The models generally depend on one or multiple energies
E and amplitudes p; which for a general matrix are row- and column-amplitudes. The relative sign
factor ¢ € {—1,0,+1} depends on the chosen symmetry of the correlator. It is a plus for a “cosh”
symmetry and a minus for a “sinh” symmetry. If the back propagating part is to be neglected (just
“exp” model), it will be zero.

When the back propagating part is not taken into account, then the single, shifted and weighted
model become the same except for changes in the amplitude.

* single: The default model for a single state correlator is

%pipj(eXp(—plt) + cexp(—p2(T — 1)) .

» shifted: If the correlator has been shifted (using takeTimeDiff.cf, then the following model

is applicable:

pip;(exp(—p1(t +1/2)) F cexp(—p1 (T — (t +1/2)))) .

* weighted: Works similarly to the shifted model but includes the effect of the weight factor
from removeTemporal.cf.

* pc: In case only a single principal correlator from a GEVP is to be fitted this model can be
used. It implements

exp(—pi1(t — to))(p2 + (1 — p2) exp(—ps(t — to))

with t(the reference timesclice of the GEVP. See bootstrap.gevp for details.

old_removeTemporal.cf 113

* two_amplitudes: Should there be a single state but different amplitudes in the forward and
backwards part, the following method is applicable.

1
5(192 exp(—pit) £ cp3 exp(pit))

This only works with a single correlator at the moment.

* single_constant: Uses the single model and simply adds +ps to the model such that a
constant offset can be fitted. In total the model is

single(p1,p2) + p3 -

* n_particles: A sum of single models with independent energies and amplitudes:

n
> " single(pan-1,p2n) -
i=1

Use the higher_states parameter to restrict the thermal states with priors to stabilize the fit.

Value

See bootstrap.nlsfit.

old_removeTemporal.cf Remove temporal states

Description

Performs weighting and shifting in the rest and moving frames.

Usage

old_removeTemporal.cf(cf, single.cf1, single.cf2, p1 = c(0, 0, @),
p2 = c(9, 9, @), L, lat.disp = TRUE, weight.cosh = FALSE, deltat = 1)

Arguments

cf Object of type cf, two-to-two particle correlation function which shall be weighted
and shifted. It must be a correlation function in the frame p; + ps.

single.cf1, single.cf2
Object of type effectivemassfit or matrixfit which contains the one parti-
cle mass in the rest frame.

If single.cf2 is missing, then the mass given as single.cf1 is used as well.
This is sensibly done when one scatters identical particles. But be careful: Even
when single.cf2 is missing, the p2 is not automatically copied from p1.

In case single. cf1 is missing, no weighting is performed. Instead it is assumed
that the user only wants to have a simple shifting. Then this function just calls
takeTimeDiff.cf.

114 onlinemeas

p1, p2 Integer vector with three elements, containing the momenta that the one particle
mass should be boosted to.

L Integer, spatial extent of the lattice.

lat.disp Logical, true when the lattice dispersion relation shall be used, otherwise con-
tinuum dispersion relation.

weight.cosh Logical, If single.cf1 is a pure cosh, the leading two thermal states also may be
expressed as a cosh. If weight. cosh is set, they are removed simultaneously.

deltat Integer. Time shift value.

Value

Returns an object of class cf, see cf.

onlinemeas determines pion mass and pcac mass from online measured correlator
of the HMC code

Description

determines pion mass and pcac mass from online measured correlator of the HMC code

Usage

onlinemeas(data, t1, t2, stat_range, S = 1.5, pl = FALSE, skip = 0,
iobs = 1, ind.vec = c(1, 3, 4, 5), mu = 0.1, kappa = 0.125,
boot.R = 99, boot.l = 10, tsboot.sim = "geom”, method = "uwerr”,

fit.routine = "optim”, nrep, oldnorm = FALSE)
Arguments
data data to be fitted to as e.g. the output of readcmicor. Currently only cmicor
format is supported.
t1 lower bound for the fitrange in time (t1,t2). Counting starts with 0.
t2 upper bound for the fitrange in time (t1,t2). Counting starts with 0.
stat_range range of data to be included in the analysis.
S passed to uwerr, see documentation of uwerr.
pl logical: if set to TRUE the function produces plots
skip number of measurements to be discarded at the beginning of the time series.

skip has no effect if two or more replica are used, see argument nrep.

iobs if there are several operators available (local-local, local-smeared, etc.), then this
labels these (for cmi format)

ind.vec index vector indexing the column numbers in cmicor to be used

mu twisted mass parameter.

onlinemeas

kappa
boot.R
boot.1

tsboot.sim

method

fit.routine

nrep

oldnorm

Details

115

hopping parameter.
number of bootstrap samples for bootstrap analysis
average block size for blocking analysis with tsboot

The type of simulation required to generate the replicate time series. See tsboot
for details.

the type of error analysis to be used. Can be either “uwerr”, “boot”, “all” or
“no”. For “no” (or any other string) no error analysis is performed. This might
be helpful for a first impression and also to test different initial values for the
fitting parameters. The latter is in particular needed for more than one state in
the fit.

The fit routine to be used. Default is “gsl”, which uses the gnu scientific library
“gs]_multifit_fdfsolver” solver to minimise the chisquare. All other values lead
to the usage of R’s optim function. The latter choice might be significantly
slower.

vector (N1, N2, ...) of replica length N1, N2. If missing it is assumed that there
is only one ensemble. If there are two or more replica the parameter skip has
no effect.

If set to “TRUE”, the old online measurement normalisation of “tmLQCD” prior
to version 5.2.0 is used in order to get correct values for the pion decay constant.

The online measurements in the HMC code compute the PP and PA correlation functions summed
over spatial x for all t. We analyse these correlators in different ways:

First, only the PP correlator is analysed and fitted by p? cosh(—m/(t — T/2)) for m and p;.

Second, PP and PA correlators are fitted together with three parameters as Cpp = p? cosh(—m(t —
T/2)) and Cpa =p1p2 cosh(—m(t —T'/2)) in a simultaneous fit. m is then the pseudo scalar mass
and the pcac mass is determined from

D2
mpcAcC = mPSg
1

Finally, the PCAC mass can also be determined computing

_ CPA(t + 1) — CpA(ﬁ — 1)
mpcac(t) = 1Con D)

using the symmetric finite difference operator.

Value

returns an object of class ofit with the following items

fitresult
fitresultpp
t1

t2

result from the fit as returned by optim

Fit result of the PP correlator only

lower bound for the fitrange in time (t1,t2). Counting starts with 0.
upper bound for the fitrange in time (t1,t2). Counting starts with 0.

116

overview_plot_raw_cf

N number of measurements found in the data

Time Time extent found in the data

fitdata data.frame containing the time values used in the fit, the averaged correlator
and its error and the value of Chi for each time value

uwerrresultmps the result of the time series analysis for the lowest mass as carried out by uwerr

uwerrresultmpcac
the result of the time series analysis for the PCAC mass carried out by uwerr,
see details

effmass effective masses in the pion channel

matrix.size

boot

tsboot

method
fit.routine
nrep

dpaopp

Author(s)

size of the data matrix, copied from input

object returned by the call to boot if method was set correspodingly. Otherwise
NULL.

object returned by the call to tsboot if method was set correspodingly. Other-
wise NULL.

error analysis method as copied from input
fit.routine as copied from input
nrep as copied from input

data.frame containing the pcac masses computed not with a fit, but with the
derivative method for all time values in between t1 and t2

Carsten Urbach, <curbach@gmx.de>

See Also

readcmicor, uwerr,

overview_plot_raw_cf create convenient overview plots for a raw_cf object

Description

create convenient overview plots for a raw_cf object

Usage

overview_plot_raw_cf(cf, grid, reim = "real”, reim_same = FALSE,
relerr = FALSE, tauint = FALSE, value_logplot = TRUE,

value_factor

= c(1), title = "")

parametric.bootstrap

Arguments

cf

grid

reim

reim_same

relerr

tauint

value_logplot

value_factor

title

Value

117

‘raw_cf’ container with data and meta-data

Optional, integer vector which satisfies prod(grid) == prod(cf$dim). This is
passed to par via par (mfrow=grid) to produce a grid of plots as defined by the
components of grid.

Vector of strings, one of ’real’, ’imag’ or ’both’. Specified whether the real or
imaginary parts (or both) should be plotted.

Boolean, whether real and imaginary parts should be plotted on the same plot.
If TRUE, then reim must be ’both’. If this is given, the imaginary part as well as
its relative error and per-time-slice integrated autocorreation times

Boolean, whether a plot of the relative error per time slice should be added.

Boolean, whether a plot of the integrated auto-correlation time on each time
slice should be added.

Boolean, whether the plot of the correlator should be on a logarithmic vertical
axis. (does not affect tauint and relerr).

Numeric, either of length "1’ or as long as the number of correlation functions
in cf. The data will be scaled by this factor before plotting.

Character vector, will be passed as the main argument to plotwitherror which in
turn passes it to plot. Can be either of length "1’ or prod(cf$dim)

No return value, only plots are generated.

parametric.bootstrap Parametric bootstrap

Description

Parametric bootstrap

Usage

parametric.bootstrap(boot.R, x, dx, seed)

Arguments

boot.R
X
dx

seed

numeric. Number of bootstrap samples to generate.
numeric vector. Actual values for the data.
numeric vector of the same length as x or missing. Errors of the values.

integer. Seed to use for the random number generation. If it is missing, the seed
will not be set to any particular value. If there was a default value, all results
would be exactly correlated. So if you want reproducability by fixing the seeds,
make sure you choose different seeds for independent variables.

118 parametric.bootstrap.cov

Value

A matrix with as many columns as there are variables in x and as many rows as boot.R.

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap.cov(), parametric.nlsfit.cov(),
parametric.nlsfit(), plot.bootstrapfit(), predict.bootstrapfit(),print.bootstrapfit(),
simple.nlsfit(), summary.bootstrapfit()

Examples

x <-1:3
dx <- 1:3 x 0.1
parametric.bootstrap(5, x, dx)

parametric.bootstrap.cov
Parametric bootstrap with covariance

Description

Parametric bootstrap with covariance

Usage

parametric.bootstrap.cov(boot.R, x, cov, seed)

Arguments
boot.R numeric. Number of bootstrap samples to generate.
X numeric vector. Actual values for the data.
cov numeric matrix, square, length of x or missing. Covariance between the various
variables in the vector x.
seed integer. Seed to use for the random number generation. If it is missing, the seed
will not be set to any particular value. If there was a default value, all results
would be exactly correlated. So if you want reproducability by fixing the seeds,
make sure you choose different seeds for independent variables.
Value

A matrix with as many columns as there are variables in x and as many rows as boot.R.

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap(), parametric.nlsfit.cov(),
parametric.nlsfit(), plot.bootstrapfit(), predict.bootstrapfit(),print.bootstrapfit(),
simple.nlsfit(), summary.bootstrapfit()

parametric.nlsfit 119
Examples
x <- 1:3
cov <- matrix(c(e.1, 0, 0.01,
0, 0.15, 0.02,
0.01, .02, 0.2), nrow = 3)
parametric.bootstrap.cov(5, x, cov)
parametric.nlsfit NLS fit with parametric bootstrap
Description
NLS fit with parametric bootstrap
Usage
parametric.nlsfit(fn, par.guess, boot.R, y, dy, x, dx, lower = rep(x = -Inf,
times = length(par.guess)), upper = rep(x = +Inf, times =
length(par.guess)), ..., bootstrap = TRUE)
Arguments
fn fn(par,x, ...). The (non-linear) function to be fitted to the data. Its first argu-
ment must be the fit parameters named par. The second must be x, the explain-
ing variable. Additional parameters might be passed to the function. Currently
we pass boot.r which is @ for the original data and the ID (1, ...) of the boot-
strap sample otherwise. As more parameters might be added in the future it is
recommended that the fit function accepts . .. as the last parameter to be for-
ward compatible.
par.guess initial guess values for the fit parameters.
boot.R numeric. Number of bootstrap samples to generate.
y the data as a one-dimensional numerical vector to be described by the fit func-
tion.
dy Numeric vector. Errors of the dependent and independent variable, respectively.
These do not need to be specified as they can be computed from the bootstrap
samples. In the case of parametric bootstrap it might would lead to a loss of
information if they were computed from the pseudo-bootstrap samples. They
must not be specified if a covariance matrix is given.
X values of the explaining variable in form of a one-dimensional numerical vector.
dx Numeric vector. Errors of the dependent and independent variable, respectively.

These do not need to be specified as they can be computed from the bootstrap
samples. In the case of parametric bootstrap it might would lead to a loss of
information if they were computed from the pseudo-bootstrap samples. They
must not be specified if a covariance matrix is given.

120 parametric.nlsfit.cov

lower Numeric vector of length length(par.guess) of lower bounds on the fit pa-
rameters. If missing, -Inf will be set for all.

upper Numeric vector of length length(par.guess) of upper bounds on the fit pa-
rameters. If missing, +Inf will be set for all.

Additional parameters passed to fn, gr and dfn.

bootstrap Shall the error calculation be performed using boostrap? If not, the errors are
estimated with help of the jacobian (either provided in gr or calculated using the
numDeriv-package).

Value

See simple.nlsfit.

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap.cov(), parametric.bootstrap(),
parametric.nlsfit.cov(), plot.bootstrapfit(), predict.bootstrapfit(), print.bootstrapfit(),
simple.nlsfit(), summary.bootstrapfit()

Examples

Declare some data.

value <- c(0.1, 0.2, 0.3)
dvalue <- c(0.01, 0.01, 0.015)
x <- c(1, 2, 3)

dx <- c(0.1, 0.1, 0.1)

boot.R <- 1500

fn <- function (par, x, ...) par[1] + par[2] * x

fit.result <- parametric.nlsfit(fn, c(1, 1), boot.R, value, dvalue, x, dx)
summary(fit.result)

parametric.nlsfit.cov parametric.nlsfit.cov

Description

NLS fit with parametric bootstrap and covariance

Usage

parametric.nlsfit.cov(fn, par.guess, boot.R, y, x, cov, lower = rep(x = -Inf,
times = length(par.guess)), upper = rep(x = +Inf, times =
length(par.guess)), ..., bootstrap = TRUE, na.rm = FALSE)

pcac 121

Arguments

fn fn(par,x, ...). The (non-linear) function to be fitted to the data. Its first argu-
ment must be the fit parameters named par. The second must be x, the explain-
ing variable. Additional parameters might be passed to the function. Currently
we pass boot.r which is @ for the original data and the ID (1, ...) of the boot-
strap sample otherwise. As more parameters might be added in the future it is
recommended that the fit function accepts . .. as the last parameter to be for-
ward compatible.

par.guess initial guess values for the fit parameters.

boot.R numeric. Number of bootstrap samples to generate.

y the data as a one-dimensional numerical vector to be described by the fit func-
tion.

X values of the explaining variable in form of a one-dimensional numerical vector.

cov numeric matrix, square, length of x or missing. Covariance between the various
variables in the vector x.

lower Numeric vector of length length(par.guess) of lower bounds on the fit pa-
rameters. If missing, -Inf will be set for all.

upper Numeric vector of length length(par.guess) of upper bounds on the fit pa-
rameters. If missing, +Inf will be set for all.
Additional parameters passed to fn, gr and dfn.

bootstrap boolean. If TRUE, bootstrap is used.

na.rm logical. If set to true, NAs in y and dy will be ignored. If x-errors are taken
into account, NAs in x and dx will be ignored, too.

Value

See simple.nlsfit.

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap.cov(), parametric.bootstrap(),
parametric.nlsfit(), plot.bootstrapfit(), predict.bootstrapfit(),print.bootstrapfit(),
simple.nlsfit(), summary.bootstrapfit()

pcac Computes the pcac mass

Description

Computes the pcac mass from the PP and the AP (PA) correlators and estimates the errors using the
gamma method

122 pcacfit

Usage

pcac(psfilename, apfilename, pafilename, from = 3, to = 3, fit = F,
skip = @, plotit = F, S =1.5)

Arguments
psfilename filename of the file from which to read the PP correlator. It is supposed to be in
GWC code format. mandatory.
apfilename filename of the file from which to read the AP correlator. It is supposed to be in
GWC code format. Either PA or AP correlator (or both) must be given. If both
are given, both are used by averaging.
pafilename filename of the file from which to read the PA correlator. It is supposed to be in
GWC code format. Either PA or AP correlator (or both) must be given. If both
are given, both are used by averaging.
from the effective mass is computed starting with t=from
to the effective mass is computed ending with t=to
fit logical. if TRUE a fit is performed to all t-values to determine the pcac mass.
skip no of measurements to skip at the beginning of the file
plotit logical. if TRUE a plot is drawn.
S passed to uwerr, see documentation of uwerr.
Details

the symmetric difference operator is used.

Value

returns a data.frame with the results. The object is also of class massfit which can be plotted using
the generic function plot.

Author(s)

Carsten Urbach, <carsten.urbach@liverpool.ac.uk>

pcacfit pcacfit

Description

Computes the average PCAC mass

Usage

pcacfit(data, from, to, T2, pa = FALSE)

pcModel 123

Arguments
data "Effectivemasses‘ from correlators
from initial value of fit range
to final value of fit range
T2 Time extent
pa Boolean.
Value

Single numeric value, the mass.

pcModel Principal correlator two state model.

Description

Principal correlator two state model.

Usage

pcModel (par, t, Time, deltal = 1, reference_time)

Arguments
par Numeric vector: Fit parameters of the model. In an object of type matrixfit,
this should be located at $opt.res$par.
t Numeric vector: Time of interest.
Time Numeric: Time extent of the lattice.
deltarl dummy parameter for compatibility

reference_time Numeric: GEVP reference time value in physical time convention

Value

Returns a numeric vector with the same length as the input vector t containing the model evaluation
for these t-values.

See Also

matrixfit

124 plot.averx

plaq.sample Sample plaquette time series

Description

A time series of so-called plaquette values generated by a Markov Chain MC process using the
Hybrid Monte-Carlo algorithm. Plaquettes are the smallest possible closed loops which can be
build in lattice QCD in discretised Euclidean space time.

Format

The format is: num 0.583 0.582 0.582 0.582 0.582 ...

Examples

data(plag.sample)
plot(x=c(1:1length(plaq.sample)), y=plaq.sample, type="1", xlab="t", ylab="<P>")

plot.averx Plots averx data

Description

Plots averx data

Usage
S3 method for class 'averx'
plot(x, ...)
Arguments
X averx object
ignored
Value

Returns the plotted data in from of a data.frame with named columns t (the time index), averx the
values of average x and daverx the statistical error estimate.

plot.bootstrapfit 125

plot.bootstrapfit Plot a bootstrap NLS fit

Description

Plot a bootstrap NLS fit

Usage

S3 method for class 'bootstrapfit'

plot(x, ..., col.line = "black”, col.band = "gray”,
opacity.band = 0.65, 1ty = c(1), 1lwd = c(1), supports = 1000,
plot.range, error = x$error.function, ribbon.on.top = TRUE)

Arguments
X object returned by bootstrap.nlsfit
Additional parameters passed to the plotwitherror function.
col.line line colour.
col.band error band colour.

opacity.band error band opacity.

1ty line type of fitted curve.

lwd line width for fitted curve.

supports number of supporting points for plotting the function.

plot.range vector with two elements c(min,max) defining the range in which fitline and

errorband are plotted. Default is the range of the data.

error Function to compute the standard error in resampling schemes. Default is sd for
bootstrap. For other resampling schemes this might need to be changed.

ribbon.on.top Logical, controls whether the ribbon should be in front of the data points. This
is recommended when there are very many data points and a highly constrained
model.

Value

No return value.

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap.cov(), parametric.bootstrap(),
parametric.nlsfit.cov(), parametric.nlsfit(), predict.bootstrapfit(), print.bootstrapfit(),
simple.nlsfit(), summary.bootstrapfit()

126 plot.cfit

plot.cf Plot a correlation function

Description

Plot a correlation function

Usage
S3 method for class 'cf'
plot(x, neg.vec = rep(1, times = length(cf$cf@)), rep = FALSE, ...)
Arguments
X cf_boot object
neg.vec Numeric vector of length cf$cf@. This allows switching the sign for certain

time slices or observables such that displaying in log-scale is sensible.
rep See plotwitherror.

Graphical parameter to be passed on to plotwitherror

Value

Invisibly returns a data.frame with named columns t containing the (physical) t-values, CF the mean
values of the correlation function and Err its standard error.

plot.cfit plot.clfit

Description

Generic function to plot an object of type c1fit

Usage
S3 method for class 'cfit'
plot(x, ...)
Arguments
X Object of type c1fit
Generic graphical parameter to be passed on to plotwitherror
Value

No return value, only plots are generated.

plot.coshfit

127

plot.coshfit Plot a cosh-fit

Description

Plot a cosh-fit

Usage

S3 method for class 'coshfit'

plot(x, col.fitline = "black”, plot.mass = TRUE, plot.corr = FALSE,

Arguments
X An object generated by fit.cosh.
col.fitline Color in which the fit is visualized.

plot.mass, plot.corr

.2

The plot can show the fitted correlator (plot. corr) as well as the corresponding

effective mass (plot.mass, if fitted with effMass).

graphical parameters to be passed on to plotwitherror

Value

No return value.

plot.effectivemass plot.effectivemass

Description

plot.effectivemass

Usage
S3 method for class 'effectivemass'
plot(x, ..., ref.value, col, col.fitline)
Arguments
X Object of class effectivemass

Graphical parameters to be passed on to plotwitherror

ref.value Numeric. A reference value to be plotted as a horizontal line

col String. Colour of the data points.
col.fitline String. Colour of the fitted line.

128

Value

No return value.

plot.gevp.amplitude

plot.effmass plot.effmass

Description

plot.effmass

Usage
S3 method for class 'effmass'
plot(x, ..., 11, 1f, ff)
Arguments
X Object of class effmass

Graphical parameters to be passed on.

11 local-local effective mass object

1f local-fuzzed effective mass object

ff fuzzed-fuzzed effective mass object
Value

No value returned, only plots are generated.

plot.gevp.amplitude plot.gevp.amplitude

Description

plot.gevp.amplitude

Usage

S3 method for class 'gevp.amplitude'

plot(x, xlab = "t”, ylab = pasteo("P[,"”, x$id, ","”, x$op.id, "1"), ...)
Arguments

X Object of type gevp.amplitude.

xlab x axis label

ylab y axis label

Graphical parameters to be passed on.

plot.hadronact

Value

No return value.

129

plot.hadronacf plot.hadronacf

Description

generic function to plot an object of class "myGamma"

Usage
S3 method for class 'hadronacf'
plot(x, ..., col = "black")
Arguments
X Object of type hadronacf generated by computeacf
Generic graphical parameters to be passed on
col String. Color to be used for the data points.
Value

No return value.

plot.massfit plot.massfit

Description

Generic function to plot an object of type massfit

Usage
S3 method for class 'massfit'
plot(x, ..., xlab = "t", ylab = "m")
Arguments
X Object of type massfit
. Generic graphical parameter to be passed on to plotwitherror
x1lab String. Label for x-axis
ylab String. Lable for y-axis
Value

See plotwitherror.

130

plot.matrixfit

plot.matrixfit

Plot a matrixfit

Description

Plot a matrixfit

Usage

S3 method for class 'matrixfit'
plot(x, plot.errorband = FALSE, ylim, xlab = "t/a",

no,n

ylab = "y",
every, ...)

Arguments

X
plot.errorband
ylim

xlab

ylab

do.qgplot
plot.raw

rep

col

every

Value

do.qgplot = TRUE, plot.raw = TRUE, rep = FALSE, col,

an object of class matrixfit

Boolean: whether or not to plot an errorband

Numeric vector: y-limit of the plot

String: label of x-axis

String: label of y-axis

Boolean: whether or not to plot an QQ-plot

Boolean: plot the raw data or multiply out the leading exponetial behaviour
Boolean: whether or not to add to existing plot

String vector: vector of colours for the different correlation functions

Fit only a part of the data points. Indices that are not multiples of every are
skipped. If no value is provided, all points are taken into account.

Graphical parameters to be passed on to plot or plotwitherror.

Returns no value, generated only plots.

See Also

matrixfit

plot.ofit 131

plot.ofit plot.ofit

Description

Generic function to plot an object of type ofit

Usage
S3 method for class 'ofit'
plot(x, ...)

Arguments

X Object of type of it

Generic graphical parameter to be passed on to plotwitherror

Value

See plot.cfit

plot.outputdata Plot Command For Class Ouputdata

Description

Generic plot routine for class “ouputdata”. Currently it plots the plaquette history and the history
of AH

Usage
S3 method for class 'outputdata'
plot(x, skip =0, ...)
Arguments
X object of class “outputdata” obtained from a read with readoutputdata
skip number of trajectories to be skipped in analysis for plaquette and exp(—AH).

additional arguments passed to the generic plot function.

132 plot.pionff

Value

list containing the “data”, an object of class “uwerr” called “plaqg.res” containing the statisical anal-
ysis for the plaquette and a second object of type “uwerr” called “dH.res” with the statisical analysis
for exp(—AH).

The plotted data is return in form of a list with named elements data containing the input data,
plag.res an object returned by uwerrprimary for the plaquette data dn dH. res an object returned by
uwerrprimary for AH.

Author(s)

Carsten Urbach, <curbach@gmx . de>

See Also

readoutputdata, uwerr
Examples

plag <- readoutputdata(paste@(system.file(package="hadron"), "/extdata/output.data”))
plag.plot <- plot(plaq, skip=100)
summary(plaq.plot$plaq.res)

plot.pionff plot.pionff

Description

Generic function to plot an object of type pionff

Usage
S3 method for class 'pionff'
plot(x, ...)
Arguments
X Object of type pionff
Generic graphical parameter to be passed on to plotwitherror
Value

No return value, only plots are generated.

plot.raw_cf 133

plot.raw_cf plot all correlators in raw_cf object

Description

plot all correlators in raw_cf object

Usage

S3 method for class 'raw_cf'

plot(x, ..., reim = "real”, reim_same = FALSE)
Arguments

X Object of class raw_cf with data and meta-data.

Further parameters passed to plotwitherror.

reim Character vector, may contain ‘real’, "imag’ or "both’. Determines whether the
real and/or imaginary parts of the correlation funtions should be plotted.

reim_same Boolean, determines whether the real and imaginary parts, if both are to be
plotted, will be plotted in the same plot.

Value

Invisibly returns the plotdata, see get_plotdata_raw_cf.

plot.uwerr Plot Command For Class UWerr

Description

Plot Command For Class UWerr

Usage

S3 method for class 'uwerr'

plot(x, ..., main = "x", plot.hist = TRUE, index = 1, Lambda = 100)
Arguments

X object of class uwerr

generic parameters, not used here.

main main title of the plots.
plot.hist whether or not to generate a histogram
index index of the observable to plot.

Lambda Cutoff to be used in the error computation for the ACF.

134 plothlinewitherror

Value

produces various plots, including a histogram, the autocorrelationfunction and the integrated auto-
correlation time, all with error bars.

No return value.

Author(s)

Carsten Urbach, <carsten.urbach@liverpool.ac.uk>

See Also

uwerr

Examples

data(plaq.sample)
plag.res <- uwerrprimary(plaq.sample)
plot(plag.res)

plothlinewitherror plothlinewitherror

Description

plot a horizontal line with error band

Usage

plothlinewitherror(m, dp, dm, col = c("red"), x@, x1)

Arguments

m Numeric. Mean value of the line to plot.

dp Numeric. Error up.

dm Numeric. Error down.

col String. Colour.

X0 Numeric. Left value of the range of the horizontal line.

x1 Numeric. Right value of the range of the horizontal line.
Value

No return value, only graphics is generated.

plotwitherror 135

plotwitherror Plot Command For XY Plots With Error Bars

Description

Plot command for XY scatterplots based on plot and points which provides support for multiple,
non-symmetric error bars. Error bars are drawn as vertical or horizontal lines originating from
the point with narrow, perpendicular lines at the end of the error bar (end caps). When multiple
errors are drawn, the width of the perpendicular line increases from the innermost error bar to the
outermost one. Different summation methods for the individual errors are supported.

Usage
plotwitherror(x, y, dy, ylim = NULL, dx, xlim = NULL, mdx, mdy,
errsum.method = "linear.quadrature”, rep = FALSE, col = "black"”, ...)
Arguments
X vector of x coordinates
y vector of y coordinates
dy one of:

* Vector of errors on y coordinates.

* Array, matrix or data frame if multiple error bars are to be drawn, such that
each column refers to one error. The individual errors should be provided
as is, because they are summed internally to draw the final error bars. A
given column can also be provided with O entries, in which case the error
bar will be drawn, but it will have zero length, such that only the end caps
for this error will be visible.

ylim limits for y-axis

dx Same as dy, but for the x coordinate.

xLlim limits for x-axis

mdx Support for non-symmetric error bars. Same as dx, but for errors in the negative

x-direction. Errors should be provided as positive numbers, the correct sign will
be added internally. If not provided, dx is used as a symmetric error.

mdy Same as mdx but for the y coordinate.

errsum.method Determines how the invidual errors should be summed for display purposes.
Valid argument values are:

¢ "linear"

— Individual errors are summed linearly, such that the distance from the
point to the ¢’th error bar, [;, is

i
li: E 6]'
Jj=1

136 plotwitherror

Hence, the third error bar, for example, would be located at
l3 =e1 +ey+e3
while the second error bar is at
lo = e1 + e

 "quadrature"

— Individual errors are summed in quadrature and error bars are drawn at
the fractional position according to the following formula:

lmaa: =

l; = i e?/lmax
j=1

* "linear.quadrature"

— Errors are summed as for "linear", but the total error summed in quadra-
ture is also indicated as an end cap of triple line width

rep If set to TRUE, operate like "replot” in gnuplot. Allows adding points with error
bars to the current plot. Switches the underlying plotting routine from plot to
points.

col colour of plotted data

any graphic options passed over to plot

Value

a plot with error bars is drawn on the current device

Returns for convenience a list with elements x1im and y1lim representing the x- and y-limits chosen
by the routine.

Author(s)

Carsten Urbach, <urbach@hiskp.uni-bonn.de>
Bartosz Kostrzewa, <bartosz.kostrzewa@desy.de>

See Also

plot, points

Examples

Create some random data, set one error to zero.
x <- 1:50
y <- runif(50, 0, 1)

plot_eigenvalue_timeseries 137

dy <- runif(50, 0.1, 0.2)
dy[4] <- @

plotwitherror(x, y, dy)

plot_eigenvalue_timeseries
plot_eigenvalue_timeseries

Description

function to plot timeseries of eigenvlues, including minimum and maximum eigenvalue bands as
found in the monomial_Ox.data files produced by tmLQCD

Usage

plot_eigenvalue_timeseries(dat, stat_range, ylab, plotsize, filelabel,
titletext, pdf.filename, errorband_color = rgh(0.6, 0, 0, 0.6),
debug = FALSE)

Arguments
dat Timeseries to analyse.
stat_range range of statistics to use.
ylab Y-axis label.
plotsize Width and Height of plot.
filelabel String. Label of the file.
titletext Text in the plot title.

pdf.filename String. PDF filename.

errorband_color
String. Colour of the error band.

debug Boolean. Generate debug output.

Value

Returns a list with two named elements mineval and maxeval for the minimal and the maximal
eigenvalue, see plot_timeseries.

138 plot_timeseries

plot_hankel_spectrum plot_hankel_spectrum

Description

produces a scatter plot of the complex — log of the eigenvalues produced by the bootstrap.hankel
method. In addition, produces a histogramm of all real and positive eigenvalues after computing
— log(ev)/dt in the range (0,1) and determines its mode.

Usage
plot_hankel_spectrum(hankel, deltat = 1, id = c(1:hankel$n))

Arguments

hankel object as returned from bootstrap.hankel

deltat Integer. Time shift at which to plot

id Integer vector. Indices of eigenvalues to be plotted. Must be part of c(1:hankel$n).
Value

No return value.

See Also

Other hankel: bootstrap.hankel_summed(), bootstrap.hankel(), gevp.hankel_summed(),
gevp.hankel (), hankel2cf (), hankel2effectivemass()

plot_timeseries plot_timeseries

Description

function to plot timeseries data, a corresponding histogram and an error shading for an error analysis
via uwerr

Usage

plot_timeseries(dat, ylab, plotsize, titletext, hist.by, stat_range = c(1,
length(dat$y)), pdf.filename, name = "", xlab = "$t_\\mathrm{MD}$",
hist.probs = c(@, 1), errorband_color = rgh(0.6, 0, 2, 0.6),
type = "1", uwerr.S = 2, smooth_density = FALSE, periodogram = FALSE,
debug = FALSE, uw.summary = TRUE, ...)

pointswithslantederror 139

Arguments
dat Timeseries to analyse.
ylab Y-axis label.
plotsize Width and Height of plot.
titletext Text in the plot title.
hist.by Numeric. Stepping to compute the histogram breaks.
stat_range Optional integer vector of length 2. Start and end indices of the subset of dat to

be plotted. If left empty, all of dat will be plotted.
pdf.filename String. PDF filename.

name String. Timeseries name.
xlab X-axis label.
hist.probs Optional numeric vector of length 2. Probability extrema to limit the width of

the histogram or smoothed density plots. By default all data is used. Note: this
has not effect on the analysis as a whole or other plots.

errorband_color
String. Colour of the error band.

type String. Plot type, see plot for details.
uwerr.S Numeric. S of the uwerr method to be used.

smooth_density Boolean. Instead of plotting a histogram, use a smoothed density.

periodogram Boolean. Whether to show a periodogram.
debug Boolean. Generate debug output.
uw. summary Boolean. Generate an uwerr summary plot.

Generic graphical parameters to be passed on.

Value

Returns a data.frame with named columns val, dval, tauint, dtauint, Wopt and stringsAsFactors,
See uwelrr.

pointswithslantederror
pointswithslantederror

Description

This function plots points with x- and y-errors visualised as a slanted errorbar. The length of the

error bar represents x- and y-errors added in quadrature. The slope of the error bar is positive of

negative depending on whether the correlation betwenn x and y is positive or negative, respectively.
Usage

pointswithslantederror(x, y, dx, dy, cor, col = "black”, bcol = "black”, ...)

140 predict.bootstrapfit

Arguments
X numeric vector. x-values
y numeric vector. y-values
dx numeric vector. x-standard errors
dy numeric vector. y-standard errors
cor numeric vector. Correlation coefficients between x- and y- errors.
col the color of the points
bcol the color of the slanted error bars
further graphical parameters to be passed on to points
Details

plots data points with slanted error bars

Examples

x <= ¢(1:5)

y <= x*2

dx <- c(@.1, 0.2, 0.2, 0.1, 0.05)

dy <- c(0.05, 0.2, 0.1, 0.2, 0.1)

cor <- c(1, -1, -1, 1, 1)

plot(NA, xlim=range(x), ylim=range(y), xlab="y", ylab="y")
pointswithslantederror(x=x, y=y, dx=dx, dy=dy, cor=cor)

predict.bootstrapfit Predict values for bootstrapfit

Description

Predict values for bootstrapfit

Usage
S3 method for class 'bootstrapfit'
predict(object, x, error = object$error.function, ...)
Arguments
object Object of type bootstrapfit.
X Numeric vector with independent variable.
error Function to compute error from samples.

additional parameters to be passed on to the prediction function.

print.bootstrapfit 141

Value

List with independent variable x, predicted central value val, error estimate err and sample matrix
boot.

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap.cov(), parametric.bootstrap(),
parametric.nlsfit.cov(), parametric.nlsfit(), plot.bootstrapfit(),print.bootstrapfit(),
simple.nlsfit(), summary.bootstrapfit()

print.bootstrapfit Print a bootstrap NLS fit

Description

Print a bootstrap NLS fit

Usage
S3 method for class 'bootstrapfit'
print(x, ..., digits = 2)
Arguments
X object returned by bootstrap.nlsfit

Additional parameters passed to the summary.bootstrapfit function.

digits number of significant digits to print in summary or print.

Value

No return value.

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap.cov(), parametric.bootstrap(),
parametric.nlsfit.cov(), parametric.nlsfit(), plot.bootstrapfit(), predict.bootstrapfit(),
simple.nlsfit(), summary.bootstrapfit()

142

print.effectivemassfit

print.cf print.cf

Description

print.cf

Usage
S3 method for class 'cf'
print(x, ...)

Arguments

X Object of type cf

Generic parameters to pass on.

Value

No return value, only output is produced.

print.effectivemassfit
print.effectivemassfit

Description

print.effectivemassfit

Usage
S3 method for class 'effectivemassfit'
print(x, ..., verbose = FALSE)

Arguments
X Object of class effectivemass

Additional parameters to be passed on.

verbose Boolean. More verbose output.

Value

No return value.

print.ofit 143

print.ofit print.ofit

Description

print.ofit

Usage
S3 method for class 'ofit'
print(x, ...)

Arguments

X Object of type ofit

Generic parameters to pass on.

Value

No return value.

print.raw_cf Print summary of data contained in raw_cf container

Description

Print summary of data contained in raw_cf container

Usage
S3 method for class 'raw_cf'
print(x, ...)
Arguments
X raw_cf container with data and meta-data
ignored
Value

See summary.raw_cf.

144 raw_cf

pscor.sample Sample pseudoscalar correlator

Description

Sample data for a pseudoscalar correlator for time extent Time=48.

Format

list of 2 elements: "t" "ps"

Examples

data("pscor.sample”)

raw_cf Container for raw correlation functions

Description

This function raw_cf () creates containers for raw correlation functions of class raw_cf. This class
is particularly designed to deal with complex and matrix-valued correlation functions emerging in
statistical mechanics and quantum field theory simulations. Arithmetic operations are defined for
this class and utility functions such as is.raw_cf and is_empty.raw_cf.

Usage

raw_cf ()

Value

An object of S3 class raw_cf.

See Also

Other raw_cf constructors: raw_cf_data(), raw_cf_meta()

raw_cf_data 145

raw_cf_data Original data mixin constructor for raw_cf

Description

Original data mixin constructor for raw_cf

Usage

raw_cf_data(cf, data)

Arguments
cf raw_cf object to extend.
data Numeric or complex array, original data for all observables and measurements.
This should have dimensions c(Nmeas,cf$Timecf$nrObscf$nrStypes,cf$dim).
Having the internal dimensions innermost is not as efficient, but it allows differ-
ent transformations to be applied to different observables in the same container
more easily.
Value

An object of S3 class raw_cf with original data mixin added.

See Also

Other raw_cf constructors: raw_cf_meta(), raw_cf ()

raw_cf_meta raw_cf metadata mixin constructor

Description

raw_cf metadata mixin constructor

Usage

raw_cf_meta(cf = raw_cf(), nrObs = 1, Time = NA, nrStypes = 1,
dim = c(1, 1), nts = Time)

146

Arguments

cf
nrobs

Time
nrStypes

dim

nts

Value

raw_cf _to_cf

initial raw_cf object

Integer, number of different observables assembled in the data field of this con-
tainer.

Integer, full time extent.
Integer, number of smearing types.

Integer vector of "internal" dimensions for matrix-valued correlation functions.
For a scalar correlation, this should be specified as c(1,1).

Integer, number of time separations actually stored in the data field.

An object of S3 class raw_cf with metadat mixing added.

See Also

Other raw_cf constructors: raw_cf_data(), raw_cf ()

raw_cf_to_cf

Extract a particular internal component of a 'raw_cf’ into a ’cf’

Description

Extract a particular internal component of a ‘raw_cf” into a "cf’

Usage

raw_cf_to_cf(x, component)

Arguments

X

component

Value

“cf” object

raw_cf’ container with raw_cf data’ and 'raw_cf_meta’

Integer vector of the same length as the internal dimension of the 'raw_cf” spec-
ifying which component should be extracted.

readbinarycf 147

readbinarycf read correlation function from binary files

Description

Reads a correlation function from binary files, including hdf5 formatted files.

Usage

readbinarycf(files, Time, obs = 5, Nop = 1, symmetrise = TRUE,
endian = "little”, op = "aver”, excludelist = c(""), sym = TRUE,

path = "", hdf5format = FALSE, hdf5name, hdf5index = c(1, 2))
Arguments

files list of filenames to be read. Can be created using getorderedfilelist. The
filelist is assumed to be order according to ascending gauge fields.

Time time extent of correlation functions.

obs each file may contain many correlation functions. With ’obs’ one choses which
observable to read in. To be precise, in each file the reading will start at point
Timeobssizeof(complex<double>) and read Nop7Zimesizeof(complex<double>).

Nop number of replicas for the correlator to read in.

symmetrise symmetrise the correlation function or not

endian the endianess of the binary file.

op the N replicas can be either averaged (op="aver") or summed (op="sum").

excludelist files to exclude from reading.

sym if TRUE average C(+t) and C(-t), otherwise C(+t) and -C(-t).

path path to be prepended to every filename.

hdf5format if TRUE, try to read from an hdf5 file.

hdf5name Name of the data set as a string.

hdf5index The data might be an array of size n x Time. hdf5index is used to convert two
columns of the data to a complex valued vector using the first and second index
for real and imaginary part, respectively. If hdf5index has length smaller than
2 the first index is reused.

Details

It is assumend that each file contains at least (obs+N)*Time complex doubles, where Time is the
time extent, obs is the number of the observable to read in and Nop the number of replicas for this
observable. It is assumed that complex is the fastest running index, next time and then obs. The
filelist is assumed to be ordered according to the gauge configuration MC history.

148 readbinarydisc

Value

returns a list with two arrays cf and icf with real and imaginary parts of the correlator, and integers
Time, nrStypes=1 and nrObs=1. Both of the arrays have dimension c(N, (Time/2+1)), where N is
the number of measurements (gauges). Time is the time extent, nrStypes the number of smearing
levels and nrObs the number of operators, both of which are currently fixed to 1.

Author(s)

Carsten Urbach, <curbach@gmx . de>

See Also

readcmidatafiles, readbinarydisc, readcmidisc, readcmicor

Examples

X <- readbinarycf(path=paste@(system.file(package="hadron"), "/extdata/"),
files="C2_bin.dat", Time=64, obs=0)

X

X$cf

readbinarydisc read disconnected loops from binary files

Description

Reads disconnected loops from binary files.

Usage
readbinarydisc(files, Time = 48, obs = 5, endian = "little",
excludelist = c(""), nrSamples = 1, path = "")
Arguments
files list of filenames to be read. Can be created for instance using getorderedfilelist.
The filelist is assumed to be ordered with number of samples running fastest, and
the next to fastest nubmer of gauges.
Time time extent of correlation functions.
obs each file may contain Time*obs correlation functions. With obs one choses
which observable to read in.
endian the endianess of the binary file.
excludelist files to exclude from reading.
nrSamples the number of samples

path path to be prepended to every filename.

readbinarysamples 149

Details

It is assumend that each file contains O*Time complex doubles, where Time is the time extent and
O the number of observables in the file. It is assumed that complex is the fastest running index, next
time and then observables. The different samples are assumend to be in different files. The file list
is assumed to be ordered with number of samples running fastest, and then number of gauges.

Value

returns a list with two arrays cf and icf with real and imaginary parts of the loops, and integers
Time, nrStypes=1, nrSamples and nrObs=1. Both of the arrays have dimension c(Time,N), where
N is the number of measurements (gauges) and Time the time extent, nrStypes the number of
smearing levels and nrObs the number of operators, both of which are currently fixed to 1.

Author(s)

Carsten Urbach, <curbach@gmx . de>

See Also

readcmidatafiles, readbinarycf, readcmidisc, readcmicor

Examples

running toy example

file <- paste@(system.file("extdata”, package = "hadron"), "/C2_pi@.dat")
X <- readbinarydisc(files=file, Time=64, obs=0)

X$cf

more realistic example

Not run: files <- character()

Not run: for(i in seq(600,1744,8))

Not run: files <- c(files, "C2_dis_u_conf"”, sprintf("%.04d", i), ".dat”, sep="")
Not run: cf <- readbinarydisc(files, obs=4, excludelist=c("C2_pi@_conf@632.dat"))

readbinarysamples Read binary correlation function by sample

Description
Read binary correlation functions sample by sample, return as a list of length nosamples where
increasing indices refer to averaging over increasing numbers of samples.

Usage

readbinarysamples(files, Time = 48, nosamples = 2, endian = "little",
excludelist = c(""), sym = TRUE, path = "", ftype = double())

150

Arguments

files

Time
nosamples
endian

excludelist

sym
path
ftype

Value

readcmidisc

character vector. Paths to the file to read. As path is prepended to each element,
one can also just pass the filenames here.

numeric. Time extent.
number of samples
character, either 1ittle or big.

character vector. Elements in files that are specified in excludelist are
skipped. The caller could also just pass setdiff(files,excludelist).

logical. Whether the read data shall be symmetrized in the end.
character. Path that is prefixed to each of the paths given in files.

numeric type. As the data is read in binary this type has to match exactly the
one in the file.

Returns a list of cf objects.

readcmidisc

reads disconnected loops in cmi format

Description

reads disconnected loops in cmi (Chris Michael) format from a list of files.

Usage

readcmidisc(files, obs = 9, ind.vec = c(2, 3, 4, 5, 6, 7, 8),
excludelist = c(""), skip = @, L, colClasses = c("integer"”, "integer”,
"integer"”, "integer", "numeric”, "numeric”, "numeric”, "numeric"),

debug = FALSE)

Arguments

files
obs

ind.vec

excludelist
skip

L
colClasses

debug

list of filenames to be read. Can be created using getorderedfilelist.
index of operator to parse from files

vector containing the index (column in file) of obs, t, samples, Re(local), Im(local,
Re(smeared), Im(smeared).

files to exclude from reading.

lines to skip at beginning of each file.

the spatial lattice extent, set to Time/2 if missing.
The column data type classes, the read. table.

setting debug to TRUE makes the routine more verbose by spilling out separate
filenames.

readcmifiles 151

Value

returns a list with four arrays cf, icf scf and sicf containing real and imaginary parts of the
local and smeared loops, respectively, and integers Time, nrStypes=2, nrSamples and nrObs=1.
The four arrays have dimension c(Time,S,N), where S is the nubmer of samples, Time is the
time extent and N is the number of measurements (gauges). Time is the time extent, nrStypes the
number of smearing levels and nrObs the number of operators, which are currently fixed to 1 and
2, respectively. nrSamples is the number of samples.

Note that the arrays are normalised by 1/sqrt(L*2).

The routine expects that all files have identical content. Otherwise the routine will stop.

Author(s)

Carsten Urbach, <curbach@gmx . de>

See Also

readcmidatafiles, readbinarycf, readbinarydisc, readcmicor
Examples

a running toy example

hpath <- system.file(package="hadron")

files <- paste@(hpath, "/extdata/newdisc.0.1373.0.006.kov4.10")
X <- readcmidisc(files=files)

X

a more realistic example

Not run: v4files <- character()

Not run: for(i in seq(600,1744,8))

Not run: v4files <-

Not run: c(v4files, paste(”disc.0.163265.0.006.kov4.", sprintf("%.04d", i), sep=""))
Not run: véddata <- readcmidisc(v4files)

readcmifiles Read Single Data Files in Chris Michael Format

Description

reads data from single files in Chris Michael format

Usage

readcmifiles(files, excludelist = c(""), skip, verbose = FALSE, colClasses,
obs = NULL, obs.index, avg = 1, stride = 1)

152 readcmifiles

Arguments
files list of filenames to be read. Can be created using getorderedfilelist.
excludelist files to exclude from reading.
skip Number of lines to be skipped at the beginning of each file
verbose Increases verbosity of the function.
colClasses The column data type classes, the read. table.
obs To reduce memory consumption it is possible to extract only one of the obser-
vales. The column in which to match obs is to be given with obs. index. This
will only be affective if obs is not NULL.
obs.index The column in which to match obs is to be given with obs. index.
avg Integer. Average over successive number samples
stride Integer. Read only subset of files with corresponding stride.
Details

These functions reads data from single data files. It is assumed that every file has the same number
of columns.

The cmi (Chris Michael) format for connected correlators comprises 6 colums per file: 1) the ob-
servable type number (itype); 2) the operator type number (iobs); 3) the time difference from source
going from 0 to T'ime/2 for each operator type; 4) ¢; correlator value at time value forward in time;
5) co correlator value at time value backward in time; 6) number of gauge configuration.

There are scripts shipped with the package converting the output written into seperate files for each
gauge configuration into the expected format. They are called puttogether.sh and puttogether_reverse. sh
which will sort with increasing and with decreasing gauge configuration number, respectively.

Note, that the normalisation of correlators needs multiplication by factor of 0.5 (and possible (2)?
and L3 factors dependent on your conventions).

The values of itype run from 1 to the total number of gamma matrix combinations available. iobs
equals 1 for local-local correlators, 3 for local-smeared, 5 for smeared-local and 7 for smeared-
smeared

For charged mesons the order of gamma-matrix combinations is as follows:

order PP PA AP AA 44 P4 4P A4 4A forpionlike P =75 A = Y4754 =
order 44 VV AA 4V V4 4A A4 VA AV for rtho-al like 4 = y;74 V = v A = viys
order BB SS - total 20 v;v4v5 S = 1

itype=21 is conserved vector current at sink, 75 at source

For neutral mesons the order of gamma-matrix combinations is as follows:

order PP PA AP AA TI PI IP AT IA for pion like P =5 A =v475 [=1

order 44 VV BB 4V V4 4B B4 VB BV for rho-bl like 4 = v;v4 V = v; B = vivas
order XX AA - total 20 for a0-X like A = v;v5 X = 4

For loops (disconnected contributions to neutral mesons) the convention is as follows: files are
assumed to have eight columns with gauge, gamma, t, sample, ReTL, ImTL, ReTF, ImTF, where
gamma is 1 to 16 as list of (hermitian) gamma matrices: orderg 5g 1 g 2g 3

-ig 4*g Sglg2g3

-ig S*ig S5g 1g 2g 3iel,.

readgradflow 153

-ig 5g 4-ig 5g 1g 2g 3ieg 4, g _Srow?2
(soPis1; A4is5;Sis9; A_iis 10,11,12 etc)
t is t-value of trace (here spatial momentum is zero) sample is sample number 1,...24 (or 96) ReTL

is real part of trace at time t, with gamma combination given and Local operator (F is Fuzzed ==
non-local) operator).

Normalisation is trace M~-1 with M=1+...

To make a disconnected correlator, one combines these traces for different t (and different sam-
ple number) as a product. Note only Re Gamma=1 and Im Gamma=gamma_5 have VEV’s, see
computeDisc

Value

readcmicor returns an object of class cmicor, read from a single file.

readcmidatafiles returns an object of class cmicor, which is an rbind of all data. frames read
from the single files in the filelist.

readcmiloopfiles returns an object of class cmiloop, which is an rbind of all data. frames read
from the single files in the filelist.

Author(s)

Carsten Urbach, <curbach@gmx.de>

See Also

getorderedfilelist, extract.obs, readcmidisc

Examples

a running toy example
files <- paste@(system.file(package="hadron"), "/extdata/outprcvn.dddd.00.0000")
X <- readcmifiles(files, skip=0,

colClasses=c("integer”, "integer"”,"integer"”,6"

non

numeric”,"numeric"))
X

a more realistic example
Not run: filelist <- getorderedfilelist("ouptrc”, last.digits=3, ending=".dat")
Not run: cmicor <- readcmidatafiles(filelist, skip=1)

readgradflow Read Gradient Flow Output Files in tmLQCD format

Description

given a pathname, reads all gradient flow output files in that directory

154 readgradflow
Usage
readgradflow(path, skip = @, basename = "gradflow", col.names)
Arguments
path the path into which the function should descend
skip number of measurements to skip.
basename basename of the files to be read.
col.names column names of the columns in the files to be read. If not given it will be
infered from the files, if possible.
Details

This function reads all tmLQCD gradient flow files in the given path and returns a data frame which
concatenates them all.

The single files are expected to be in the tmL.QCD format which consists of a header with the column
names "traj t P Eplaq Esym tsqEplaq tsqEsym Wsym" and the measurement for each flow time in

rows.

Value

The columns can be ordered arbitrarily as long as the header and the data are consistent.

The function returns a data frame ordered first by the flow time and then by the the trajectory number
(so the trajectory number is the index which runs fastest). The data frame has column names

t - flow time

traj - trajectory number

P - plaquette expectation value (at flow time t)

Eplaq - energy density from plaquette definition (at flow time t)
Esym - energy density from clover definition (at flow time t)
tsqEplaq - flow time squared multiplied by plaquette energy density
tsqEsym - flow time squared multiplied by clover energy density
Wsym - BMW "w(t)’ observable

Author(s)

Bartosz Kostrzewa, <bartosz.kostrzewa@desy.de>

Examples

path

<- system.file("extdata/", package="hadron")

raw.gf <- readgradflow(path)

readhlcor 155

readhlcor readhlcor

Description

readhlcor

Usage

readhlcor(filename)

Arguments

filename String. Filename of the heavy light correlator data file. The file is expected to

have nine columns, the first four integer, the second four numeric and the last
integer valued again.

Value

Invisibly returns a data.frame object containing the file content.

readnissatextcf reader for Nissa text format correlation functions

Description

reader for Nissa text format correlation functions

Usage

readnissatextcf(file_basenames_to_read, smear_combs_to_read, Time,
combs_to_read, nts = Time, sym.vec = c(1), symmetrise = FALSE)

Arguments
file_basenames_to_read

Character vector of file names without the smearing combination suffixes (such
as ’II’, ’Is’, ’sI’, ’ss”) which will be added in the reading routine accordign to

what was passed via smear_combs_to_read. An example would be ’0001/mes_contr_2pts’,
not the lack of the smearing suffix.

smear_combs_to_read

Character vector containing the smearing cominations that are to be read. These
will be attached to the file_basenames_to_read in the reading routine.

Time Integer, time extent of the lattice.

156

combs_to_read

readnissatextcf

Data frame containing the indices of the masses and r-paramter combinations to
be read as well as the name of the spin combination. For a two-point function
using the second and third mass (0-indexed), the (+"dag,+) r-combination and
the pseudoscalar-pseudoscalar spin combination would look as follows:

readoutputdata 157

ml_idx m2_idx rl_idx r2_idx spin_comb

1 2 0 0 "P5P5"
nts Integer, number of time slices to be read from the correlator files.
sym.vec Integer or numeric vector. Specifies whether the correlator at the given posi-

tion is symmetric (+1.0) or anti-symmetric (-1.0) under time reflection. This is
passed to symmetrise.cf. This should be of sufficient length to cover all corre-
lators that are going to be read (one number per row of combs_to_read and per
entry of smear_combs_to_read)

symmetrise Boolean, specifies whether averaging over backward and forward correlators
should be done after the correlator has been read in.

Value

Returns an object of class cf.

readoutputdata Read Data In output.data Format of tmLQCD

Description

reads data from an output.data file written by tmLQCD

Usage

readoutputdata(filename)

Arguments

filename filename of the data file

Details

The data can be plotted directly using “plot”.

Value

returns a data frame of class “outputdata” containing the data.

Returns an object of class outputdata derived from a data.frame as generated by read.table applied
to the input file.

Author(s)

Carsten Urbach <curbach@gmx . de>

158

Examples

readtextcf

plag <- readoutputdata(paste@(system.file(package="hadron"), "/extdata/output.data”))

plot(plaq)

readtextcf

Read correlator data from single file

Description

Reads arbitrary number of samples for a complex correlation function from a text file.

Usage

readtextcf(file, Time = 48, sym = TRUE, path = "", skip = 1,

check.t =

avg = 1, Nmin

Arguments

file
Time

sym

path

skip

check.t

ind.vector

symmetrise

stride

avg

Nmin

autotruncate

0, ind.vector = c(2, 3), symmetrise = TRUE, stride = 1,

= 4, autotruncate = TRUE)

filename of file to read from.
time extent of the correlation function

if TRUE average C(+t) and C(-t), otherwise C(+t) and -C(-t). Averaging can be
switched off using the symmetrise option.

the path to the files.
number of lines to skip at beginning of file

if set to an integer value larger than zero the function will assume that in the
corresponding column of the file the Euclidean time is counted and it will check
whether the maximum in this column is identical to Time-1.

index vector of length 2 with the indices of real and imaginary values of corre-
lator, respectivley.

if set to TRUE, the correlation function will be averaged for t and Time-t, with
the sign depending on the value of sym. Note that currently the correlator with
t-values larger than Time/2 will be discarded.

Integer. Read only subset of files with corresponding stride.
Integer. Average over successive number samples

Integer. Minimal number of measurements that must remain after sparsification
and averaging. Default equals to 4.

Boolean. Whether to autotruncate or not

removeTemporal.cf 159

Value

returns a list with two arrays cf and icf with real and imaginary parts of the correlator, and integers
Time, nrStypes=1 and nrObs=1. Both of the arrays have dimension c(N, (Time/2+1)), where N is
the number of measurements (gauges). Time is the time extent, nrStypes the number of smearing
levels and nrObs the number of operators, both of which are currently fixed to 1.

Author(s)

Carsten Urbach, <curbach@gmx.de>

See Also

readcmidatafiles, readbinarydisc, readcmidisc, readcmicor, readbinarycf

removeTemporal.cf Remove Thermal States by Weighting and Shifting

Description

Remove Thermal States by Weighting and Shifting

Usage

removeTemporal.cf(cf, single.cf1, single.cf2, pl1 = c(0, 0, @), p2 = c(0, O,
@), L, lat.disp = TRUE, weight.cosh = FALSE)

Arguments

cf Object of type cf

single.cf1 Object of type cf

single.cf2 Object of type cf

pl Numeric vector. Spatial momentum of first state

p2 Numeric vector. Spatial momentum of second state

L Integer. Spatial lattice extent.

lat.disp Boolean. Use lattice dispersion relation instead of continuum one

weight.cosh Boolean. Use cosh functional form in the weighting procedure
Value

weighted and shifted correlation function as a cf object.

160 resample_hankel

resample_hankel Resample bootstrap samples in Hankel effmass

Description

The bootstrap distribution in the Hankel effective mass can be quite broad due to outliers and long
tails. These screw with proper error estimation. Therefore it can be useful to trim these tails.
Just trimming a bootstrap distribution would lead to less samples, therefore we do a parametric
resampling.

Usage

resample_hankel (hankel_effmass, distance = 5)

Arguments

hankel_effmass Hankel effective mass from hankel2effmass.

distance Numeric, threshold for marking outliers.

Details

The central values are also inferred from the distribution because they often are outliers themselves.
The new central value is the middle between the upper and lower quantile, making the resulting
distribution symmetric.

Half the distance between the quantiles is taken to be the error, therefore the quantiles are chosen at
16 and 84 percent to match the standard deviation. All points that are more than “distance” errors
away from the new central value are taken to be outliers.

Value

The Hankel effmass object is returned with the same fields, the numbers have been changed.
Additionally there are the followilng fields:
* cov_full contains the full covariance matrix as determined from all the data. This will be
skewed by the outliers.
e finite_count gives the number of non-outliers per time slice.

* complete_count gives the numbers of complete cases if all outliers are taken out. This num-
ber is often zero because the late time slices contain lots of outliers due to the noise.

* cov_3sigma_pairwise is the covariance matrix using only the non-outliers and removing
NAs in a pairwise fashion, using the maximum of the data. This is the covariance matrix that
is used for the resampling.

In case that no time slices had a finite error estimate, this function returns just NA.

resampling_is_compatible 161

resampling_is_compatible
Checks whether the resampling of two cf objects is compatible

Description

Checks whether the resampling of two cf objects is compatible

Usage

resampling_is_compatible(cf1, cf2)

Arguments
cf1 cf object with cf_boot
cf2 cf object with cf_boot
Details

Checks whether operations such as addition can be performed on the resampling samples of cf1
and cf2. In addition to all meta parameters, the dimensions of the resampling sample arrays must
be identical.

Value

List of named booleans for each of the checked conditions with elements boot, boot.R, boot.1,
sim, endcorr, resampling_method, boot_dim, icf and, optionally iboot_dim (if both cf1 and
cf2 contain imaginary parts).

resampling_is_concatenable
Checks whether the resampling of two cf objects is concatenable

Description

Checks whether the resampling of two cf objects is concatenable

Usage

resampling_is_concatenable(cf1, cf2)

Arguments

cf1 cf object with cf_boot
cf2 cf object with cf_boot

162 restore_seed

Details

In contrast to resampling_is_compatible, this function checks if the resampling samples are con-
catenable on the horizontal axis. In addition to checking all meta parameters, the number of rows
in the resampling arrays must be identical but the number of columns may differ.

Value

List of named booleans for each of the checked conditions with elements boot, boot.R, boot.1,
sim, endcorr, resampling_method, boot_nrow, icf and, optionally iboot_nrow (if both cf1 and
cf2 contain imaginary parts).

residual_plot residual_plot

Description

generic residual_plot method

Usage
residual_plot(x, ...)
Arguments
X the object to plot
additional parameters to be passed on to specialised functions
Value

No return value.

restore_seed Restore random number generator state

Description

Restore random number generator state

Usage

restore_seed(old_seed)

Arguments

old_seed integer. Previous seed that should be restored globally.

samplecf 163

Value

No return value, but the random seed is reset to old_seed.

samplecf Sample cf data

Description

Sample data for a correlation function for a 24 cube times 48 lattice QCD simulation representing
a pion propagation. It is stored in form of an object of class cf, which is derived from list.

Format

The format is: List of 15 $ cf : num 521 533 532 531 561 ... $ icf : num 521 533 532 531
561 ... $ Time : num 48 $ nrStypes : num 1 $ nrObs : num 1 $ boot.samples : logi TRUE $
jackknife.samples: logi FALSE $ symmetrised : logi TRUE $ boot.R : num 1500 $ boot.l : num 2
$ seed : num 1442556 $ sim : chr "geom" $ cf0 : num 519 375 274 221 185 ... $ cf.tsboot :List of
11 .$t0: num 519 375274 221 185 $ t: num 521 518 520 519 519 $ R : num 1500 ..$
data : num 521 533 532 531 561 $ seed : int 403 624 -867935848 1692432057 -1535150298
-1438296209 912697060 1838233749 1438572626 999279531 $ statistic:function (x) ..$ sim
: chr "geom" ..$ n.sim : int 1018 ..$ call : language tsboot(tseries = cf$cf, statistic = function(x)
return(apply(x, MARGIN = 2L, FUN = mean)) ...) ..$1: num 2 ..$ endcorr : logi TRUE ..- attr(,
"class")= chr "boot" ..- attr(, "boot_type")= chr "tsboot" $ tsboot.se : num 1.001 0.615 0.572 0.537
0.499 ... - attr(*, "class")= chr "cf" "list"

Examples

data(samplecf)
bootstrapped <- bootstrap.cf(samplecf)
plot(bootstrapped)

shift.cf shift a correlation function by ’places’ time-slices

Description
C’(t) = C(t+places) where places can be positive or negative as required and periodic boundary
conditions in time are assumed

Usage
shift.cf(cf, places)

164 shift.raw_cf

Arguments
cf unsymmetrised correlation function (cf_meta and cf_orig mixins required)
places integer number of time-slices for backward (negative) or forward (positive) shifts
Value

Returns an object of class cf containing the shifted correlation function.

shift.raw_cf shift a raw_cf correlation function by ’places’ time-slices

Description

shift a raw_cf correlation function by "places’ time-slices

Usage

shift.raw_cf(cf, places)

Arguments

cf raw_cf container

places Integer (possibly a vector), number of time slices that the correlation function
should be shifted by. Can be positive or negative. This can either be a sin-
gle value such that a shift by this many time slices will be applied to every
measurement or it can be a vector of values of the same length as the number
of measurements in cf. In that case, a different shift will be applied to each
measurement. This is useful if it is important to preserve the absolute time co-
ordinates of a correlation function until some time-dependent transformations
have been applied.

Details

The correlation funtion C(¢) is shifted in time to produce:
C'(t) = C(t + places)
using periodic boundary conditions in time.

Value

Returns an object of class raw_cf, shifted compared to the input object.

simple.nlsfit

165

simple.nlsfit

NLS fit with without bootstrap

Description

NLS fit with without bootstrap

Usage

simple.nlsfit(fn, par.guess, y, x, errormodel, priors = list(param = c(), p =
c(), psamples = c()), ..., lower = rep(x = -Inf, times =
length(par.guess)), upper = rep(x = +Inf, times = length(par.guess)), dy,
dx, CovMatrix, boot.R = @, gr, dfn, mask, use.minpack.lm = TRUE,

error =

sd, maxiter = 500, success.infos = 1:3,

relative.weights = FALSE, na.rm = FALSE)

Arguments

fn

par.guess
y

X
errormodel

priors

lower
upper

dy

fn(par,x, ...). The (non-linear) function to be fitted to the data. Its first argu-
ment must be the fit parameters named par. The second must be x, the explain-
ing variable. Additional parameters might be passed to the function. Currently
we pass boot.r which is @ for the original data and the ID (1, ...) of the boot-
strap sample otherwise. As more parameters might be added in the future it is
recommended that the fit function accepts ... as the last parameter to be for-
ward compatible.

initial guess values for the fit parameters.

the data as a one-dimensional numerical vector to be described by the fit func-
tion.

values of the explaining variable in form of a one-dimensional numerical vector.
Either "yerror" or "xyerror", depending on the x-values having errors or not.

List possessing the elements param, p and psamples. The vector param in-
cludes the indices of all fit parameters that are to be constrained and the vector
p the corresponding paramater values (e.g. known from a previous fit). The list
element psamples is a matrix of dimensions (boot.R,length(param)) and
contains the corresponding bootstrap samples. If this list is not specified priors
are omitted within the fit.

Additional parameters passed to fn, gr and dfn.

Numeric vector of length length(par.guess) of lower bounds on the fit pa-
rameters. If missing, -Inf will be set for all.

Numeric vector of length length(par.guess) of upper bounds on the fit pa-
rameters. If missing, +Inf will be set for all.

Numeric vector. Errors of the dependent and independent variable, respectively.
These do not need to be specified as they can be computed from the bootstrap
samples. In the case of parametric bootstrap it might would lead to a loss of
information if they were computed from the pseudo-bootstrap samples. They
must not be specified if a covariance matrix is given.

166

dx

CovMatrix

boot.R

gr

dfn

mask

use.minpack.1m

error

maxiter

success.infos

simple.nlsfit

Numeric vector. Errors of the dependent and independent variable, respectively.
These do not need to be specified as they can be computed from the bootstrap
samples. In the case of parametric bootstrap it might would lead to a loss of
information if they were computed from the pseudo-bootstrap samples. They
must not be specified if a covariance matrix is given.

complete variance-covariance matrix of dimensions c(length(y),length(y))
or c(length(y)+length(x),length(y)+length(x)) depending on the error-
model. Pass NULL if the matrix has to be calculated from the bsamples. In that
case, if the number of boostrap samples is small compared to the number of
variables, singular value decomposition with small eigenvalue replacement will
be used (see invertCovMatrix) to attempt a clean inversion. In case a variance-
covariance matrix is passed, the inversion will simply be attempted using solve
on the Cholesky decomposition. Finally, if CovMatrix is missing, an uncorre-
lated fit will be performed.

If larger than 0, boot.R paramtetric bootstrap samples are generated on the fit
results after fit and error calculation are finished. The original data is never
boostraped in this function.

gr(par,x,...). gr=d(fn) / d(par) is a function to return the gradient of fn.
It must return an array with length(x) rows and length(par) columns.

dfn(par,x,...). dfn=d(fn) / dx is the canonical derivative of fn by x and
only relevant if x-errors are provided.

logical or integer index vector. The mask is applied to select the observations
from the data that are to be used in the fit. It is applied to x, y, dx, dy, bsamples
and CovMatrix as applicable.

use the minpack.1m library if available. This is usually faster than the default
optim but somtimes also less stable.

Function that takes a sample vector and returns the error estimate. This is a
parameter in order to support different resampling methods like jackknife.

integer. Maximum number of iterations that can be used in the optimization
process.

integer vector. When using minpack. 1m there is the info in the return value.
Values of 1, 2 or 3 are certain success. A value of 4 could either be a success
or a saddle point. If you want to interpret this as a success as well just pass 1:4
instead of the default 1: 3.

relative.weights

na.rm

Value

are the errors on y (and x) to be interpreted as relative weights instead of absolute
ones? If TRUE, the covariance martix of the fit parameter results is multiplied
by chi”2/dof. This is the default in many fit programs, e.g. gnuplot.

logical. If set to true, NAs in y and dy will be ignored. If x-errors are taken
into account, NAs in x and dx will be ignored, too.

Returns an object of class bootstrapfit, see bootstrap.nlsfit.

store_correl 167

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap.cov(), parametric.bootstrap(),
parametric.nlsfit.cov(), parametric.nlsfit(), plot.bootstrapfit(), predict.bootstrapfit(),
print.bootstrapfit(), summary.bootstrapfit()

Examples

Declare some data.

value <- c(0.1, 0.2, 0.3)
dvalue <- c(0.01, 0.01, 0.015)
x <- c(1, 2, 3)

dx <- c(0.1, 0.1, 0.1)

fn <- function (par, x, ...) par[1] + par[2] * x

fit.result <- simple.nlsfit(fn, c(1, 1), value, x, "xyerrors"”, dy=dvalue, dx=dx)
summary (fit.result)

store_correl Store a "raw_cf’ correlator in an associative array together with a de-
scription The object cf will be stored as an element of cmap under key
out_key in the member obj of cmap. The data frame passed via desc
will be appended as a row to cmap[[out_keyll$map. If out_key
does not exist as a key in cmap, a new element will be created. If it al-
ready exists, addStat.raw_cf is called to add statistics to the existing
raw_cf. Requires the "hash’ package.

Description

Store a ‘raw_cf’ correlator in an associative array together with a description The object cf will
be stored as an element of cmap under key out_key in the member obj of cmap. The data frame
passed via desc will be appended as a row to cmap[[out_key]]$map. If out_key does not exist as
a key in cmap, a new element will be created. If it already exists, addStat.raw_cf is called to add
statistics to the existing raw_cf. Requires the "hash’ package.

Usage

store_correl(cmap, cf, out_key, desc)

Arguments
cmap Object of class hash to act as storage for ‘raw_cf’ correlators.
cf Object of class raw_cf to be stored in cmap.
out_key String, key associated with cf object to be stored in cmap.

desc Single row data frame containing some descriptive parameters for cf.

168 string2error

Value

Since objects of class hash are passed and modified by reference, there is no explicit return value.
Instead, the passed cmap is modified.

string2error string2error

Description

takes a string of the form "x(dx)", where dx are the error digits and returns a numeric vector c(X, y),
where y is dx as a proper numeric value.

Usage

string2error(x)

Arguments

X Input character string.

Details

can be used in combination with apply

Value

a numeric vector with the first element the value and the second the error

Examples
string2error("0.35667(25)")

s <- c("0.35667(25)", "0.667(50)")
apply(array(s, dim=c(1, length(s))), 2, string2error)

subtract.excitedstates 169

subtract.excitedstates
Substract excited states.

Description

Excited states are subtracted from the given correlation function and matching matrixfit. The fit
is usually done on late time slices when the thermal states have decayed so much that they can be
neglected. On the early time slices there are contributions which cannot be explained with a single
cosh (or sinh) function. These are exactly the contributions that we do not want.

Usage

subtract.excitedstates(cf, mfit, from.samples = FALSE)

Arguments
cf Correlation function of class cf.
mfit Fit result of class matrixfit.

from.samples Whether to use existing bootstrap samples. If set to TRUE, the same operation
will be applied to the bootstrap samples. Otherwise the result will not contain
bootstrap samples, even if the input correlation function did.

Details

The correlation function is altered on the time slices which are earlier than the start of the fit interval.
The correlator is replaced by the model function (cosh or sinh or exp) extrapolated until the first
time slice. The deviations of the (bootstrap) samples from the mean value are kept.

Value

A correlation function of class cf which is computed from the old correlation function C'(t) as
M(t)+C(t) — C(t), where M (t) is the fit model and C'(¢) denotes the average over the (bootstrap)
samples. Only time slices earlier than the fit are altered.

summary.bootstrapfit Summarize a bootstrap NLS fit

Description

Summarize a bootstrap NLS fit

Usage

S3 method for class 'bootstrapfit'
summary(object, ..., digits = 2, print.correlation = TRUE)

170 summary.cf

Arguments
object object returned by bootstrap.nlsfit
ignored
digits number of significant digits to print in summary or print.

print.correlation
Logical. Whether to show the correlation between of the fit parameters.

Value

No return value.

See Also

Other NLS fit functions: bootstrap.nlsfit(), parametric.bootstrap.cov(), parametric.bootstrap(),
parametric.nlsfit.cov(), parametric.nlsfit(), plot.bootstrapfit(), predict.bootstrapfit(),
print.bootstrapfit(), simple.nlsfit()

summary.cf summary.cf

Description

summary.cf

Usage

S3 method for class 'cf'
summary (object, ...)

Arguments

object Object of type cf

Generic parameters to pass on.

Value

No return value, only output is produced.

summary.coshfit 171

summary.coshfit Summarize a cosh-fit

Description

Summarize a cosh-fit

Usage
S3 method for class 'coshfit'
summary(object, verbose = FALSE, ...)
Arguments
object An object generated by fit.cosh.
verbose If set to TRUE, all fit results including the correlation matrix of the fit parameters

are showed. Otherwise only the effective mass with error is given.

additional parameters to match generic summary arguments

Value

No return value.

summary.effectivemass summary.effectivemass

Description

summary.effectivemass

Usage
S3 method for class 'effectivemass'
summary (object, ...)
Arguments
object Object of type effectivemass generated by fit.effectivemass

Generic parameters to pass on.

Value

No return value.

172

summary.gevp.amplitude

summary.effectivemassfit
summary.effectivemassfit

Description

summary.effectivemassfit

Usage
S3 method for class 'effectivemassfit'
summary(object, ..., verbose = FALSE)
Arguments
object Object of type cf
Generic parameters to pass on.
verbose More verbose output.
Value

No return value.

summary.gevp.amplitude
summary.gevp.amplitude

Description

summary.gevp.amplitude

Usage
S3 method for class 'gevp.amplitude'
summary (object, ...)

Arguments
object Object of type gevp.amplitude.

Generic Parameters to be passed on.

Value

No return values.

summary.hadronacf 173

summary . hadronacf summary.hadronacf

Description

generic function to summarise an object of class "myGamma"

Usage
S3 method for class 'hadronacf"
summary (object, ...)
Arguments
object Object of type hadronacf generated by computeacf

Generic parameters to be passed on

Value

No return value.

summary.hankel_summed summary.hankel_summed

Description

summary.hankel_summed

Usage
S3 method for class 'hankel_summed'
summary(object, ...)
Arguments
object Object of type "hankel_summed" generated by bootstrap.hankel_summed

Generic parameters to pass on.

Value

Returns invisibly a data frame with columns E, dE (energies and their standard errors) q16 and q84
the 16 and 84 percent quantiles.

174

summary.ofit

summary.matrixfit summary.matrixfit

Description

summary.matrixfit

Usage
S3 method for class 'matrixfit'
summary (object, ...)

Arguments
object Object of type matrixfit

Generic parameters to pass on.

Value

No return value.

summary.ofit summary.ofit

Description

summary.ofit

Usage
S3 method for class 'ofit'
summary (object, ...)

Arguments
object Object of type ofit

Generic parameters to pass on.

Value

No return value.

summary.raw_cf 175

summary.raw_cf Print summary of data contained in raw_cf container

Description

Print summary of data contained in raw_cf container

Usage
S3 method for class 'raw_cf'
summary(object, ..., statistics = FALSE)
Arguments
object raw_cf container with data and meta-data
ignored
statistics Boolean, return central value and error for all components of the 'raw_cf’. This

can be slow so the default is FALSE.

Value

The summary is returned invisibly in form of a data frame.

summary.uwerr summary.uwerr

Description

summary.uwerr

Usage
S3 method for class 'uwerr'
summary(object, ...)

Arguments
object Object of type uwerr

Generic parameters to pass on.

Value

No return value.

176 symmetrise.cf

swap_seed Set seed and store a seed which can be used to reset the random num-
ber generator

Description

Set seed and store a seed which can be used to reset the random number generator

Usage

swap_seed(new_seed)

Arguments
new_seed integer. The new seed that is to be set. In case this is parameter is missing, no
changes are made and the function just returns NULL. This is useful because a
function can just pass on its own seed argument and therefore control whether
the seed shall be fixed or left as-is.
Value

The generated seed is returned if it exists. Otherwise NULL. In case that new_seed was missing,
NULL is returned.

symmetrise.cf Average backward and forward-dominated parts of the correlation
function

Description

When a correlation function is symmetric or anti-symmetric in time, this symmetry can be exploited
by averaging the part from source-sink separation 1 to cf$Time/2 with the part from cf$Time/2+1 to
cf$Time-1 in order to improve statistical precision. This function reduces the number of time slices
in a cf object from cf$Time to cf$Time/2+1 by performing this averaging.

Usage

symmetrise.cf(cf, sym.vec = c(1))

Arguments
cf Object of type cf.
sym.vec Integer or integer vector of length cf$nrObs giving the time-reflection symmetry

(1 for symmetric, -1 for anti-symmetric) of the observable in question.

takeTimeDiff.cf 177

Value

Returns an object of class cf, which is the symmetrised version of the input cf object.

takeTimeDiff.cf Take time difference

Description

Performs the calculation of the shifted correlator C_shift(t) = C(t) - C(t +/- deltat).

Usage

takeTimeDiff.cf(cf, deltat = 1, forwardshift = FALSE)

Arguments
cf Object of type cf, a particle correlation function which shall be shifted.
deltat integer. the time shift

forwardshift boolean. If set to TRUE, the forward finite difference is used instead of the back-
ward one

Value

The shifted correlator as an object of type cf, see cf

tex.catwitherror paste a number with error in tex-ready format

Description

A number with error is converted to a string in tex-ready format like xx(yy) thereby automatically
determining the digit at which the error applies.

Usage

tex.catwitherror(x, dx, digits = 1, with.dollar = TRUE, with.cdot = TRUE, ...)

178

Arguments

X

dx

digits
with.dollar
with.cdot

Details

tikz.finalize

either a single numeric value, or a numeric vector, where the first element is the
value and the second is its error

the error. If supplied, it will be printed as the error and the value is the first
element of x. If dx is missing, the second element of X, if available, is used as
the error. If dx is missing and the length of x is one, only the value is converted
to a string without error.

number of error digits
include the tex dollar in the return string or not
replace the "e" in scientific notation by tex-style "cdot" or not

arguments to be passed to formatC in case of no error, or to format.errors
otherwise

It is strongly recommended to install the errors-package. Otherwise the formatting options are
significantly reduced.

The value of the first element of x is properly rounded to its significant digits determined by the
values of dx or the second element of x (see above) and digits. Then a tex-ready string is returned.

Value

writes a string to standard output

Author(s)

Carsten Urbach, <curbach@gmx.de> and Johann Ostmeyer

Examples

tex.catwitherror(x=0.375567, dx=0.001)
tex.catwitherror(x=c(0.375567, 0.001))

it can be used with apply

x = array(c(0.1187, ©.291, 0.388, 0.011, ©.037, 0.021), dim=c(3,2))
apply(x, 1, tex.catwitherror, digits=2)

tikz.finalize

tikz.finalize

Description

initialize and finalize a tikzDevice and carry out optional post-processing

tikz.init

Usage

179

tikz.finalize(tikzfiles, crop = TRUE, margins = @, clean = TRUE)

Arguments

tikzfiles

crop

margins

clean

Details

a list with members $pdf, $tex, $aux and $log, returned by tikz.init which
must be passed to tikz.finalize

boolean indicating whether pdfcrop should be called on the resulting pdf (ex-
istence of pdfcrop is checked before the command is called), default TRUE

margins argument for pdfcrop command, should be passed as a string consisting
of one or multiple numbers (e.g. "10" or "10.5 7.5 6.2 10"), default O

boolean indicating whether temporary files, e.g. "basename.tex", "basename.aux"
and "basename.log" should be deleted after the pdf has been generated, default
TRUE

Convenience Functions for tikzDevice

Value

No return value, but the output PDF will be created and cropped.

Author(s)

Bartosz Kostrzewa, <bartosz.kostrzewa@desy.de>

See Also

tikz.init

Other tikzutils: tikz.init()

tikz.init

tikz.init

Description

initialize and finalize a tikzDevice and carry out optional post-processing

Usage

tikz.init(basename, standAlone = TRUE, engine, ...)

180 unsymmetrise.ct

Arguments
basename the base of the files which will be used by tikzDevice, e.g. "basename" ->
"basename.pdf”, etc.
standAlone A logical value indicating whether the output file should be suitable for direct
processing by LaTeX. A value of FALSE indicates that the file is intended for
inclusion in a larger document.
engine used to specify the LaTex engine. If missing, the standard engine of tikz is used.
optional arguments which are passed to tikz, see tikzDevice: :tikz
Details

Convenience Functions for tikzDevice

Value
tikz.init returns a list with character vector members, $pdf, $tex, $aux $log containing the cor-
responding filenames

Author(s)

Bartosz Kostrzewa, <bartosz.kostrzewa@desy.de>

See Also

Other tikzutils: tikz.finalize()

Examples

tikzfiles <- tikz.init("plotname”,width=3,height=4)
plot(x=c(1:3), y=c(1:3)*2, xlab="x", ylab="y")
tikz.finalize(tikzfiles=tikzfiles, clean=TRUE)
file.remove("plotname.pdf")

unsymmetrise.cf Unfold a correlation function which has been symmetrised

Description

After a symmetric correlation function has been averaged across the central time slice, it is some-
times useful to explicitly duplicate the resulting average to span all cf$Time time slices. This
function takes a cf with cf$Time/2+1 time slices and turns it into one with cf$Time time slices by
reflecting the correlation function along the cf$Time/2 axis.

Usage

unsymmetrise.cf(cf, sym.vec = c(1))

uwerr 181

Arguments
cf cf object which has been previously symmetrised
sym.vec Integer vector giving the symmetry properties (see symmetrise.cf) of the original
unsymmetrised correlation function. This should be of length cf$nrObs
Value

Returns an object of class cf, which is the unfolded version of the input cf object.

uwerr Time Series Analysis With Gamma Method

Description

Analyse time series data with the so called gamma method

Usage
uwerr(f, data, nrep, S = 1.5, pl = FALSE, ...)
Arguments
f function computing the derived quantity. If not given it is assumed that a primary
quantity is analysed.
f must have the data vector of length Nalpha as the first argument. Further
arguments to f can be passed to uwerr via the . .. argument.
f may return a vector object of numeric type.
data array of data to be analysed. It must be of dimension (N x Nalpha) (i.e. N rows
and Nalpha columns), where N is the total number of measurements and Nalpha
is the number of primary observables
nrep the vector (N1, N2, ...) of replica length N1, N2
S initial guess for the ratio tau/tauint, with tau the exponetial autocorrelation length.
pl logical: if TRUE, the autocorrelation function, the integrated autocorrelation
time as function of the integration cut-off and (for primary quantities) the time
history of the observable are plotted with plot.uwerr
arguments passed to function f.
Value

In case of a primary observable (uwerrprimary), an object of class uwerr with basis class 1list
containing the following objects

value the expectation value of the obsevable

dvalue the error estimate

ddvalue estimate of the error on the error

182 uwerr

tauint estimate of the integrated autocorrelation time for that quantity
dtauint error of tauint
Qval the p-value of the weighted average in case of several replicas

In case of a derived observable (uwerrderived), i.e. if a function is specified, the above objects are
contained in a list called res.

uwerrprimary returns in addition

data input data

whereas uwerrderived returns

datamean (vector of) mean(s) of the (vector of) data

and in addition

fgrad the estimated gradient of f
and
f the input statistics

In both cases the return object containes

Wopt value of optimal cut-off for the Gamma function integration
Wmax maximal value of the cut-off for the Gamma function integration
tauintofW integrated autocorrelation time as a function of the cut-off W
dtauintofW error of the integrated autocorrelation time as a function of the cut-off W
S input parameter S
N total number of observations
R number of replicas
nrep vector of observations per replicum
Gamma normalised autocorrelation function
primary set to 1 for uwerrprimary and O for uwerrderived

Author(s)

Carsten Urbach, <curbach@gmx . de>

References

“Monte Carlo errors with less errors”, Ulli Wolff, Comput.Phys.Commun. 156 (2004) 143-153,
Comput.Phys.Commun. 176 (2007) 383 (erratum), hep-1at/0306017

See Also

plot.uwerr

uwerr.cf 183

Examples

data(plaq.sample)

plag.res <- uwerrprimary(plag.sample)
summary(plag.res)

plot(plag.res)

uwerr.cf uwerr.cf

Description

Gamma method analysis on all time-slices in a "cf” object

Usage

uwerr.cf(cf)

Arguments

cf Object of type cf containing cf_orig

Value

A list with a named element uwcf which contains a data frame with six columns, value, dvalue,
ddvalue, tauint, dtauint corresponding to what is returned by uwerrprimary. The sixth column,
t, is just an index counting the columns in the original cf$cf. If cf contains an imaginary part,
the return value contains another list element, uwicf of the same structure as uwcf. There are as
many rows as there were columns in cf$cf and/or cf$icf. When the call to uwerrprimary fails for

a particular column of cf$cf or cf$icf, the corresponding row of uwcf and/or uwicf will contain
NA for all members.

Examples

data(samplecf)
uwerr.cf(samplecf)

184 weight.cf

uwerr.raw_cf Gamma method analysis on all time-slices in a 'raw_cf’ object

Description

Gamma method analysis on all time-slices in a ‘raw_cf” object

Usage

uwerr.raw_cf(cf)

Arguments

cf Correlation function container of class 'raw_cf’

Value

The return value is a list with elements

value central value

dvalue statistical error

ddvalue error of the statistical error

tauint auto-correlation time estimate

dtauint error of auto-correlation time estimate

Each of these is in turn an array of dimension c(cfnts,cfdim) and hance lacks the first
dimension index compared for cf$data.

weight.cf Weight a correlation function

Description
Weights a correlation function with the given energy difference AF such that the function is first
multiplied with exp(AEt) + cexp(AE - (Time — t).

Usage

weight.cf(cf, energy_difference_val, energy_difference_boot, cosh_factor,
offset = @, inverse = FALSE)

weight_shift_reweight.cf 185

Arguments

cf cf_orig and possibly cf_boot object.
energy_difference_val

numeric. A single energy value AF for the weighting.
energy_difference_boot

numeric vector. Samples for the energy difference value.

cosh_factor integer, either +1 or -1. Determines the sign c in the weight factor.
offset integer. Offset for the time t, needed for the reweighting after a shift.
inverse boolean. If TRUE apply inverse weight.

Value

Returns an object of class cf, see cf.

weight_shift_reweight.cf
Weight-shift-reweight a correlation function

Description

The correlation function is weighted with weight.cf, then shifted, and then weighted again with
the inverse weighting factor.

Usage

weight_shift_reweight.cf(cf, energy_difference_val, energy_difference_boot,
cosh_factor)

Arguments

cf cf_orig and possibly cf_boot object.

energy_difference_val
numeric. A single energy value AFE for the weighting.

energy_difference_boot
numeric vector. Samples for the energy difference value.

cosh_factor integer, either +1 or -1. Determines the sign c in the weight factor.

Value

Returns an object of class cf, see cf.

186

zetazp

zetazp Computes the running of Z_P from scale mu0 to scale mu2

Description

Computes the running of the renomalisation constant Zp from scale i to scale ps in the renoma-
lisation schema RI” for Ny = 2 only. The running is done using perturbation theory up to o * *3
order. The corresponding values of « at the scales yo and p5 are needed as input, see alphas.

Usage
zetazp(zp@, alpha®, alpha2, nl = 3)

Arguments
zp@ initial value of Zp
alphao « at initial scale
alpha2 «s at final scale
nl order in PT, range O to 3
Value

returns the value of Z_P at scale mu2 in the RI’ scheme

Author(s)

Carsten Urbach, <curbach@gmx.de>

See Also
alphas

Examples
al2 <- alphas(mu = 3.0, nl = 3, lam@ = 0.250, Nc = 3, Nf
alo <- alphas(mu = 2.0, nl = 3, lam@ = 0.250, Nc = 3, Nf
zetazp(zp@ = 0.6, alpha@® = ale, alpha2 = al2, nl = 3)

2)
2)

Index

x Dirac
gm, 89
gm_mu, 90

x* GEVP
bootstrap.gevp, 22
computefps, 49
gevp, 84
gevp2amplitude, 87
gevp2cf, 88

+x NLS fit functions
bootstrap.nlsfit, 27
parametric.bootstrap, 117
parametric.bootstrap.cov, 118
parametric.nlsfit, 119
parametric.nlsfit.cov, 120
plot.bootstrapfit, 125
predict.bootstrapfit, 140
print.bootstrapfit, 141
simple.nlsfit, 165
summary.bootstrapfit, 169

* analysis
addConfIndex2cf, 11

* autocorrelationfunction
computeacf, 46

* autocorrelationtime
computeacf, 46

* bootstrap
addConfIndex2cf, 11
bootstrap.cf, 19
extractSingleCor.cf, 72
fit.plateau2cf, 77

x cf constructors
cf, 35
cf_boot, 36
cf_meta, 40
cf_orig, 41
cf_principal_correlator, 42
cf_shifted, 42
cf_smeared, 43

187

* chi

cf_subtracted, 44
cf_weighted, 44

sqr
invertCovMatrix, 97

* correlated

invertCovMatrix, 97

* correlation

addStat.cf, 12

* correlator

addConfIndex2cf, 11
computeDisc, 47
extractSingleCor.cf, 72

* covariance

invertCovMatrix, 97

* datasets

CcA2.09.48_3pi_I3_0_Alu_1_pc, 31
correlatormatrix, 54
loopdata, 102

plaqg.sample, 124
pscor.sample, 144

samplecf, 163

+ dispersion relations

* file

* fit

dispersion_relation, 64

getorderedconfignumbers, 81
getorderedfilelist, 82
readbinarycf, 147
readbinarydisc, 148
readcmidisc, 150
readcmifiles, 151
readgradflow, 153
readoutputdata, 157
readtextcf, 158
tikz.finalize, 178
tikz.init, 179

fit.plateau2cf, 77

* function

addStat.cf, 12

188

* gamma
gm, 89
gm_mu, 90

+ hankel
bootstrap.hankel, 24
bootstrap.hankel_summed, 25
gevp.hankel, 85
gevp.hankel_summed, 86
hankel2cf, 92
hankel2effectivemass, 93
plot_hankel_spectrum, 138

* hplot
plot.outputdata, 131
plot.uwerr, 133

* jackknife
jackknife.cf, 100

+ math
CExp, 34

* matrix
invertCovMatrix, 97

+ methods
plot.outputdata, 131
plot.uwerr, 133

* optimise
computefps, 49
computefps0S, 50

* optimize
matrixfit, 106
onlinemeas, 114
pcac, 121
uwerr, 181

* optim
fit.cosh, 74
fit.effectivemass, 75

* package
hadron, 91

x raw_cf constructors
raw_cf, 144
raw_cf_data, 145
raw_cf_meta, 145

x tikzutils
tikz.finalize, 178
tikz.init, 179

* timeseries
computeacf, 46
jackknife.cf, 100

* ts
bootstrap.analysis, 18

INDEX

computefps, 49
computefps0S, 50
extract.obs, 70
matrixfit, 106
onlinemeas, 114
pcac, 121
uwerr, 181

.cf,7

.raw_cf,7

.cf, 8

.raw_cf, 8

-.cf,9

-.raw_cf, 9

..., 38, 39,55, 56

/.cf (x.cf), 7

/.raw_cf, 10

+ + % %

acf, 47

add.cf, 10, 48
add.raw_cf, 11
addConfIndex2cf, 11
addStat.cf, 12
addStat.raw_cf, 13
alphas, 13, 186
analysis_gradient_flow, 14
analysis_online, 15, 53
apply, 168
avg.cbt.cf, 17

block.raw_cf, 18
boot, 18, 116
bootstrap.analysis, 18, 47
bootstrap.cf, 19, 21-23, 48, 109
bootstrap.effectivemass, 20, 66, 67, 75,
76, 88, 89, 93, 94
bootstrap.gevp, 22, 49, 75, 76, 84, 88, 107,
112
bootstrap.hankel, 24, 26, 86, 92-94, 138
bootstrap.hankel_summed, 25, 25, 86, 92,
93,138,173
bootstrap.meanerror, 26
bootstrap.nlsfit, 27,74, 75,113, 118, 120
121,125, 141, 166, 167, 170

c.cf, 30, 40, 48

c.raw_cf, 30
CA2.09.48_3pi_I3_0_Alu_1_pc, 31
cdh, 31

cdhnew, 33

INDEX

CExp, 34
cf, 12, 17, 24-26, 35, 37,40-45, 72, 77, 92,
109, 114,142,159, 170,172,177,
185
cf_boot, 35, 36, 40-45
cf_key_meson_2pt, 37
cf_key_meson_3pt, 38
cf_meta, 35, 37, 40, 41-45
cf_orig, 35, 37,40, 41, 42-45
cf_principal_correlator, 35, 37, 40, 41,
42,4345
cf_shifted, 35, 37, 4042, 42, 4345
cf_smeared, 35, 37,4043, 43, 44, 45
cf_subtracted, 35, 37, 4043, 44, 45
cf_weighted, 35, 37, 4044, 44
compute.plotlims, 45
computeacf, 19, 46, 129, 173
computeDisc, 47, 153
computefps, 49, 88
computefps0S, 50
concat.cf, 52
concat.raw_cf, 52
conj_raw_cf, 53
construct_onlinemeas_rundir, 16, 53
correlatormatrix, 54
correlators_key_meson_2pt, 54
correlators_key_meson_3pt, 55
cov, 28, 98, 101
create_displ_chains, 57
cvc_local_loop_key, 58
cvc_read_loops, 58
cve_to_raw_cf, 60
cyprus_make_key_scalar, 61
cyprus_make_key_vector, 61
cyprus_read_loops, 62

data.frame, 65, 110, 116, 124, 139, 155
disc_3pt, 63
dispersion_relation, 64

effectivemass, 65
effectivemass.cf, 66

effmass, 68

effmass2, 68
escapelatexSpecials, 69
extract.loop, 69
extract.obs, 70, 82, 153
extract_mass, 72, 73
extract_mass.effectivemassfit, 73

189

extract_mass.matrixfit, 73
extractSingleCor.cf, 72

fit.cosh, 74

fit.effectivemass, 22, 49, 74, 75,75, 87,
88, 171

fit.plateau2cf, 77

foldr1, 78

fs.a0, 78

fs.mpia@, 79

fs.qcotdelta, 80

gl, 81

get_plotdata_raw_cf, 83, 133

getorderedconfignumbers, 81

getorderedfilelist, 82, 153

gevp, 23, 40, 84, 88, 89

gevp.hankel, 25, 26, 85, 86, 92, 93, 138

gevp.hankel_summed, 25, 26, 86, 86, 92, 93,
138

gevp2amplitude, 49, 50, 87

gevp2cf, 76, 87, 88, 88

gm, 89, 90

gm_mu, 89, 90

h5_get_dataset, 90

h5_names_exist, 91

hadron, 72, 91

hankel2cf, 25, 26, 86, 92, 93, 138

hankel2effectivemass, 25, 26, 86, 92, 93,
94, 138

hankeldensity2effectivemass, 94

has_icf, 94

idx_matrix.raw_cf, 95

Inf, 66

int_idx_matrix.raw_cf, 95
invalidate.samples.cf, 96
invcosh, 96
invertCovMatrix, 28, 75, 76,97, 166
is.cf, 35,98

is.raw_cf, 98

is_empty.cf, 99
is_empty.raw_cf, 99

jackknife.cf, 100
jackknife_cov, 101
jackknife_error, 101

list, 132, 150, 181

190

loop_2pt, 103
loop_spin_project, 103, 103
loop_stochav, 103, 104
loop_vev_subtract, 105
loopdata, 102

make_parind, 105

make_parlist, 106

matrix, 97, 98

matrixfit, 49-51, 87-89, 106, 109-112, 123,
130, 174

matrixModel, 109

mom_combinations, 110

mul.cf, 110

mul.raw_cf, 111

NA, 66
new_matrixfit, 111

old_removeTemporal.cf, 113
onlinemeas, 17, 114

optim, 115
overview_plot_raw_cf, 116

parametric.bootstrap, 29, 117, 118, 120
121,125, 141, 167, 170
parametric.bootstrap.cov, 29, 118, 118,
120, 121, 125, 141, 167, 170

parametric.nlsfit, 29, 118,119, 121, 125,
141, 167, 170

parametric.nlsfit.cov, 29, 118, 120, 120,
125,141, 167,170

pcac, 121

pcacfit, 122

pcModel, 123

plaq.sample, 124

plot, 117, 130, 136, 139

plot.averx, 124

plot.bootstrapfit, 29, 118, 120, 121, 125,
141, 167, 170

plot.cf, 126

plot.cfit, 126, 131

plot.coshfit, 127

plot.effectivemass, 127

plot.effmass, 128

plot.gevp.amplitude, 128

plot.hadronacf, 129

plot.massfit, 129

plot.matrixfit, 130

INDEX

plot.ofit, 131

plot.outputdata, 131

plot.pionff, 132

plot.raw_cf, 133

plot.uwerr, 133, 182

plot_eigenvalue_timeseries, 137

plot_hankel_spectrum, 25, 26, 86, 92, 93,
138

plot_timeseries, 137, 138

plothlinewitherror, 134

plotwitherror, 117, 126, 127, 129—-133, 135

points, 136

pointswithslantederror, 139

predict.bootstrapfit, 29, 118, 120, 121,
125,140, 141, 167, 170

print.bootstrapfit, 29, 118, 120, 121, 125,
141,141, 167, 170

print.cf, 142

print.effectivemassfit, 142

print.ofit, 143

print.raw_cf, 143

pscor.sample, 144

raw_cf, 60, 63, 104, 144, 145, 146
raw_cf_data, 144, 145, 146
raw_cf_meta, 144, 145, 145
raw_cf_to_cf, 146

read.table, 157
readbinarycf, 147, 149, 151, 159
readbinarydisc, 48, 148, 148, 151, 159
readbinarysamples, 149
readcmicor, 71, 114, 116, 148, 149, 151, 159
readcmicor (readcmifiles), 151
readcmidatafiles, 71, 82, 148, 149, 151, 159
readcmidatafiles (readcmifiles), 151
readcmidisc, 48, 148, 149, 150, 153, 159
readcmifiles, 151
readcmiloopfiles, 70
readcmiloopfiles (readcmifiles), 151
readgradflow, 153

readhlcor, 155

readnissatextcf, 155
readoutputdata, 132, 157
readtextcf, 158
removeTemporal.cf, 112, 159
resample_hankel, 160
resampling_is_compatible, 161, 162
resampling_is_concatenable, 161
residual_plot, 162

INDEX 191

restore_seed, 162

samplecf, 163
sd, 125
shift.cf, 163
shift.raw_cf, 164
simple.nlsfit, 29, 118, 120, 121, 125, 141,
165, 170
store_correl, 167
string2error, 168
subtract.excitedstates, 169
summary, 171
summary.bootstrapfit, 29, 118, 120, 121,
125,141, 167, 169
summary.cf, 170
summary.coshfit, 171
summary.effectivemass, 171
summary.effectivemassfit, 172
summary.gevp.amplitude, 172
summary . hadronacf, 173
summary . hankel_summed, 173
summary.matrixfit, 174
summary.ofit, 174
summary.raw_cf, 143, 175
summary.uwerr, 175
swap_seed, 176
symmetrise.cf, 176, 181

takeTimeDiff.cf, 112, 177
tex.catwitherror, 177
tikz.finalize, 178, 180
tikz.init, 179, 179
tikzDevice: :tikz, /180
tsboot, 18, 20, 36, 115, 116

uniroot, 66

unsymmetrise.cf, 180

uwerr, 16, 19,47, 65,114, 116, 122, 132, 134,
139, 175, 181

uwerr.cf, 183

uwerr.raw_cf, 184

uwerrderived (uwerr), 181

uwerrprimary, 132, 183

uwerrprimary (uwerr), 181

weight.cf, 184, 185
weight_shift_reweight.cf, 185

zetazp, 14, 186

	*.cf
	*.raw_cf
	+.cf
	+.raw_cf
	-.cf
	-.raw_cf
	/.raw_cf
	add.cf
	add.raw_cf
	addConfIndex2cf
	addStat.cf
	addStat.raw_cf
	alphas
	analysis_gradient_flow
	analysis_online
	avg.cbt.cf
	block.raw_cf
	bootstrap.analysis
	bootstrap.cf
	bootstrap.effectivemass
	bootstrap.gevp
	bootstrap.hankel
	bootstrap.hankel_summed
	bootstrap.meanerror
	bootstrap.nlsfit
	c.cf
	c.raw_cf
	cA2.09.48_3pi_I3_0_A1u_1_pc
	cdh
	cdhnew
	CExp
	cf
	cf_boot
	cf_key_meson_2pt
	cf_key_meson_3pt
	cf_meta
	cf_orig
	cf_principal_correlator
	cf_shifted
	cf_smeared
	cf_subtracted
	cf_weighted
	compute.plotlims
	computeacf
	computeDisc
	computefps
	computefpsOS
	concat.cf
	concat.raw_cf
	conj_raw_cf
	construct_onlinemeas_rundir
	correlatormatrix
	correlators_key_meson_2pt
	correlators_key_meson_3pt
	create_displ_chains
	cvc_local_loop_key
	cvc_read_loops
	cvc_to_raw_cf
	cyprus_make_key_scalar
	cyprus_make_key_vector
	cyprus_read_loops
	disc_3pt
	dispersion_relation
	effectivemass
	effectivemass.cf
	effmass
	effmass2
	escapeLatexSpecials
	extract.loop
	extract.obs
	extractSingleCor.cf
	extract_mass
	extract_mass.effectivemassfit
	extract_mass.matrixfit
	fit.cosh
	fit.effectivemass
	fit.plateau2cf
	foldr1
	fs.a0
	fs.mpia0
	fs.qcotdelta
	g1
	getorderedconfignumbers
	getorderedfilelist
	get_plotdata_raw_cf
	gevp
	gevp.hankel
	gevp.hankel_summed
	gevp2amplitude
	gevp2cf
	gm
	gm_mu
	h5_get_dataset
	h5_names_exist
	hadron
	hankel2cf
	hankel2effectivemass
	hankeldensity2effectivemass
	has_icf
	idx_matrix.raw_cf
	int_idx_matrix.raw_cf
	invalidate.samples.cf
	invcosh
	invertCovMatrix
	is.cf
	is.raw_cf
	is_empty.cf
	is_empty.raw_cf
	jackknife.cf
	jackknife_cov
	jackknife_error
	loopdata
	loop_2pt
	loop_spin_project
	loop_stochav
	loop_vev_subtract
	make_parind
	make_parlist
	matrixfit
	matrixModel
	mom_combinations
	mul.cf
	mul.raw_cf
	new_matrixfit
	old_removeTemporal.cf
	onlinemeas
	overview_plot_raw_cf
	parametric.bootstrap
	parametric.bootstrap.cov
	parametric.nlsfit
	parametric.nlsfit.cov
	pcac
	pcacfit
	pcModel
	plaq.sample
	plot.averx
	plot.bootstrapfit
	plot.cf
	plot.cfit
	plot.coshfit
	plot.effectivemass
	plot.effmass
	plot.gevp.amplitude
	plot.hadronacf
	plot.massfit
	plot.matrixfit
	plot.ofit
	plot.outputdata
	plot.pionff
	plot.raw_cf
	plot.uwerr
	plothlinewitherror
	plotwitherror
	plot_eigenvalue_timeseries
	plot_hankel_spectrum
	plot_timeseries
	pointswithslantederror
	predict.bootstrapfit
	print.bootstrapfit
	print.cf
	print.effectivemassfit
	print.ofit
	print.raw_cf
	pscor.sample
	raw_cf
	raw_cf_data
	raw_cf_meta
	raw_cf_to_cf
	readbinarycf
	readbinarydisc
	readbinarysamples
	readcmidisc
	readcmifiles
	readgradflow
	readhlcor
	readnissatextcf
	readoutputdata
	readtextcf
	removeTemporal.cf
	resample_hankel
	resampling_is_compatible
	resampling_is_concatenable
	residual_plot
	restore_seed
	samplecf
	shift.cf
	shift.raw_cf
	simple.nlsfit
	store_correl
	string2error
	subtract.excitedstates
	summary.bootstrapfit
	summary.cf
	summary.coshfit
	summary.effectivemass
	summary.effectivemassfit
	summary.gevp.amplitude
	summary.hadronacf
	summary.hankel_summed
	summary.matrixfit
	summary.ofit
	summary.raw_cf
	summary.uwerr
	swap_seed
	symmetrise.cf
	takeTimeDiff.cf
	tex.catwitherror
	tikz.finalize
	tikz.init
	unsymmetrise.cf
	uwerr
	uwerr.cf
	uwerr.raw_cf
	weight.cf
	weight_shift_reweight.cf
	zetazp
	Index

