
Package ‘heddlr’
March 24, 2020

Title Dynamic R Markdown Document Generation

Version 0.6.0

Description Helper functions designed to make
dynamically generating R Markdown documents easier by providing a
simple and tidy way to create report pieces, shape them to your data,
and combine them for exporting into a single R Markdown document.

License MIT + file LICENSE

URL https://github.com/mikemahoney218/heddlr,

https://mikemahoney218.github.io/heddlr/

BugReports https://github.com/mikemahoney218/heddlr/issues

Depends R (>= 3.4.0)

Imports rlang (>= 0.1.2), utf8, yaml

Suggests covr, here, rmarkdown, roxygen2, testthat (>= 2.1.0), dplyr,
tidyr (>= 1.0.0), nycflights13, ggplot2, knitr, purrr

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

VignetteBuilder knitr

NeedsCompilation no

Author Michael Mahoney [aut, cre] (<https://orcid.org/0000-0003-2402-304X>)

Maintainer Michael Mahoney <mike.mahoney.218@gmail.com>

Repository CRAN

Date/Publication 2020-03-24 06:20:03 UTC

R topics documented:
assemble_draft . 2
bulk_replace . 3
create_yaml_header . 3

1

https://github.com/mikemahoney218/heddlr
https://mikemahoney218.github.io/heddlr/
https://github.com/mikemahoney218/heddlr/issues

2 assemble_draft

export_template . 4
extract_draft . 6
extract_pattern . 6
heddle . 7
import_draft . 8
import_pattern . 9
make_template . 10
provide_parameters . 11
use_parameters . 12

Index 13

assemble_draft Deprecated function for draft import

Description

assemble_draft has been deprecated (as of development version 0.4.2) in favor of import_draft,
which has the same semantics (and is actually now the same code – assemble_draft is now only
an alias for import_draft.) This should hopefully make the link between import_draft and im-
port_pattern clear, and more importantly distinguish these functions from extract_pattern and the
new extract_draft function.

Usage

assemble_draft(...)

Arguments

... A named vector of filenames which will be imported as patterns stored in the
returned draft, with the names used as indices. Files should be plain text.

Value

Returns a list (the same length as ...) containing the imported patterns.

Examples

pattern_file <- tempfile("out", tempdir(), ".Rmd")
export_template("my sample pattern", pattern_file)
assemble_draft("sample_pattern" = pattern_file)

bulk_replace 3

bulk_replace Bulk replace a pattern throughout multiple files.

Description

This function makes it easier to change a specific text string throughout a number of files, allowing
you to ensure you’re correcting all areas of your code at once.

Usage

bulk_replace(files, pattern, replacement, dry.run = TRUE)

Arguments

files A vector of filepaths to replace strings in.
pattern The character string to be replaced.
replacement A character string to replace all patterns with.
dry.run Logical – describe the file changes that will be made (TRUE) or make them in the

specified files (FALSE)?

Examples

library(heddlr)
temp_file <- tempfile("test", fileext = ".Rmd")
temp_patt <- "#"
export_template(temp_patt, temp_file)
bulk_replace(c(temp_file), "#", "##")
bulk_replace(c(temp_file), "#", "##", dry.run = FALSE)

create_yaml_header Convert list objects into R Markdown YAML headers

Description

This function tweaks the behavior of as.yaml to return a string which can immediately be used
as an R Markdown YAML header. It’s designed to accept both deeply nested lists and simpler list
formats to make reasoning about your header easier.

Usage

create_yaml_header(
...,
line.sep = c("\n", "\r\n", "\r"),
indent = 2,
unicode = TRUE,
indent.mapping.sequence = FALSE,
handlers = NULL

)

4 export_template

Arguments

... A set of objects that will be combined into the YAML header. Objects may be
provided as lists (the structure list("outputs" = "html_document") translates to
outputs: html_document) or as single-item named vectors (passing "title" = "My
Report" to ... will translate to title: "My Report").

line.sep, indent, unicode, indent.mapping.sequence, handlers

Additional arguments to be passed to as.yaml

Value

Returns a string formatted for use as an R Markdown YAML header.

See Also

Other manipulation functions: heddle(), make_template(), provide_parameters(), use_parameters()

Examples

headerContent <- list(
"title" = "Testing YAML",
"author" = "Mike Mahoney",
"output" = list(
"flexdashboard::flex_dashboard" = list(

"vertical_layout" = "fill",
"orientation" = "rows",
"css" = "bootstrap.css"

)
)

)
create_yaml_header(headerContent)
create_yaml_header(

"title" = "testing",
"params" = list("data" = "NA"),
list("author" = "Mike Mahoney")

)

export_template Safely export templates to file.

Description

This is a simple wrapper function around as_utf8 and writeLines, letting users write their tem-
plate strings to file without having to worry about file encodings. For more details on why UTF-8
encoding is necessary, check out Yihui Xie’s post on the subject.

https://yihui.org/en/2018/11/biggest-regret-knitr/

export_template 5

Usage

export_template(
template,
filename,
sep = "",
filename.is.string = TRUE,
strip.carriage.returns = TRUE

)

Arguments

template The template string to be written out

filename The path to write the template to, passed to writeLines. Also accepts stdout
(and likely other similar functions) with a warning.

sep Separator to use between lines written, passed to writeLines. Defaults to no
separator, as templates are generally already spaced appropriately.

filename.is.string

A logical value indicating whether or not the filename parameter is expected to
be a string (that is, a character vector). Setting the value to FALSE disables
the warning when a non-character argument is passed, but this is unsupported
functionality.

strip.carriage.returns

A logical value indicating whether or not to strip carriage feed characters, should
any exist. This preserves line spacing when writing out files originally written
on Windows; otherwise writeLines appears to not recognize lines as ending
with a newline and inserts one, resulting in 2x the number of line breaks as
anticipated.

Details

Note that this function is effectively the inverse of import_pattern – export_template(import_pattern("out.txt"),"out.txt")
should always result in an unchanged file, and exceptions to this rule would be considered bugs.

Value

Returns the input template invisibly.

Examples

pattern_file <- tempfile("out", tempdir(), ".Rmd")
export_template("my sample pattern", pattern_file)

6 extract_pattern

extract_draft Extract multiple patterns into a single draft object

Description

When working with multiple patterns that will be woven into a template, it makes sense to have
all patterns stored in a central object. This function creates that object from a named vector of
filenames to be used in further generation, importing the files via extract_pattern.

Usage

extract_draft(filepath, ...)

Arguments

filepath A valid character string to the plaintext file containing the pattern.

... Keywords to be used by extract_pattern to extract each pattern. If arguments
to ... are named, the returned draft will have the same names.

Value

Returns a list (the same length as ...) containing the extracted patterns.

See Also

Other import functions: extract_pattern(), import_draft(), import_pattern()

Examples

pattern_file <- tempfile("out", tempdir(), ".Rmd")
export_template("EXTRACT my sample pattern EXTRACT", pattern_file)
extract_draft(pattern_file, "one" = "EXTRACT")

extract_pattern Extract patterns from larger documents

Description

This function loads a file and scans it for a given keyword which signposts the beginning and end
of a pattern. It then extracts all the text between the keywords for manipulation as a pattern. For
extracting multiple patterns at once from a single file, check out extract_draft.

Usage

extract_pattern(filepath, keyword, preserve = FALSE)

heddle 7

Arguments

filepath A valid character string to the plaintext file containing the pattern.

keyword A placeholder which signposts the beginning and end of the pattern to be ex-
tracted.

preserve A boolean (TRUE/FALSE) value indicating whether or not keywords should be
included in the extracted pattern (TRUE) or not (FALSE); default FALSE.

Value

A character string, typically used to assemble a draft.

See Also

Other import functions: extract_draft(), import_draft(), import_pattern()

Examples

pattern_file <- tempfile("out", tempdir(), ".Rmd")
export_template("EXTRACT my sample pattern EXTRACT", pattern_file)
extract_pattern(pattern_file, "EXTRACT")

heddle Transform pattern objects into template pieces

Description

This function replicates pattern objects, replacing placeholder keywords in each iteration with val-
ues from the provided data. This allows efficiently creating R Markdown documents with many
repeating pieces which may shift alongside the underlying data.

Usage

heddle(data, pattern, ..., strip.whitespace = FALSE)

Arguments

data Input dataframe to pull replacement values from. Accepts either vector or dataframe
inputs.

pattern The base pattern, as either an atomic vector (which will be recycled for every
value in your data) or a vector of the same length as your data (which will be ap-
plied element-wise to your data, so that data[[1]] will replace pattern[[1]]).

... Values indicating what placeholders in the pattern should be replaced – see
"Specifying replacement values" below for more.

strip.whitespace

A boolean (TRUE/FALSE) value indicating if whitespace should be removed
from the replacement variable. Toggle this on if you’re using the variable in
chunk labels or similar places.

8 import_draft

Value

Returns a character vector of the pattern with placeholders replaced by variables.

Specifying replacement values

heddle can accept multiple different values for ..., depending on how you call it.

If data is a vector (which is the case when either calling heddle on a vector directly, or using it in
a mutate) call, ... should be unnamed strings matching the values to be replaced. If any argument
passed to ... isn’t found in the pattern, a warning will be raised – use NA to replicate patterns
without replacing any values.

If data is a dataframe (which is the case both when calling heddle on a dataframe directly or
using it in combination with nest and map), ... should be a set of name = variable pairs, with
the name matching the keyword to be replaced by that variable. Names should be quoted, variable
names don’t need to be. As with vectors, if any argument passed to ... isn’t found in the pattern, a
warning will be raised.

See Also

Other manipulation functions: create_yaml_header(), make_template(), provide_parameters(),
use_parameters()

Examples

When passed a vector, heddle replaces all placeholders passed to ...
with each value
spList <- unique(iris$Species)
heddle(spList, "SPECIES CODE GWAR ", "GWAR")
heddle(spList, "SPECIES CODE GWAR ", "GWAR", "CODE")
heddle("test string", "pattern tk", "tk", strip.whitespace = TRUE)

When passed a dataframe, heddle uses "Name" = Variable syntax to determine
which values should replace which placeholders
spList <- data.frame(Species = c(unique(iris$Species), "test string"))
heddle(spList, "SPECIES CODE GWAR ", "GWAR" = Species)
heddle(spList, "SPECIES CODE GWAR ", "GWAR" = Species, "CODE" = Species)

import_draft Import multiple patterns into a single draft object

Description

When working with multiple patterns that will be woven into a template, it makes sense to have
all patterns stored in a central object. This function creates that object from a named vector of
filenames to be used in further generation, importing the files via import_pattern.

Usage

import_draft(...)

import_pattern 9

Arguments

... A named vector of filenames which will be imported as patterns stored in the
returned draft, with the names used as indices. Files should be plain text.

Value

Returns a list (the same length as ...) containing the imported patterns.

See Also

Other import functions: extract_draft(), extract_pattern(), import_pattern()

Examples

pattern_file <- tempfile("out", tempdir(), ".Rmd")
export_template("my sample pattern", pattern_file)
import_draft("sample_pattern" = pattern_file)

import_pattern Quickly import plaintext files.

Description

Longer, multi-chunk patterns can benefit from being developed in files independent of the rest of a
draft. This is a quick wrapper function to import those patterns as objects for assembly into a draft.

Usage

import_pattern(filepath)

Arguments

filepath A valid character string to the plaintext file containing the pattern.

Value

A character string, typically used to assemble a draft.

See Also

Other import functions: extract_draft(), extract_pattern(), import_draft()

Examples

pattern_file <- tempfile("out", tempdir(), ".Rmd")
export_template("my sample pattern", pattern_file)
import_pattern(pattern_file)

10 make_template

make_template Linearly combine template elements into templates

Description

Applying heddle can leave your template pieces stored as either string objects, vectors (standalone
or in a dataframe), or nested vectors (if applied using map()). This function takes those elements
and combines them into a single exportable template.

Usage

make_template(data, ...)

Arguments

data The dataframe containing variables to be combined.

... The variables to be combined into a template object.

Value

Returns the collapsed template as a character string.

See Also

Other manipulation functions: create_yaml_header(), heddle(), provide_parameters(), use_parameters()

Examples

When passed vectors, make_template flattens each vector into a single
string and then combines its arguments from left to right
spList <- data.frame(Species = c(unique(iris$Species), "test string"))
make_template(

heddle(spList, "SPECIES CODE GWAR ", "GWAR" = Species),
heddle(spList, "SPECIES CODE GWAR ", "GWAR" = Species)

)

When passed variables in a dataframe, make_template collapses each column
in turn, then combines the output strings from left to right
spList <- data.frame(Species = c(unique(iris$Species), "test string"))
spList$template <- heddle(spList, "SPECIES CODE GWAR ", "GWAR" = Species)
make_template(spList, template)
make_template(spList, template, template)

When passed nested columns, heddlr collapses each cell into a string,
then collapses each column into a string, and then combines the outputs
from left to right
make_template(tidyr::nest(spList, nested = template), nested)

provide_parameters 11

provide_parameters Easily provide parameters to R Markdown render calls

Description

R Markdown documents allow you to pass almost any object – including large data frames and
functions – to the document as parameters, letting you only define them once to use them in both
your document generator and the generated document. This function makes it slightly easier to do
so, by automatically creating a named list from provided objects rather than requiring a named list.
This function is a stripped-down variant of lst.

Usage

provide_parameters(...)

Arguments

... Objects to be included as parameters. Objects should be unquoted and exist in
the current session environment.

See Also

Other manipulation functions: create_yaml_header(), heddle(), make_template(), use_parameters()

Examples

template <- make_template(
"---\ntitle: Example\noutput: html_document\n---\n",
"\nThe random number is `r random_number`.\n"

)
template <- use_parameters(template, "random_number")
pattern_file <- tempfile("out", tempdir(), ".Rmd")
export_template(template, pattern_file)

random_number <- rnorm(1)
if (rmarkdown::pandoc_available()) {

rmarkdown::render(pattern_file, params = provide_parameters(random_number))
}

12 use_parameters

use_parameters Automatically include session objects as report parameters

Description

R Markdown documents allow you to pass almost any object – including large data frames and
functions – to the document as parameters, letting you only define them once to use them in both
your document generator and the generated document. This function makes it slightly easier to do
so, by adding your objects to the YAML header and then initializing them so you can use the same
object names in your generated document as in your generator.

Usage

use_parameters(template, ..., init.params = TRUE, is.file = FALSE)

Arguments

template An atomic (length(template) == 1) character vector containing either the tem-
plate to manipulate OR the path to the file storing the template, which will be
imported via import_pattern.

... Objects to be included as parameters. Objects should be unquoted and exist
in the current session environment. This function currently will always assign
parameters NA as a default value, and does not yet provide an option to override
that.

init.params A boolean (TRUE/FALSE) value indicating if a chunk initalizing the parameters
(that is, assigning them via object <-params$object) should be included. De-
fault TRUE.

is.file A boolean value indicating if the template argument is a vector containing the
template (FALSE, default) or the path to the template file (TRUE).

See Also

Other manipulation functions: create_yaml_header(), heddle(), make_template(), provide_parameters()

Examples

template <- make_template("---\ntitle: Cool Report\noutput: html_document\n---\n")
use_parameters(template, data)

Index

as.yaml, 3, 4
as_utf8, 4
assemble_draft, 2

bulk_replace, 3

create_yaml_header, 3, 8, 10–12

export_template, 4
extract_draft, 6, 6, 7, 9
extract_pattern, 6, 6, 9

heddle, 4, 7, 10–12

import_draft, 6, 7, 8, 9
import_pattern, 5–9, 9

lst, 11

make_template, 4, 8, 10, 11, 12
map, 8
mutate, 8

nest, 8

provide_parameters, 4, 8, 10, 11, 12

stdout, 5

use_parameters, 4, 8, 10, 11, 12

writeLines, 4, 5

13

	assemble_draft
	bulk_replace
	create_yaml_header
	export_template
	extract_draft
	extract_pattern
	heddle
	import_draft
	import_pattern
	make_template
	provide_parameters
	use_parameters
	Index

