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modeling-package Create a modeling package

Description

create modeling package() will:

� Call usethis::create package() to set up a new R package.

� Call use modeling deps().

� Call use modeling files().

use modeling deps() will:

� Add hardhat, rlang, and stats to Imports

� Add recipes to Suggests

� If roxygen2 is available, use roxygen markdown

use modeling files() will:

� Add a package documentation file

� Generate and populate 3 files in R/:

– {{model}}-constructor.R
– {{model}}-fit.R
– {{model}}-predict.R

Usage

create_modeling_package(path, model, fields = NULL, open = interactive())

use_modeling_deps()

use_modeling_files(model)

Arguments

path A path. If it exists, it is used. If it does not exist, it is created, provided
that the parent path exists.

model A string. The name of the high level modeling function that users will
call. For example, "linear regression". This will be used to populate
the skeleton. Spaces are not allowed.

fields A named list of fields to add to DESCRIPTION, potentially overriding
default values. See usethis::use description() for how you can set
personalized defaults using package options.

open If TRUE, activates the new project:

� If RStudio desktop, the package is opened in a new session.

� If on RStudio server, the current RStudio project is activated.

� Otherwise, the working directory and active project is changed.
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Value

create modeling package() returns the project path invisibly.

use modeling deps() returns invisibly.

use modeling files() return model invisibly.

add intercept column Add an intercept column to data

Description

This function adds an integer column of 1’s to data.

Usage

add_intercept_column(data, name = "(Intercept)")

Arguments

data A data frame or matrix.

name The name for the intercept column. Defaults to "(Intercept)", which is
the same name that stats::lm() uses.

Details

If a column named name already exists in data, then data is returned unchanged and a
warning is issued.

Value

data with an intercept column.

Examples

add_intercept_column(mtcars)

add_intercept_column(mtcars, "intercept")

add_intercept_column(as.matrix(mtcars))
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default formula blueprint

Default formula blueprint

Description

This pages holds the details for the formula preprocessing blueprint. This is the blueprint
used by default from mold() if x is a formula.

Usage

default_formula_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
indicators = "traditional",
composition = "tibble"

)

## S3 method for class 'formula'
mold(formula, data, ..., blueprint = NULL)

Arguments

intercept A logical. Should an intercept be included in the processed data? This in-
formation is used by the process function in the mold and forge function
list.

allow novel levels

A logical. Should novel factor levels be allowed at prediction time? This
information is used by the clean function in the forge function list, and
is passed on to scream().

indicators A single character string. Control how factors are expanded into dummy
variable indicator columns. One of:

� "traditional" - The default. Create dummy variables using the
traditional model.matrix() infrastructure. Generally this creates K
-1 indicator columns for each factor, where K is the number of levels
in that factor.

� "none" - Leave factor variables alone. No expansion is done.

� "one hot" - Create dummy variables using a one-hot encoding ap-
proach that expands unordered factors into all K indicator columns,
rather than K -1.

composition Either ”tibble”, ”matrix”, or ”dgCMatrix” for the format of the processed
predictors. If ”matrix” or ”dgCMatrix” are chosen, all of the predictors
must be numeric after the preprocessing method has been applied; oth-
erwise an error is thrown.

formula A formula specifying the predictors and the outcomes.

data A data frame or matrix containing the outcomes and predictors.

... Not used.

blueprint A preprocessing blueprint. If left as NULL, then a default formula blueprint()
is used.
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Details

While not different from base R, the behavior of expanding factors into dummy variables
when indicators = "traditional" and an intercept is not present is not always intuitive
and should be documented.

� When an intercept is present, factors are expanded into K-1 new columns, where K is
the number of levels in the factor.

� When an intercept is not present, the first factor is expanded into all K columns
(one-hot encoding), and the remaining factors are expanded into K-1 columns. This
behavior ensures that meaningful predictions can be made for the reference level of the
first factor, but is not the exact ”no intercept” model that was requested. Without
this behavior, predictions for the reference level of the first factor would always be
forced to 0 when there is no intercept.

Offsets can be included in the formula method through the use of the inline function
stats::offset(). These are returned as a tibble with 1 column named ".offset" in the
$extras$offset slot of the return value.

Value

For default formula blueprint(), a formula blueprint.

Mold

When mold() is used with the default formula blueprint:

� Predictors

– The RHS of the formula is isolated, and converted to its own 1 sided formula: ˜
RHS.

– Runs stats::model.frame() on the RHS formula and uses data.

– If indicators = "traditional", it then runs stats::model.matrix() on the re-
sult.

– If indicators = "none", factors are removed before model.matrix() is run, and
then added back afterwards. No interactions or inline functions involving factors
are allowed.

– If indicators = "one hot", it then runs stats::model.matrix() on the result
using a contrast function that creates indicator columns for all levels of all factors.

– If any offsets are present from using offset(), then they are extracted with
model offset().

– If intercept = TRUE, adds an intercept column.

– Coerces the result of the above steps to a tibble.

� Outcomes

– The LHS of the formula is isolated, and converted to its own 1 sided formula: ˜
LHS.

– Runs stats::model.frame() on the LHS formula and uses data.

– Coerces the result of the above steps to a tibble.
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Forge

When forge() is used with the default formula blueprint:

� It calls shrink() to trim new data to only the required columns and coerce new data
to a tibble.

� It calls scream() to perform validation on the structure of the columns of new data.

� Predictors

– It runs stats::model.frame() on new data using the stored terms object corre-
sponding to the predictors.

– If, in the original mold() call, indicators = "traditional" was set, it then runs
stats::model.matrix() on the result.

– If, in the original mold() call, indicators = "none" was set, it runs stats::model.matrix()
on the result without the factor columns, and then adds them on afterwards.

– If, in the original mold() call, indicators = "one hot" was set, it runs stats::model.matrix()
on the result with a contrast function that includes indicators for all levels of all
factor columns.

– If any offsets are present from using offset() in the original call to mold(), then
they are extracted with model offset().

– If intercept = TRUE in the original call to mold(), then an intercept column is
added.

– It coerces the result of the above steps to a tibble.

� Outcomes

– It runs stats::model.frame() on new data using the stored terms object corre-
sponding to the outcomes.

– Coerces the result to a tibble.

Differences From Base R

There are a number of differences from base R regarding how formulas are processed by
mold() that require some explanation.

Multivariate outcomes can be specified on the LHS using syntax that is similar to the RHS
(i.e. outcome 1 + outcome 2 ˜ predictors). If any complex calculations are done on the
LHS and they return matrices (like stats::poly()), then those matrices are flattened into
multiple columns of the tibble after the call to model.frame(). While this is possible, it
is not recommended, and if a large amount of preprocessing is required on the outcomes,
then you are better off using a recipes::recipe().

Global variables are not allowed in the formula. An error will be thrown if they are included.
All terms in the formula should come from data. If you need to use inline functions in the
formula, the safest way to do so is to prefix them with their package name, like pkg::fn().
This ensures that the function will always be available at mold() (fit) and forge() (predic-
tion) time. That said, if the package is attached (i.e. with library()), then you should be
able to use the inline function without the prefix.

By default, intercepts are not included in the predictor output from the formula. To
include an intercept, set blueprint = default formula blueprint(intercept = TRUE). The
rationale for this is that many packages either always require or never allow an intercept
(for example, the earth package), and they do a large amount of extra work to keep the
user from supplying one or removing it. This interface standardizes all of that flexibility in
one place.



8 default formula blueprint

Examples

# ---------------------------------------------------------------------------

data("hardhat-example-data")

# ---------------------------------------------------------------------------
# Formula Example

# Call mold() with the training data
processed <- mold(

log(num_1) ˜ num_2 + fac_1,
example_train,
blueprint = default_formula_blueprint(intercept = TRUE)

)

# Then, call forge() with the blueprint and the test data
# to have it preprocess the test data in the same way
forge(example_test, processed$blueprint)

# Use `outcomes = TRUE` to also extract the preprocessed outcome
forge(example_test, processed$blueprint, outcomes = TRUE)

# ---------------------------------------------------------------------------
# Factors without an intercept

# No intercept is added by default
processed <- mold(num_1 ˜ fac_1 + fac_2, example_train)

# So, for factor columns, the first factor is completely expanded into all
# `K` columns (the number of levels), and the subsequent factors are expanded
# into `K - 1` columns.
processed$predictors

# In the above example, `fac_1` is expanded into all three columns,
# `fac_2` is not. This behavior comes from `model.matrix()`, and is somewhat
# known in the R community, but can lead to a model that is difficult to
# interpret since the corresponding p-values are testing wildly different
# hypotheses.

# To get all indicators for all columns (irrespective of the intercept),
# use the `indicators = "one_hot"` option
processed <- mold(

num_1 ˜ fac_1 + fac_2,
example_train,
blueprint = default_formula_blueprint(indicators = "one_hot")

)

processed$predictors

# It is not possible to construct a no-intercept model that expands all
# factors into `K - 1` columns using the formula method. If required, a
# recipe could be used to construct this model.

# ---------------------------------------------------------------------------
# Global variables
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y <- rep(1, times = nrow(example_train))

# In base R, global variables are allowed in a model formula
frame <- model.frame(fac_1 ˜ y + num_2, example_train)
head(frame)

# mold() does not allow them, and throws an error
try(mold(fac_1 ˜ y + num_2, example_train))

# ---------------------------------------------------------------------------
# Dummy variables and interactions

# By default, factor columns are expanded
# and interactions are created, both by
# calling `model.matrix()`. Some models (like
# tree based models) can take factors directly
# but still might want to use the formula method.
# In those cases, set `indicators = "none"` to not
# run `model.matrix()` on factor columns. Interactions
# are still allowed and are run on numeric columns.

bp_no_indicators <- default_formula_blueprint(indicators = "none")

processed <- mold(
˜ fac_1 + num_1:num_2,
example_train,
blueprint = bp_no_indicators

)

processed$predictors

# An informative error is thrown when `indicators = "none"` and
# factors are present in interaction terms or in inline functions
try(mold(num_1 ˜ num_2:fac_1, example_train, blueprint = bp_no_indicators))
try(mold(num_1 ˜ paste0(fac_1), example_train, blueprint = bp_no_indicators))

# ---------------------------------------------------------------------------
# Multivariate outcomes

# Multivariate formulas can be specified easily
processed <- mold(num_1 + log(num_2) ˜ fac_1, example_train)
processed$outcomes

# Inline functions on the LHS are run, but any matrix
# output is flattened (like what happens in `model.matrix()`)
# (essentially this means you don't wind up with columns
# in the tibble that are matrices)
processed <- mold(poly(num_2, degree = 2) ˜ fac_1, example_train)
processed$outcomes

# TRUE
ncol(processed$outcomes) == 2

# Multivariate formulas specified in mold()
# carry over into forge()
forge(example_test, processed$blueprint, outcomes = TRUE)
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# ---------------------------------------------------------------------------
# Offsets

# Offsets are handled specially in base R, so they deserve special
# treatment here as well. You can add offsets using the inline function
# `offset()`
processed <- mold(num_1 ˜ offset(num_2) + fac_1, example_train)

processed$extras$offset

# Multiple offsets can be included, and they get added together
processed <- mold(

num_1 ˜ offset(num_2) + offset(num_3),
example_train

)

identical(
processed$extras$offset$.offset,
example_train$num_2 + example_train$num_3

)

# Forging test data will also require
# and include the offset
forge(example_test, processed$blueprint)

# ---------------------------------------------------------------------------
# Intercept only

# Because `1` and `0` are intercept modifying terms, they are
# not allowed in the formula and are instead controlled by the
# `intercept` argument of the blueprint. To use an intercept
# only formula, you should supply `NULL` on the RHS of the formula.
mold(

˜NULL,
example_train,
blueprint = default_formula_blueprint(intercept = TRUE)

)

# ---------------------------------------------------------------------------
# Matrix output for predictors

# You can change the `composition` of the predictor data set
bp <- default_formula_blueprint(composition = "dgCMatrix")
processed <- mold(log(num_1) ˜ num_2 + fac_1, example_train, blueprint = bp)
class(processed$predictors)

default recipe blueprint

Default recipe blueprint

Description

This pages holds the details for the recipe preprocessing blueprint. This is the blueprint
used by default from mold() if x is a recipe.
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Usage

default_recipe_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
fresh = TRUE,
composition = "tibble"

)

## S3 method for class 'recipe'
mold(x, data, ..., blueprint = NULL)

Arguments

intercept A logical. Should an intercept be included in the processed data? This in-
formation is used by the process function in the mold and forge function
list.

allow novel levels

A logical. Should novel factor levels be allowed at prediction time? This
information is used by the clean function in the forge function list, and
is passed on to scream().

fresh Should already trained operations be re-trained when prep() is called?

composition Either ”tibble”, ”matrix”, or ”dgCMatrix” for the format of the processed
predictors. If ”matrix” or ”dgCMatrix” are chosen, all of the predictors
must be numeric after the preprocessing method has been applied; oth-
erwise an error is thrown.

x An unprepped recipe created from recipes::recipe().

data A data frame or matrix containing the outcomes and predictors.

... Not used.

blueprint A preprocessing blueprint. If left as NULL, then a default recipe blueprint()
is used.

Value

For default recipe blueprint(), a recipe blueprint.

Mold

When mold() is used with the default recipe blueprint:

� It calls recipes::prep() to prep the recipe.

� It calls recipes::juice() to extract the outcomes and predictors. These are returned
as tibbles.

� If intercept = TRUE, adds an intercept column to the predictors.

Forge

When forge() is used with the default recipe blueprint:

� It calls shrink() to trim new data to only the required columns and coerce new data
to a tibble.

� It calls scream() to perform validation on the structure of the columns of new data.
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� It calls recipes::bake() on the new data using the prepped recipe used during train-
ing.

� It adds an intercept column onto new data if intercept = TRUE.

Examples

library(recipes)

# ---------------------------------------------------------------------------
# Setup

train <- iris[1:100, ]
test <- iris[101:150, ]

# ---------------------------------------------------------------------------
# Recipes example

# Create a recipe that logs a predictor
rec <- recipe(Species ˜ Sepal.Length + Sepal.Width, train) %>%

step_log(Sepal.Length)

processed <- mold(rec, train)

# Sepal.Length has been logged
processed$predictors

processed$outcomes

# The underlying blueprint is a prepped recipe
processed$blueprint$recipe

# Call forge() with the blueprint and the test data
# to have it preprocess the test data in the same way
forge(test, processed$blueprint)

# Use `outcomes = TRUE` to also extract the preprocessed outcome!
# This logged the Sepal.Length column of `new_data`
forge(test, processed$blueprint, outcomes = TRUE)

# ---------------------------------------------------------------------------
# With an intercept

# You can add an intercept with `intercept = TRUE`
processed <- mold(rec, train, blueprint = default_recipe_blueprint(intercept = TRUE))

processed$predictors

# But you also could have used a recipe step
rec2 <- step_intercept(rec)

mold(rec2, iris)$predictors

# ---------------------------------------------------------------------------
# Matrix output for predictors

# You can change the `composition` of the predictor data set
bp <- default_recipe_blueprint(composition = "dgCMatrix")
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processed <- mold(rec, train, blueprint = bp)
class(processed$predictors)

# ---------------------------------------------------------------------------
# Non standard roles

# If you have custom recipes roles, they are assumed to be required at
# `bake()` time when passing in `new_data`. This is an assumption that both
# recipes and hardhat makes, meaning that those roles are required at
# `forge()` time as well.
rec_roles <- recipe(train) %>%

update_role(Sepal.Width, new_role = "predictor") %>%
update_role(Species, new_role = "outcome") %>%
update_role(Sepal.Length, new_role = "id") %>%
update_role(Petal.Length, new_role = "important")

processed_roles <- mold(rec_roles, train)

# The custom roles will be in the `mold()` result in case you need
# them for modeling.
processed_roles$extras

# And they are in the `forge()` result
forge(test, processed_roles$blueprint)$extras

# If you remove a column with a custom role from the test data, then you
# won't be able to `forge()` even though this recipe technically didn't
# use that column in any steps
test2 <- test
test2$Petal.Length <- NULL
try(forge(test2, processed_roles$blueprint))

# Most of the time, if you find yourself in the above scenario, then we
# suggest that you remove `Petal.Length` from the data that is supplied to
# the recipe. If that isn't an option, you can declare that that column
# isn't required at `bake()` time by using `update_role_requirements()`
rec_roles <- update_role_requirements(rec_roles, "important", bake = FALSE)
processed_roles <- mold(rec_roles, train)
forge(test2, processed_roles$blueprint)

default xy blueprint Default XY blueprint

Description

This pages holds the details for the XY preprocessing blueprint. This is the blueprint used
by default from mold() if x and y are provided separately (i.e. the XY interface is used).

Usage

default_xy_blueprint(
intercept = FALSE,
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allow_novel_levels = FALSE,
composition = "tibble"

)

## S3 method for class 'data.frame'
mold(x, y, ..., blueprint = NULL)

## S3 method for class 'matrix'
mold(x, y, ..., blueprint = NULL)

Arguments

intercept A logical. Should an intercept be included in the processed data? This in-
formation is used by the process function in the mold and forge function
list.

allow novel levels

A logical. Should novel factor levels be allowed at prediction time? This
information is used by the clean function in the forge function list, and
is passed on to scream().

composition Either ”tibble”, ”matrix”, or ”dgCMatrix” for the format of the processed
predictors. If ”matrix” or ”dgCMatrix” are chosen, all of the predictors
must be numeric after the preprocessing method has been applied; oth-
erwise an error is thrown.

x A data frame or matrix containing the predictors.

y A data frame, matrix, or vector containing the outcomes.

... Not used.

blueprint A preprocessing blueprint. If left as NULL, then a default xy blueprint()
is used.

Details

As documented in standardize(), if y is a vector, then the returned outcomes tibble has 1
column with a standardized name of ".outcome".

The one special thing about the XY method’s forge function is the behavior of outcomes =
TRUE when a vector y value was provided to the original call to mold(). In that case, mold()
converts y into a tibble, with a default name of .outcome. This is the column that forge()
will look for in new data to preprocess. See the examples section for a demonstration of
this.

Value

For default xy blueprint(), an XY blueprint.

Mold

When mold() is used with the default xy blueprint:

� It converts x to a tibble.

� It adds an intercept column to x if intercept = TRUE.

� It runs standardize() on y.
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Forge

When forge() is used with the default xy blueprint:

� It calls shrink() to trim new data to only the required columns and coerce new data
to a tibble.

� It calls scream() to perform validation on the structure of the columns of new data.

� It adds an intercept column onto new data if intercept = TRUE.

Examples

# ---------------------------------------------------------------------------
# Setup

train <- iris[1:100, ]
test <- iris[101:150, ]

train_x <- train[, "Sepal.Length", drop = FALSE]
train_y <- train[, "Species", drop = FALSE]

test_x <- test[, "Sepal.Length", drop = FALSE]
test_y <- test[, "Species", drop = FALSE]

# ---------------------------------------------------------------------------
# XY Example

# First, call mold() with the training data
processed <- mold(train_x, train_y)

# Then, call forge() with the blueprint and the test data
# to have it preprocess the test data in the same way
forge(test_x, processed$blueprint)

# ---------------------------------------------------------------------------
# Intercept

processed <- mold(train_x, train_y, blueprint = default_xy_blueprint(intercept = TRUE))

forge(test_x, processed$blueprint)

# ---------------------------------------------------------------------------
# XY Method and forge(outcomes = TRUE)

# You can request that the new outcome columns are preprocessed as well, but
# they have to be present in `new_data`!

processed <- mold(train_x, train_y)

# Can't do this!
try(forge(test_x, processed$blueprint, outcomes = TRUE))

# Need to use the full test set, including `y`
forge(test, processed$blueprint, outcomes = TRUE)

# With the XY method, if the Y value used in `mold()` is a vector,
# then a column name of `.outcome` is automatically generated.
# This name is what forge() looks for in `new_data`.
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# Y is a vector!
y_vec <- train_y$Species

processed_vec <- mold(train_x, y_vec)

# This throws an informative error that tell you
# to include an `".outcome"` column in `new_data`.
try(forge(iris, processed_vec$blueprint, outcomes = TRUE))

test2 <- test
test2$.outcome <- test2$Species
test2$Species <- NULL

# This works, and returns a tibble in the $outcomes slot
forge(test2, processed_vec$blueprint, outcomes = TRUE)

# ---------------------------------------------------------------------------
# Matrix output for predictors

# You can change the `composition` of the predictor data set
bp <- default_xy_blueprint(composition = "dgCMatrix")
processed <- mold(train_x, train_y, blueprint = bp)
class(processed$predictors)

delete response Delete the response from a terms object

Description

delete response() is exactly the same as delete.response(), except that it fixes a long
standing bug by also removing the part of the "dataClasses" attribute corresponding to
the response, if it exists.

Usage

delete_response(terms)

Arguments

terms A terms object.

Details

The bug is described here:

https://stat.ethz.ch/pipermail/r-devel/2012-January/062942.html

Value

terms with the response sections removed.

https://stat.ethz.ch/pipermail/r-devel/2012-January/062942.html
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Examples

framed <- model_frame(Species ˜ Sepal.Width, iris)

attr(delete.response(framed$terms), "dataClasses")

attr(delete_response(framed$terms), "dataClasses")

forge Forge prediction-ready data

Description

forge() applies the transformations requested by the specific blueprint on a set of new data.
This new data contains new predictors (and potentially outcomes) that will be used to gen-
erate predictions.

All blueprints have consistent return values with the others, but each is unique enough to
have its own help page. Click through below to learn how to use each one in conjunction
with forge().

� XY Method - default xy blueprint()

� Formula Method - default formula blueprint()

� Recipes Method - default recipe blueprint()

Usage

forge(new_data, blueprint, ..., outcomes = FALSE)

Arguments

new data A data frame or matrix of predictors to process. If outcomes = TRUE, this
should also contain the outcomes to process.

blueprint A preprocessing blueprint.

... Not used.

outcomes A logical. Should the outcomes be processed and returned as well?

Details

If the outcomes are present in new data, they can optionally be processed and returned
in the outcomes slot of the returned list by setting outcomes = TRUE. This is very useful
when doing cross validation where you need to preprocess the outcomes of a test set before
computing performance.

Value

A named list with 3 elements:

� predictors: A tibble containing the preprocessed new data predictors.

� outcomes: If outcomes = TRUE, a tibble containing the preprocessed outcomes found in
new data. Otherwise, NULL.

� extras: Either NULL if the blueprint returns no extra information, or a named list
containing the extra information.
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Examples

# See the blueprint specific documentation linked above
# for various ways to call forge with different
# blueprints.

train <- iris[1:100, ]
test <- iris[101:150, ]

# Formula
processed <- mold(

log(Sepal.Width) ˜ Species,
train,
blueprint = default_formula_blueprint(indicators = "none")

)

forge(test, processed$blueprint, outcomes = TRUE)

frequency weights Frequency weights

Description

[Experimental]

frequency weights() creates a vector of frequency weights which allow you to compactly
repeat an observation a set number of times. Frequency weights are supplied as a non-
negative integer vector, where only whole numbers are allowed.

Usage

frequency_weights(x)

Arguments

x An integer vector.

Value

A new frequency weights vector.

See Also

importance weights()

Examples

# Record that the first observation has 10 replicates, the second has 12
# replicates, and so on
frequency_weights(c(10, 12, 2, 1))

# Fractional values are not allowed
try(frequency_weights(c(1.5, 2.3, 10)))
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get data classes Extract data classes from a data frame or matrix

Description

When predicting from a model, it is often important for the new data to have the same
classes as the original data used to fit the model. get data classes() extracts the classes
from the original training data.

Usage

get_data_classes(data)

Arguments

data A data frame or matrix.

Value

A named list. The names are the column names of data and the values are character vectors
containing the class of that column.

Examples

get_data_classes(iris)

get_data_classes(as.matrix(mtcars))

# Unlike .MFclass(), the full class
# vector is returned
data <- data.frame(col = ordered(c("a", "b")))

.MFclass(data$col)

get_data_classes(data)

get levels Extract factor levels from a data frame

Description

get levels() extracts the levels from any factor columns in data. It is mainly useful for ex-
tracting the original factor levels from the predictors in the training set. get outcome levels()
is a small wrapper around get levels() for extracting levels from a factor outcome that
first calls standardize() on y.

Usage

get_levels(data)

get_outcome_levels(y)
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Arguments

data A data.frame to extract levels from.

y The outcome. This can be:

� A factor vector

� A numeric vector

� A 1D numeric array

� A numeric matrix with column names

� A 2D numeric array with column names

� A data frame with numeric or factor columns

Value

A named list with as many elements as there are factor columns in data or y. The names
are the names of the factor columns, and the values are character vectors of the levels.

If there are no factor columns, NULL is returned.

See Also

stats::.getXlevels()

Examples

# Factor columns are returned with their levels
get_levels(iris)

# No factor columns
get_levels(mtcars)

# standardize() is first run on `y`
# which converts the input to a data frame
# with an automatically named column, `".outcome"`
get_outcome_levels(y = factor(letters[1:5]))

hardhat-example-data Example data for hardhat

Description

Example data for hardhat

Details

Data objects for a training and test set with the same variables: three numeric and two
factor columns.

Value

example train,example test

tibbles



hardhat-extract 21

Examples

data("hardhat-example-data")

hardhat-extract Generics for object extraction

Description

These generics are used to extract elements from various model objects. Methods are defined
in other packages, such as tune, workflows, and workflowsets, but the returned object is
always the same.

� extract fit engine() returns the engine specific fit embedded within a parsnip model
fit. For example, when using parsnip::linear reg() with the "lm" engine, this returns
the underlying lm object.

� extract fit parsnip() returns a parsnip model fit.

� extract mold() returns the preprocessed ”mold” object returned from mold(). It
contains information about the preprocessing, including either the prepped recipe, the
formula terms object, or variable selectors.

� extract spec parsnip() returns a parsnip model specification.

� extract preprocessor() returns the formula, recipe, or variable expressions used for
preprocessing.

� extract recipe() returns a recipe, possibly estimated.

� extract workflow() returns a workflow, possibly fit.

� extract parameter dials() returns a single dials parameter object.

� extract parameter set dials() returns a set of dials parameter objects.

Usage

extract_workflow(x, ...)

extract_recipe(x, ...)

extract_spec_parsnip(x, ...)

extract_fit_parsnip(x, ...)

extract_fit_engine(x, ...)

extract_mold(x, ...)

extract_preprocessor(x, ...)

extract_parameter_dials(x, ...)

extract_parameter_set_dials(x, ...)
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Arguments

x An object.

... Extra arguments passed on to methods.

Examples

# See packages where methods are defined for examples, such as `parsnip` or
# `workflows`.

importance weights Importance weights

Description

[Experimental]

importance weights() creates a vector of importance weights which allow you to apply
a context dependent weight to your observations. Importance weights are supplied as a
non-negative double vector, where fractional values are allowed.

Usage

importance_weights(x)

Arguments

x A double vector.

Value

A new importance weights vector.

See Also

frequency weights()

Examples

importance_weights(c(1.5, 2.3, 10))
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is blueprint Is x a preprocessing blueprint?

Description

is blueprint() checks if x inherits from "hardhat blueprint".

Usage

is_blueprint(x)

Arguments

x An object.

Examples

is_blueprint(default_xy_blueprint())

is case weights Is x a case weights vector?

Description

[Experimental]

is case weights() checks if x inherits from "hardhat case weights".

Usage

is_case_weights(x)

Arguments

x An object.

Value

A single TRUE or FALSE.

Examples

is_case_weights(1)
is_case_weights(frequency_weights(1))
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is frequency weights Is x a frequency weights vector?

Description

[Experimental]

is frequency weights() checks if x inherits from "hardhat frequency weights".

Usage

is_frequency_weights(x)

Arguments

x An object.

Value

A single TRUE or FALSE.

Examples

is_frequency_weights(1)
is_frequency_weights(frequency_weights(1))
is_frequency_weights(importance_weights(1))

is importance weights Is x an importance weights vector?

Description

[Experimental]

is importance weights() checks if x inherits from "hardhat importance weights".

Usage

is_importance_weights(x)

Arguments

x An object.

Value

A single TRUE or FALSE.

Examples

is_importance_weights(1)
is_importance_weights(frequency_weights(1))
is_importance_weights(importance_weights(1))
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model frame Construct a model frame

Description

model frame() is a stricter version of stats::model.frame(). There are a number of dif-
ferences, with the main being that rows are never dropped and the return value is a list
with the frame and terms separated into two distinct objects.

Usage

model_frame(formula, data)

Arguments

formula A formula or terms object representing the terms of the model frame.

data A data frame or matrix containing the terms of formula.

Details

The following explains the rationale for some of the difference in arguments compared to
stats::model.frame():

� subset: Not allowed because the number of rows before and after model frame() has
been run should always be the same.

� na.action: Not allowed and is forced to "na.pass" because the number of rows before
and after model frame() has been run should always be the same.

� drop.unused.levels: Not allowed because it seems inconsistent for data and the result
of model frame() to ever have the same factor column but with different levels, unless
specified though original levels. If this is required, it should be done through a
recipe step explicitly.

� xlev: Not allowed because this check should have been done ahead of time. Use
scream() to check the integrity of data against a training set if that is required.

� ...: Not exposed because offsets are handled separately, and it is not necessary to
pass weights here any more because rows are never dropped (so weights don’t have to
be subset alongside the rest of the design matrix). If other non-predictor columns are
required, use the ”roles” features of recipes.

It is important to always use the results of model frame() with model matrix() rather than
stats::model.matrix() because the tibble in the result of model frame() does not have a
terms object attached. If model.matrix(¡terms¿, ¡tibble¿) is called directly, then a call to
model.frame() will be made automatically, which can give faulty results.

Value

A named list with two elements:

� "data": A tibble containing the model frame.

� "terms": A terms object containing the terms for the model frame.
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Examples

# ---------------------------------------------------------------------------
# Example usage

framed <- model_frame(Species ˜ Sepal.Width, iris)

framed$data

framed$terms

# ---------------------------------------------------------------------------
# Missing values never result in dropped rows

iris2 <- iris
iris2$Sepal.Width[1] <- NA

framed2 <- model_frame(Species ˜ Sepal.Width, iris2)

head(framed2$data)

nrow(framed2$data) == nrow(iris2)

model matrix Construct a design matrix

Description

model matrix() is a stricter version of stats::model.matrix(). Notably, model matrix()
will never drop rows, and the result will be a tibble.

Usage

model_matrix(terms, data)

Arguments

terms A terms object to construct a model matrix with. This is typically the
terms object returned from the corresponding call to model frame().

data A tibble to construct the design matrix with. This is typically the tibble
returned from the corresponding call to model frame().

Details

The following explains the rationale for some of the difference in arguments compared to
stats::model.matrix():

� contrasts.arg: Set the contrasts argument, options("contrasts") globally, or as-
sign a contrast to the factor of interest directly using stats::contrasts(). See the
examples section.

� xlev: Not allowed because model.frame() is never called, so it is unnecessary.

� ...: Not allowed because the default method of model.matrix() does not use it, and
the lm method uses it to pass potential offsets and weights through, which are handled
differently in hardhat.
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Value

A tibble containing the design matrix.

Examples

# ---------------------------------------------------------------------------
# Example usage

framed <- model_frame(Sepal.Width ˜ Species, iris)

model_matrix(framed$terms, framed$data)

# ---------------------------------------------------------------------------
# Missing values never result in dropped rows

iris2 <- iris
iris2$Species[1] <- NA

framed2 <- model_frame(Sepal.Width ˜ Species, iris2)

model_matrix(framed2$terms, framed2$data)

# ---------------------------------------------------------------------------
# Contrasts

# Default contrasts
y <- factor(c("a", "b"))
x <- data.frame(y = y)
framed <- model_frame(˜y, x)

# Setting contrasts directly
y_with_contrast <- y
contrasts(y_with_contrast) <- contr.sum(2)
x2 <- data.frame(y = y_with_contrast)
framed2 <- model_frame(˜y, x2)

# Compare!
model_matrix(framed$terms, framed$data)
model_matrix(framed2$terms, framed2$data)

# Also, can set the contrasts globally
global_override <- c(unordered = "contr.sum", ordered = "contr.poly")

rlang::with_options(
.expr = {
model_matrix(framed$terms, framed$data)

},
contrasts = global_override

)

model offset Extract a model offset
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Description

model offset() extracts a numeric offset from a model frame. It is inspired by stats::model.offset(),
but has nicer error messages and is slightly stricter.

Usage

model_offset(terms, data)

Arguments

terms A "terms" object corresponding to data, returned from a call to model frame().

data A data frame returned from a call to model frame().

Details

If a column that has been tagged as an offset is not numeric, a nice error message is thrown
telling you exactly which column was problematic.

stats::model.offset() also allows for a column named "(offset)" to be considered an off-
set along with any others that have been tagged by stats::offset(). However, stats::model.matrix()
does not recognize these columns as offsets (so it doesn’t remove them as it should).
Because of this inconsistency, columns named "(offset)" are not treated specially by
model offset().

Value

A numeric vector representing the offset.

Examples

x <- model.frame(Species ˜ offset(Sepal.Width), iris)

model_offset(terms(x), x)

xx <- model.frame(Species ˜ offset(Sepal.Width) + offset(Sepal.Length), iris)

model_offset(terms(xx), xx)

# Problematic columns are caught with intuitive errors
tryCatch(

expr = {
x <- model.frame(˜ offset(Species), iris)
model_offset(terms(x), x)

},
error = function(e) {

print(e$message)
}

)
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mold Mold data for modeling

Description

mold() applies the appropriate processing steps required to get training data ready to be
fed into a model. It does this through the use of various blueprints that understand how to
preprocess data that come in various forms, such as a formula or a recipe.

All blueprints have consistent return values with the others, but each is unique enough to
have its own help page. Click through below to learn how to use each one in conjunction
with mold().

� XY Method - default xy blueprint()

� Formula Method - default formula blueprint()

� Recipes Method - default recipe blueprint()

Usage

mold(x, ...)

Arguments

x An object. See the method specific implementations linked in the De-
scription for more information.

... Not used.

Value

A named list containing 4 elements:

� predictors: A tibble containing the molded predictors to be used in the model.

� outcome: A tibble containing the molded outcomes to be used in the model.

� blueprint: A method specific "hardhat blueprint" object for use when making pre-
dictions.

� extras: Either NULL if the blueprint returns no extra information, or a named list
containing the extra information.

Examples

# See the method specific documentation linked in Description
# for the details of each blueprint, and more examples.

# XY
mold(iris[, "Sepal.Width", drop = FALSE], iris$Species)

# Formula
mold(Species ˜ Sepal.Width, iris)

# Recipe
library(recipes)
mold(recipe(Species ˜ Sepal.Width, iris), iris)
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new case weights Extend case weights

Description

[Experimental]

new case weights() is a developer oriented function for constructing a new case weights
type. The ¡case weights¿ type itself is an abstract type with very little functionality. Because
of this, class is a required argument.

Usage

new_case_weights(x, ..., class)

Arguments

x An integer or double vector.

... Name-value pairs defining attributes

class Name of subclass.

Value

A new subclassed case weights vector.

Examples

new_case_weights(1:5, class = "my_weights")

new default formula blueprint

Create a new default blueprint

Description

This page contains the constructors for the default blueprints. They can be extended if you
want to add extra behavior on top of what the default blueprints already do, but generally
you will extend the non-default versions of the constructors found in the documentation for
new blueprint().

Usage

new_default_formula_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
ptypes = NULL,
formula = NULL,
indicators = "traditional",
composition = "tibble",
terms = list(predictors = NULL, outcomes = NULL),
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...,
subclass = character()

)

new_default_recipe_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
fresh = TRUE,
composition = "tibble",
ptypes = NULL,
recipe = NULL,
extra_role_ptypes = NULL,
...,
subclass = character()

)

new_default_xy_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
composition = "tibble",
ptypes = NULL,
...,
subclass = character()

)

Arguments

intercept A logical. Should an intercept be included in the processed data? This in-
formation is used by the process function in the mold and forge function
list.

allow novel levels

A logical. Should novel factor levels be allowed at prediction time? This
information is used by the clean function in the forge function list, and
is passed on to scream().

ptypes Either NULL, or a named list with 2 elements, predictors and outcomes,
both of which are 0-row tibbles. ptypes is generated automatically at
mold() time and is used to validate new data at prediction time.

formula Either NULL, or a formula that specifies how the predictors and outcomes
should be preprocessed. This argument is set automatically at mold()
time.

indicators A single character string. Control how factors are expanded into dummy
variable indicator columns. One of:

� "traditional" - The default. Create dummy variables using the
traditional model.matrix() infrastructure. Generally this creates K
-1 indicator columns for each factor, where K is the number of levels
in that factor.

� "none" - Leave factor variables alone. No expansion is done.

� "one hot" - Create dummy variables using a one-hot encoding ap-
proach that expands unordered factors into all K indicator columns,
rather than K -1.
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composition Either ”tibble”, ”matrix”, or ”dgCMatrix” for the format of the processed
predictors. If ”matrix” or ”dgCMatrix” are chosen, all of the predictors
must be numeric after the preprocessing method has been applied; oth-
erwise an error is thrown.

terms A named list of two elements, predictors and outcomes. Both elements
are terms objects that describe the terms for the outcomes and predictors
separately. This argument is set automatically at mold() time.

... Name-value pairs for additional elements of blueprints that subclass this
blueprint.

subclass A character vector. The subclasses of this blueprint.

fresh Should already trained operations be re-trained when prep() is called?

recipe Either NULL, or an unprepped recipe. This argument is set automatically
at mold() time.

extra role ptypes

A named list. The names are the unique non-standard recipe roles (i.e.
everything except "predictors" and "outcomes"). The values are proto-
types of the original columns with that role. These are used for validation
in forge().

new formula blueprint Create a new preprocessing blueprint

Description

These are the base classes for creating new preprocessing blueprints. All blueprints inherit
from the one created by new blueprint(), and the default method specific blueprints inherit
from the other three here.

If you want to create your own processing blueprint for a specific method, generally you
will subclass one of the method specific blueprints here. If you want to create a completely
new preprocessing blueprint for a totally new preprocessing method (i.e. not the formula,
xy, or recipe method) then you should subclass new blueprint().

In addition to creating a blueprint subclass, you will likely also need to provide S3 methods
for run mold() and run forge() for your subclass.

Usage

new_formula_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
ptypes = NULL,
formula = NULL,
indicators = "traditional",
composition = "tibble",
...,
subclass = character()

)

new_recipe_blueprint(
intercept = FALSE,
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allow_novel_levels = FALSE,
fresh = TRUE,
composition = "tibble",
ptypes = NULL,
recipe = NULL,
...,
subclass = character()

)

new_xy_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
composition = "tibble",
ptypes = NULL,
...,
subclass = character()

)

new_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
composition = "tibble",
ptypes = NULL,
...,
subclass = character()

)

Arguments

intercept A logical. Should an intercept be included in the processed data? This in-
formation is used by the process function in the mold and forge function
list.

allow novel levels

A logical. Should novel factor levels be allowed at prediction time? This
information is used by the clean function in the forge function list, and
is passed on to scream().

ptypes Either NULL, or a named list with 2 elements, predictors and outcomes,
both of which are 0-row tibbles. ptypes is generated automatically at
mold() time and is used to validate new data at prediction time.

formula Either NULL, or a formula that specifies how the predictors and outcomes
should be preprocessed. This argument is set automatically at mold()
time.

indicators A single character string. Control how factors are expanded into dummy
variable indicator columns. One of:

� "traditional" - The default. Create dummy variables using the
traditional model.matrix() infrastructure. Generally this creates K
-1 indicator columns for each factor, where K is the number of levels
in that factor.

� "none" - Leave factor variables alone. No expansion is done.

� "one hot" - Create dummy variables using a one-hot encoding ap-
proach that expands unordered factors into all K indicator columns,
rather than K -1.
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composition Either ”tibble”, ”matrix”, or ”dgCMatrix” for the format of the processed
predictors. If ”matrix” or ”dgCMatrix” are chosen, all of the predictors
must be numeric after the preprocessing method has been applied; oth-
erwise an error is thrown.

... Name-value pairs for additional elements of blueprints that subclass this
blueprint.

subclass A character vector. The subclasses of this blueprint.

fresh Should already trained operations be re-trained when prep() is called?

recipe Either NULL, or an unprepped recipe. This argument is set automatically
at mold() time.

Value

A preprocessing blueprint, which is a list containing the inputs used as arguments to the
function, along with a class specific to the type of blueprint being created.

new frequency weights Construct a frequency weights vector

Description

[Experimental]

new frequency weights() is a developer oriented function for constructing a new frequency
weights vector. Generally, you should use frequency weights() instead.

Usage

new_frequency_weights(x = integer(), ..., class = character())

Arguments

x An integer vector.

... Name-value pairs defining attributes

class Name of subclass.

Value

A new frequency weights vector.

Examples

new_frequency_weights()
new_frequency_weights(1:5)
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new importance weights Construct an importance weights vector

Description

[Experimental]

new importance weights() is a developer oriented function for constructing a new impor-
tance weights vector. Generally, you should use importance weights() instead.

Usage

new_importance_weights(x = double(), ..., class = character())

Arguments

x A double vector.

... Name-value pairs defining attributes

class Name of subclass.

Value

A new importance weights vector.

Examples

new_importance_weights()
new_importance_weights(c(1.5, 2.3, 10))

new model Constructor for a base model

Description

A model is a scalar object, as classified in Advanced R. As such, it takes uniquely named
elements in ... and combines them into a list with a class of class. This entire object
represent a single model.

Usage

new_model(..., blueprint = default_xy_blueprint(), class = character())

Arguments

... Name-value pairs for elements specific to the model defined by class.

blueprint A preprocessing blueprint returned from a call to mold().

class A character vector representing the class of the model.

https://adv-r.hadley.nz/s3.html#object-styles
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Details

Because every model should have multiple interfaces, including formula and recipes inter-
faces, all models should have a blueprint that can process new data when predict() is
called. The easiest way to generate an blueprint with all of the information required at
prediction time is to use the one that is returned from a call to mold().

Value

A new scalar model object, represented as a classed list with named elements specified in
....

Examples

new_model(
custom_element = "my-elem",
blueprint = default_xy_blueprint(),
class = "custom_model"

)

refresh blueprint Refresh a preprocessing blueprint

Description

refresh blueprint() is a developer facing generic function that is called at the end of
update blueprint(). It simply is a wrapper around the method specific new * blueprint()
function that runs the updated blueprint through the constructor again to ensure that all
of the elements of the blueprint are still valid after the update.

Usage

refresh_blueprint(blueprint)

Arguments

blueprint A preprocessing blueprint.

Details

If you implement your own custom blueprint, you should export a refresh blueprint()
method that just calls the constructor for your blueprint and passes through all of the
elements of the blueprint to the constructor.

Value

blueprint is returned after a call to the corresponding constructor.
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Examples

blueprint <- default_xy_blueprint()

# This should never be done manually, but is essentially
# what `update_blueprint(blueprint, intercept = TRUE)` does for you
blueprint$intercept <- TRUE

# Then update_blueprint() will call refresh_blueprint()
# to ensure that the structure is correct
refresh_blueprint(blueprint)

# So you can't do something like...
blueprint_bad <- blueprint
blueprint_bad$intercept <- 1

# ...because the constructor will catch it
try(refresh_blueprint(blueprint_bad))

# And update_blueprint() catches this automatically
try(update_blueprint(blueprint, intercept = 1))

run-forge forge() according to a blueprint

Description

This is a developer facing function that is only used if you are creating your own blueprint
subclass. It is called from forge() and dispatches off the S3 class of the blueprint. This
gives you an opportunity to forge the new data in a way that is specific to your blueprint.

run forge() is always called from forge() with the same arguments, unlike run mold(),
because there aren’t different interfaces for calling forge(). run forge() is always called
as:

run forge(blueprint,new data = new data,outcomes = outcomes)

If you write a blueprint subclass for new xy blueprint(), new recipe blueprint(), new formula blueprint(),
or new blueprint(), then your run forge() method signature must match this.

Usage

run_forge(blueprint, new_data, ..., outcomes = FALSE)

## S3 method for class 'default_formula_blueprint'
run_forge(blueprint, new_data, ..., outcomes = FALSE)

## S3 method for class 'default_recipe_blueprint'
run_forge(blueprint, new_data, ..., outcomes = FALSE)

## S3 method for class 'default_xy_blueprint'
run_forge(blueprint, new_data, ..., outcomes = FALSE)
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Arguments

blueprint A preprocessing blueprint.

new data A data frame or matrix of predictors to process. If outcomes = TRUE, this
should also contain the outcomes to process.

... Not used.

outcomes A logical. Should the outcomes be processed and returned as well?

Value

run forge() methods return the object that is then immediately returned from forge().
See the return value section of forge() to understand what the structure of the return
value should look like.

Examples

bp <- default_xy_blueprint()

outcomes <- mtcars["mpg"]
predictors <- mtcars
predictors$mpg <- NULL

mold <- run_mold(bp, x = predictors, y = outcomes)

run_forge(mold$blueprint, new_data = predictors)

run-mold mold() according to a blueprint

Description

This is a developer facing function that is only used if you are creating your own blueprint
subclass. It is called from mold() and dispatches off the S3 class of the blueprint. This
gives you an opportunity to mold the data in a way that is specific to your blueprint.

run mold() will be called with different arguments depending on the interface to mold()
that is used:

� XY interface:

– run mold(blueprint,x = x,y = y)

� Formula interface:

– run mold(blueprint,data = data)

– Additionally, the blueprint will have been updated to contain the formula.

� Recipe interface:

– run mold(blueprint,data = data)

– Additionally, the blueprint will have been updated to contain the recipe.

If you write a blueprint subclass for new xy blueprint(), new recipe blueprint(), or
new formula blueprint() then your run mold() method signature must match whichever
interface listed above will be used.

If you write a completely new blueprint inheriting only from new blueprint() and write a
new mold() method (because you aren’t using an xy, formula, or recipe interface), then you
will have full control over how run mold() will be called.



scream 39

Usage

run_mold(blueprint, ...)

## S3 method for class 'default_formula_blueprint'
run_mold(blueprint, ..., data)

## S3 method for class 'default_recipe_blueprint'
run_mold(blueprint, ..., data)

## S3 method for class 'default_xy_blueprint'
run_mold(blueprint, ..., x, y)

Arguments

blueprint A preprocessing blueprint.

... Not used. Required for extensibility.

data A data frame or matrix containing the outcomes and predictors.

x A data frame or matrix containing the predictors.

y A data frame, matrix, or vector containing the outcomes.

Value

run mold() methods return the object that is then immediately returned from mold(). See
the return value section of mold() to understand what the structure of the return value
should look like.

Examples

bp <- default_xy_blueprint()

outcomes <- mtcars["mpg"]
predictors <- mtcars
predictors$mpg <- NULL

run_mold(bp, x = predictors, y = outcomes)

scream Scream.

Description

scream() ensures that the structure of data is the same as prototype, ptype. Under the
hood, vctrs::vec cast() is used, which casts each column of data to the same type as the
corresponding column in ptype.

This casting enforces a number of important structural checks, including but not limited
to:

� Data Classes - Checks that the class of each column in data is the same as the corre-
sponding column in ptype.
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� Novel Levels - Checks that the factor columns in data don’t have any new levels
when compared with the ptype columns. If there are new levels, a warning is is-
sued and they are coerced to NA. This check is optional, and can be turned off with
allow novel levels = TRUE.

� Level Recovery - Checks that the factor columns in data aren’t missing any factor
levels when compared with the ptype columns. If there are missing levels, then they
are restored.

Usage

scream(data, ptype, allow_novel_levels = FALSE)

Arguments

data A data frame containing the new data to check the structure of.

ptype A data frame prototype to cast data to. This is commonly a 0-row slice
of the training set.

allow novel levels

Should novel factor levels in data be allowed? The safest approach is the
default, which throws a warning when novel levels are found, and coerces
them to NA values. Setting this argument to TRUE will ignore all novel
levels. This argument does not apply to ordered factors. Novel levels are
not allowed in ordered factors because the level ordering is a critical part
of the type.

Details

scream() is called by forge() after shrink() but before the actual processing is done.
Generally, you don’t need to call scream() directly, as forge() will do it for you.

If scream() is used as a standalone function, it is good practice to call shrink() right before
it as there are no checks in scream() that ensure that all of the required column names
actually exist in data. Those checks exist in shrink().

Value

A tibble containing the required columns after any required structural modifications have
been made.

Factor Levels

scream() tries to be helpful by recovering missing factor levels and warning about novel
levels. The following graphic outlines how scream() handles factor levels when coercing
from a column in data to a column in ptype.
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Note that ordered factor handing is much stricter than factor handling. Ordered factors in
data must have exactly the same levels as ordered factors in ptype.

Examples

# ---------------------------------------------------------------------------
# Setup

train <- iris[1:100, ]
test <- iris[101:150, ]

# mold() is run at model fit time
# and a formula preprocessing blueprint is recorded
x <- mold(log(Sepal.Width) ˜ Species, train)

# Inside the result of mold() are the prototype tibbles
# for the predictors and the outcomes
ptype_pred <- x$blueprint$ptypes$predictors
ptype_out <- x$blueprint$ptypes$outcomes

# ---------------------------------------------------------------------------
# shrink() / scream()

# Pass the test data, along with a prototype, to
# shrink() to extract the prototype columns
test_shrunk <- shrink(test, ptype_pred)

# Now pass that to scream() to perform validation checks
# If no warnings / errors are thrown, the checks were
# successful!
scream(test_shrunk, ptype_pred)

# ---------------------------------------------------------------------------
# Outcomes

# To also extract the outcomes, use the outcome prototype
test_outcome <- shrink(test, ptype_out)
scream(test_outcome, ptype_out)

# ---------------------------------------------------------------------------
# Casting

# scream() uses vctrs::vec_cast() to intelligently convert
# new data to the prototype automatically. This means
# it can automatically perform certain conversions, like
# coercing character columns to factors.
test2 <- test
test2$Species <- as.character(test2$Species)

test2_shrunk <- shrink(test2, ptype_pred)
scream(test2_shrunk, ptype_pred)

# It can also recover missing factor levels.
# For example, it is plausible that the test data only had the
# "virginica" level
test3 <- test
test3$Species <- factor(test3$Species, levels = "virginica")
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test3_shrunk <- shrink(test3, ptype_pred)
test3_fixed <- scream(test3_shrunk, ptype_pred)

# scream() recovered the missing levels
levels(test3_fixed$Species)

# ---------------------------------------------------------------------------
# Novel levels

# When novel levels with any data are present in `data`, the default
# is to coerce them to `NA` values with a warning.
test4 <- test
test4$Species <- as.character(test4$Species)
test4$Species[1] <- "new_level"

test4$Species <- factor(
test4$Species,
levels = c(levels(test$Species), "new_level")

)

test4 <- shrink(test4, ptype_pred)

# Warning is thrown
test4_removed <- scream(test4, ptype_pred)

# Novel level is removed
levels(test4_removed$Species)

# No warning is thrown
test4_kept <- scream(test4, ptype_pred, allow_novel_levels = TRUE)

# Novel level is kept
levels(test4_kept$Species)

shrink Subset only required columns

Description

shrink() subsets data to only contain the required columns specified by the prototype,
ptype.

Usage

shrink(data, ptype)

Arguments

data A data frame containing the data to subset.

ptype A data frame prototype containing the required columns.

Details

shrink() is called by forge() before scream() and before the actual processing is done.
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Value

A tibble containing the required columns.

Examples

# ---------------------------------------------------------------------------
# Setup

train <- iris[1:100, ]
test <- iris[101:150, ]

# ---------------------------------------------------------------------------
# shrink()

# mold() is run at model fit time
# and a formula preprocessing blueprint is recorded
x <- mold(log(Sepal.Width) ˜ Species, train)

# Inside the result of mold() are the prototype tibbles
# for the predictors and the outcomes
ptype_pred <- x$blueprint$ptypes$predictors
ptype_out <- x$blueprint$ptypes$outcomes

# Pass the test data, along with a prototype, to
# shrink() to extract the prototype columns
shrink(test, ptype_pred)

# To extract the outcomes, just use the
# outcome prototype
shrink(test, ptype_out)

# shrink() makes sure that the columns
# required by `ptype` actually exist in the data
# and errors nicely when they don't
test2 <- subset(test, select = -Species)
try(shrink(test2, ptype_pred))

spruce Spruce up predictions

Description

The family of spruce *() functions convert predictions into a standardized format. They are
generally called from a prediction implementation function for the specific type of prediction
to return.

Usage

spruce_numeric(pred)

spruce_class(pred_class)

spruce_prob(pred_levels, prob_matrix)
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Arguments

pred (type = "numeric") A numeric vector of predictions.

pred class (type = "class") A factor of ”hard” class predictions.

pred levels, prob matrix

(type = "prob")

� pred levels should be a character vector of the original levels of the
outcome used in training.

� prob matrix should be a numeric matrix of class probabilities with
as many columns as levels in pred levels, and in the same order.

Details

After running a spruce *() function, you should always use the validation function validate prediction size()
to ensure that the number of rows being returned is the same as the number of rows in the
input (new data).

Value

A tibble, ideally with the same number of rows as the new data passed to predict(). The
column names and number of columns vary based on the function used, but are standard-
ized.

standardize Standardize the outcome

Description

Most of the time, the input to a model should be flexible enough to capture a number of
different input types from the user. standardize() focuses on capturing the flexibility in
the outcome.

Usage

standardize(y)

Arguments

y The outcome. This can be:

� A factor vector

� A numeric vector

� A 1D numeric array

� A numeric matrix with column names

� A 2D numeric array with column names

� A data frame with numeric or factor columns

Details

standardize() is called from mold() when using an XY interface (i.e. a y argument was
supplied).
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Value

All possible values of y are transformed into a tibble for standardization. Vectors are
transformed into a tibble with a single column named ".outcome".

Examples

standardize(1:5)

standardize(factor(letters[1:5]))

mat <- matrix(1:10, ncol = 2)
colnames(mat) <- c("a", "b")
standardize(mat)

df <- data.frame(x = 1:5, y = 6:10)
standardize(df)

tune Mark arguments for tuning

Description

tune() is an argument placeholder to be used with the recipes, parsnip, and tune packages.
It marks recipes step and parsnip model arguments for tuning.

Usage

tune(id = "")

Arguments

id A single character value that can be used to differentiate parameters that
are used in multiple places but have the same name, or if the user wants
to add a note to the specified parameter.

Value

A call object that echos the user’s input.

See Also

tune::tune grid(), tune::tune bayes()

Examples

tune()
tune("your name here")

# In practice, `tune()` is used alongside recipes or parsnip to mark
# specific arguments for tuning
library(recipes)

recipe(mpg ˜ ., data = mtcars) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors, num_comp = tune())
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update blueprint Update a preprocessing blueprint

Description

update blueprint() is the correct way to alter elements of an existing blueprint object.
It has two benefits over just doing blueprint$elem <-new elem.

� The name you are updating must already exist in the blueprint. This prevents you
from accidentally updating non-existent elements.

� The constructor for the blueprint is automatically run after the update by refresh blueprint()
to ensure that the blueprint is still valid.

Usage

update_blueprint(blueprint, ...)

Arguments

blueprint A preprocessing blueprint.

... Name-value pairs of existing elements in blueprint that should be up-
dated.

Examples

blueprint <- default_xy_blueprint()

# `intercept` defaults to FALSE
blueprint

update_blueprint(blueprint, intercept = TRUE)

# Can't update non-existent elements
try(update_blueprint(blueprint, intercpt = TRUE))

# Can't add non-valid elements
try(update_blueprint(blueprint, intercept = 1))

validate column names Ensure that data contains required column names

Description

validate - asserts the following:

� The column names of data must contain all original names.

check - returns the following:

� ok A logical. Does the check pass?

� missing names A character vector. The missing column names.
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Usage

validate_column_names(data, original_names)

check_column_names(data, original_names)

Arguments

data A data frame to check.

original names A character vector. The original column names.

Details

A special error is thrown if the missing column is named ".outcome". This only happens
in the case where mold() is called using the xy-method, and a vector y value is supplied
rather than a data frame or matrix. In that case, y is coerced to a data frame, and the
automatic name ".outcome" is added, and this is what is looked for in forge(). If this
happens, and the user tries to request outcomes using forge(...,outcomes = TRUE) but
the supplied new data does not contain the required ".outcome" column, a special error is
thrown telling them what to do. See the examples!

Value

validate column names() returns data invisibly.

check column names() returns a named list of two components, ok, and missing names.

Validation

hardhat provides validation functions at two levels.

� check *(): check a condition, and return a list. The list always contains at least one
element, ok, a logical that specifies if the check passed. Each check also has check
specific elements in the returned list that can be used to construct meaningful error
messages.

� validate *(): check a condition, and error if it does not pass. These functions call their
corresponding check function, and then provide a default error message. If you, as a
developer, want a different error message, then call the check *() function yourself,
and provide your own validation function.

See Also

Other validation functions: validate no formula duplication(), validate outcomes are binary(),
validate outcomes are factors(), validate outcomes are numeric(), validate outcomes are univariate(),
validate prediction size(), validate predictors are numeric()

Examples

# ---------------------------------------------------------------------------

original_names <- colnames(mtcars)

test <- mtcars
bad_test <- test[, -c(3, 4)]

# All good
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check_column_names(test, original_names)

# Missing 2 columns
check_column_names(bad_test, original_names)

# Will error
try(validate_column_names(bad_test, original_names))

# ---------------------------------------------------------------------------
# Special error when `.outcome` is missing

train <- iris[1:100, ]
test <- iris[101:150, ]

train_x <- subset(train, select = -Species)
train_y <- train$Species

# Here, y is a vector
processed <- mold(train_x, train_y)

# So the default column name is `".outcome"`
processed$outcomes

# It doesn't affect forge() normally
forge(test, processed$blueprint)

# But if the outcome is requested, and `".outcome"`
# is not present in `new_data`, an error is thrown
# with very specific instructions
try(forge(test, processed$blueprint, outcomes = TRUE))

# To get this to work, just create an .outcome column in new_data
test$.outcome <- test$Species

forge(test, processed$blueprint, outcomes = TRUE)

validate no formula duplication

Ensure no duplicate terms appear in formula

Description

validate - asserts the following:

� formula must not have duplicates terms on the left and right hand side of the formula.

check - returns the following:

� ok A logical. Does the check pass?

� duplicates A character vector. The duplicate terms.

Usage

validate_no_formula_duplication(formula, original = FALSE)

check_no_formula_duplication(formula, original = FALSE)
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Arguments

formula A formula to check.

original A logical. Should the original names be checked, or should the names
after processing be used? If FALSE, y ˜ log(y) is allowed because the
names are "y" and "log(y)", if TRUE, y ˜ log(y) is not allowed because
the original names are both "y".

Value

validate no formula duplication() returns formula invisibly.

check no formula duplication() returns a named list of two components, ok and duplicates.

Validation

hardhat provides validation functions at two levels.

� check *(): check a condition, and return a list. The list always contains at least one
element, ok, a logical that specifies if the check passed. Each check also has check
specific elements in the returned list that can be used to construct meaningful error
messages.

� validate *(): check a condition, and error if it does not pass. These functions call their
corresponding check function, and then provide a default error message. If you, as a
developer, want a different error message, then call the check *() function yourself,
and provide your own validation function.

See Also

Other validation functions: validate column names(), validate outcomes are binary(),
validate outcomes are factors(), validate outcomes are numeric(), validate outcomes are univariate(),
validate prediction size(), validate predictors are numeric()

Examples

# All good
check_no_formula_duplication(y ˜ x)

# Not good!
check_no_formula_duplication(y ˜ y)

# This is generally okay
check_no_formula_duplication(y ˜ log(y))

# But you can be more strict
check_no_formula_duplication(y ˜ log(y), original = TRUE)

# This would throw an error
try(validate_no_formula_duplication(log(y) ˜ log(y)))
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validate outcomes are binary

Ensure that the outcome has binary factors

Description

validate - asserts the following:

� outcomes must have binary factor columns.

check - returns the following:

� ok A logical. Does the check pass?

� bad cols A character vector. The names of the columns with problems.

� num levels An integer vector. The actual number of levels of the columns with prob-
lems.

Usage

validate_outcomes_are_binary(outcomes)

check_outcomes_are_binary(outcomes)

Arguments

outcomes An object to check.

Details

The expected way to use this validation function is to supply it the $outcomes element of
the result of a call to mold().

Value

validate outcomes are binary() returns outcomes invisibly.

check outcomes are binary() returns a named list of three components, ok, bad cols, and
num levels.

Validation

hardhat provides validation functions at two levels.

� check *(): check a condition, and return a list. The list always contains at least one
element, ok, a logical that specifies if the check passed. Each check also has check
specific elements in the returned list that can be used to construct meaningful error
messages.

� validate *(): check a condition, and error if it does not pass. These functions call their
corresponding check function, and then provide a default error message. If you, as a
developer, want a different error message, then call the check *() function yourself,
and provide your own validation function.
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See Also

Other validation functions: validate column names(), validate no formula duplication(),
validate outcomes are factors(), validate outcomes are numeric(), validate outcomes are univariate(),
validate prediction size(), validate predictors are numeric()

Examples

# Not a binary factor. 0 levels
check_outcomes_are_binary(data.frame(x = 1))

# Not a binary factor. 1 level
check_outcomes_are_binary(data.frame(x = factor("A")))

# All good
check_outcomes_are_binary(data.frame(x = factor(c("A", "B"))))

validate outcomes are factors

Ensure that the outcome has only factor columns

Description

validate - asserts the following:

� outcomes must have factor columns.

check - returns the following:

� ok A logical. Does the check pass?

� bad classes A named list. The names are the names of problematic columns, and the
values are the classes of the matching column.

Usage

validate_outcomes_are_factors(outcomes)

check_outcomes_are_factors(outcomes)

Arguments

outcomes An object to check.

Details

The expected way to use this validation function is to supply it the $outcomes element of
the result of a call to mold().

Value

validate outcomes are factors() returns outcomes invisibly.

check outcomes are factors() returns a named list of two components, ok and bad classes.
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Validation

hardhat provides validation functions at two levels.

� check *(): check a condition, and return a list. The list always contains at least one
element, ok, a logical that specifies if the check passed. Each check also has check
specific elements in the returned list that can be used to construct meaningful error
messages.

� validate *(): check a condition, and error if it does not pass. These functions call their
corresponding check function, and then provide a default error message. If you, as a
developer, want a different error message, then call the check *() function yourself,
and provide your own validation function.

See Also

Other validation functions: validate column names(), validate no formula duplication(),
validate outcomes are binary(), validate outcomes are numeric(), validate outcomes are univariate(),
validate prediction size(), validate predictors are numeric()

Examples

# Not a factor column.
check_outcomes_are_factors(data.frame(x = 1))

# All good
check_outcomes_are_factors(data.frame(x = factor(c("A", "B"))))

validate outcomes are numeric

Ensure outcomes are all numeric

Description

validate - asserts the following:

� outcomes must have numeric columns.

check - returns the following:

� ok A logical. Does the check pass?

� bad classes A named list. The names are the names of problematic columns, and the
values are the classes of the matching column.

Usage

validate_outcomes_are_numeric(outcomes)

check_outcomes_are_numeric(outcomes)

Arguments

outcomes An object to check.
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Details

The expected way to use this validation function is to supply it the $outcomes element of
the result of a call to mold().

Value

validate outcomes are numeric() returns outcomes invisibly.

check outcomes are numeric() returns a named list of two components, ok and bad classes.

Validation

hardhat provides validation functions at two levels.

� check *(): check a condition, and return a list. The list always contains at least one
element, ok, a logical that specifies if the check passed. Each check also has check
specific elements in the returned list that can be used to construct meaningful error
messages.

� validate *(): check a condition, and error if it does not pass. These functions call their
corresponding check function, and then provide a default error message. If you, as a
developer, want a different error message, then call the check *() function yourself,
and provide your own validation function.

See Also

Other validation functions: validate column names(), validate no formula duplication(),
validate outcomes are binary(), validate outcomes are factors(), validate outcomes are univariate(),
validate prediction size(), validate predictors are numeric()

Examples

# All good
check_outcomes_are_numeric(mtcars)

# Species is not numeric
check_outcomes_are_numeric(iris)

# This gives an intelligent error message
try(validate_outcomes_are_numeric(iris))

validate outcomes are univariate

Ensure that the outcome is univariate

Description

validate - asserts the following:

� outcomes must have 1 column. Atomic vectors are treated as 1 column matrices.

check - returns the following:

� ok A logical. Does the check pass?

� n cols A single numeric. The actual number of columns.
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Usage

validate_outcomes_are_univariate(outcomes)

check_outcomes_are_univariate(outcomes)

Arguments

outcomes An object to check.

Details

The expected way to use this validation function is to supply it the $outcomes element of
the result of a call to mold().

Value

validate outcomes are univariate() returns outcomes invisibly.

check outcomes are univariate() returns a named list of two components, ok and n cols.

Validation

hardhat provides validation functions at two levels.

� check *(): check a condition, and return a list. The list always contains at least one
element, ok, a logical that specifies if the check passed. Each check also has check
specific elements in the returned list that can be used to construct meaningful error
messages.

� validate *(): check a condition, and error if it does not pass. These functions call their
corresponding check function, and then provide a default error message. If you, as a
developer, want a different error message, then call the check *() function yourself,
and provide your own validation function.

See Also

Other validation functions: validate column names(), validate no formula duplication(),
validate outcomes are binary(), validate outcomes are factors(), validate outcomes are numeric(),
validate prediction size(), validate predictors are numeric()

Examples

validate_outcomes_are_univariate(data.frame(x = 1))

try(validate_outcomes_are_univariate(mtcars))
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validate prediction size

Ensure that predictions have the correct number of rows

Description

validate - asserts the following:

� The size of pred must be the same as the size of new data.

check - returns the following:

� ok A logical. Does the check pass?

� size new data A single numeric. The size of new data.

� size pred A single numeric. The size of pred.

Usage

validate_prediction_size(pred, new_data)

check_prediction_size(pred, new_data)

Arguments

pred A tibble. The predictions to return from any prediction type. This is
often created using one of the spruce functions, like spruce numeric().

new data A data frame of new predictors and possibly outcomes.

Details

This validation function is one that is more developer focused rather than user focused. It is
a final check to be used right before a value is returned from your specific predict() method,
and is mainly a ”good practice” sanity check to ensure that your prediction blueprint always
returns the same number of rows as new data, which is one of the modeling conventions
this package tries to promote.

Value

validate prediction size() returns pred invisibly.

check prediction size() returns a named list of three components, ok, size new data, and
size pred.

Validation

hardhat provides validation functions at two levels.

� check *(): check a condition, and return a list. The list always contains at least one
element, ok, a logical that specifies if the check passed. Each check also has check
specific elements in the returned list that can be used to construct meaningful error
messages.

� validate *(): check a condition, and error if it does not pass. These functions call their
corresponding check function, and then provide a default error message. If you, as a
developer, want a different error message, then call the check *() function yourself,
and provide your own validation function.
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See Also

Other validation functions: validate column names(), validate no formula duplication(),
validate outcomes are binary(), validate outcomes are factors(), validate outcomes are numeric(),
validate outcomes are univariate(), validate predictors are numeric()

Examples

# Say new_data has 5 rows
new_data <- mtcars[1:5, ]

# And somehow you generate predictions
# for those 5 rows
pred_vec <- 1:5

# Then you use `spruce_numeric()` to clean
# up these numeric predictions
pred <- spruce_numeric(pred_vec)

pred

# Use this check to ensure that
# the number of rows or pred match new_data
check_prediction_size(pred, new_data)

# An informative error message is thrown
# if the rows are different
try(validate_prediction_size(spruce_numeric(1:4), new_data))

validate predictors are numeric

Ensure predictors are all numeric

Description

validate - asserts the following:

� predictors must have numeric columns.

check - returns the following:

� ok A logical. Does the check pass?

� bad classes A named list. The names are the names of problematic columns, and the
values are the classes of the matching column.

Usage

validate_predictors_are_numeric(predictors)

check_predictors_are_numeric(predictors)

Arguments

predictors An object to check.
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Details

The expected way to use this validation function is to supply it the $predictors element of
the result of a call to mold().

Value

validate predictors are numeric() returns predictors invisibly.

check predictors are numeric() returns a named list of two components, ok, and bad classes.

Validation

hardhat provides validation functions at two levels.

� check *(): check a condition, and return a list. The list always contains at least one
element, ok, a logical that specifies if the check passed. Each check also has check
specific elements in the returned list that can be used to construct meaningful error
messages.

� validate *(): check a condition, and error if it does not pass. These functions call their
corresponding check function, and then provide a default error message. If you, as a
developer, want a different error message, then call the check *() function yourself,
and provide your own validation function.

See Also

Other validation functions: validate column names(), validate no formula duplication(),
validate outcomes are binary(), validate outcomes are factors(), validate outcomes are numeric(),
validate outcomes are univariate(), validate prediction size()

Examples

# All good
check_predictors_are_numeric(mtcars)

# Species is not numeric
check_predictors_are_numeric(iris)

# This gives an intelligent error message
try(validate_predictors_are_numeric(iris))

weighted table Weighted table

Description

weighted table() computes a weighted contingency table based on factors provided in ...
and a double vector of weights provided in weights. It can be seen as a weighted extension
to base::table() and an alternative to stats::xtabs().

weighted table() always uses the exact set of levels returned by levels() when construct-
ing the table. This results in the following properties:

� Missing values found in the factors are never included in the table unless there is an
explicit NA factor level. If needed, this can be added to a factor with base::addNA()
or forcats::fct expand(x,NA).
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� Levels found in the factors that aren’t actually used in the underlying data are included
in the table with a value of 0. If needed, you can drop unused factor levels by re-running
your factor through factor(), or by calling forcats::fct drop().

See the examples section for more information about these properties.

Usage

weighted_table(..., weights, na_remove = FALSE)

Arguments

... Factors of equal length to use in the weighted table. If the ... are named,
those names will propagate onto the ”dimnames names” of the resulting
table. At least one factor must be provided.

weights A double vector of weights used to fill the cells of the weighted table. This
must be the same length as the factors provided in ....

na remove A single TRUE or FALSE for handling whether or not missing values in
weights should be removed when summing up the weights.

Details

The result of weighted table() does not have a "table" class attached to it. It is only a
double array. This is because ”table” objects are defined as containing integer counts, but
weighted tables can utilize fractional weights.

Value

The weighted table as an array of double values.

Examples

x <- factor(c("x", "y", "z", "x", "x", "y"))
y <- factor(c("a", "b", "a", "a", "b", "b"))
w <- c(1.5, 2, 1.1, .5, 3, 2)

weighted_table(x = x, y = y, weights = w)

# ---------------------------------------------------------------------------
# If `weights` contains missing values, then missing values will be
# propagated into the weighted table
x <- factor(c("x", "y", "y"))
y <- factor(c("a", "b", "b"))
w <- c(1, NA, 3)

weighted_table(x = x, y = y, weights = w)

# You can remove the missing values while summing up the weights with
# `na_remove = TRUE`
weighted_table(x = x, y = y, weights = w, na_remove = TRUE)

# ---------------------------------------------------------------------------
# If there are missing values in the factors, those typically don't show
# up in the weighted table
x <- factor(c("x", NA, "y", "x"))
y <- factor(c("a", "b", "a", NA))
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w <- 1:4

weighted_table(x = x, y = y, weights = w)

# This is because the missing values aren't considered explicit levels
levels(x)

# You can force them to show up in the table by using `addNA()` ahead of time
# (or `forcats::fct_expand(x, NA)`)
x <- addNA(x, ifany = TRUE)
y <- addNA(y, ifany = TRUE)
levels(x)

weighted_table(x = x, y = y, weights = w)

# ---------------------------------------------------------------------------
# If there are levels in your factors that aren't actually used in the
# underlying data, then they will still show up in the table with a `0` value
x <- factor(c("x", "y", "x"), levels = c("x", "y", "z"))
y <- factor(c("a", "b", "a"), levels = c("a", "b", "c"))
w <- 1:3

weighted_table(x = x, y = y, weights = w)

# If you want to drop these empty factor levels from the result, you can
# rerun `factor()` ahead of time to drop them (or `forcats::fct_drop()`)
x <- factor(x)
y <- factor(y)
levels(x)

weighted_table(x = x, y = y, weights = w)
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