Package 'hglasso'

May 13, 2022

Type Package
Title Learning Graphical Models with Hubs
Version 1.3
Date 2022-05-13
Author Kean Ming Tan
Maintainer Kean Ming Tan <keanming@umich.edu></keanming@umich.edu>
Depends glasso, mvtnorm, igraph
Imports fields
Description Implements the hub graphical lasso and hub covariance graph proposal by Tan, KM., London, P., Mohan, K., Lee, S-I., Fazel, M., and Witten, D. (2014). Learning graphical models with hubs. Journal of Machine Learning Research 15(Oct):3297-3331.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-13 08:20:02 UTC
R topics documented:
hglasso-package 2 binaryMCMC 2 hbn 5 hcov 7 hglasso 10 hglassoBIC 12 HubNetwork 14 image.hglasso 15 plot.hglasso 16 summary.hglasso 17
Index 19

2 hglasso-package

hglasso-package	Fit the hub graphical lasso, hub covariance graph, and hub binary network

Description

This package is called hglasso, for "hub graphical lasso". It implements three methods:hub graphical lasso, hub covariance graph, and hub binary network. All are described in the paper "Learning graphical models with hubs", by Tan et al. (2014).

The main functions are as follows: (1) hglasso (2) hcov (3) hbn

The first function, hglasso, performs hub graphical lasso. The second function, hcov, performs hub covariance graph estimation. The third function, hbn, performs hub binary network estimation.

Details

Package: hglasso Type: Package Version: 1.2

Date: 2014-08-09 License: GPL (>=2.0)

LazyLoad: yes

The package includes the following functions:

hglasso: Performs hub graphical lasso

hcov: Performs hub covariance graph estimation hbn: Performs hub binary network estimation

HubNetwork: Generates inverse covariance matrix or covariance matrix with hubs binaryMCMC: Generates samples for binary Ising model via Gibbs sampling

image.hglasso: Creates image plot of the matrix V and Z

plot.hglasso: Creates a graphical representation of the estimated matrix Theta

summary.hglasso: Provides summary for the matrix Theta, Z, and V hglassoBIC: Calculate BIC-type criterion for hglasso

Author(s)

Kean Ming Tan and Karthik Mohan

Karthik Mohan implemented the Barzilai-Borwein method for hbn

Maintainer: Kean Ming Tan <keanming@uw.edu>

hglasso-package 3

References

Tan, KM., London, P., Mohan, K., Lee, S-I., Fazel, M., and Witten, D. (2014). Learning graphical models with hubs. Journal of Machine Learning Research 15(Oct):3297-3331.

See Also

hglasso hcov hbn

```
# Example from Figure 1 in the manuscript
# A toy example to illustrate the results from
# Hub Graphical Lasso
#library(mvtnorm)
#set.seed(1)
#n=100
#p=100
# A network with 4 hubs
\#network<-HubNetwork(p,0.99,4,0.1)
#Theta <- network$Theta</pre>
#truehub <- network$hubcol</pre>
# The four hub nodes have indices 14, 42, 45, 78
#print(truehub)
# Generate data matrix x
#x <- rmvnorm(n,rep(0,p),solve(Theta))</pre>
\#x < - scale(x)
# Run Hub Graphical Lasso to estimate the inverse covariance matrix
\# res1 < -hglasso(cov(x), 0.3, 0.3, 1.5)
# print out a summary of the object hglasso
#summary(res1)
# we see that the estimated hub nodes have indices 14, 42, 45, 78
# We successfully recover the 4 hub nodes
# Plot the matrices V and Z
#image(res1)
#dev.off()
# Plot a graphical representation of the estimated inverse
# covariance matrix --- conditional independence graph
#plot(res1,main="Conditional Independence Graph")
```

4 binaryMCMC

binaryMCMC	Generate samples using Gibbs sampling for binary network specified by the parameter Theta

Description

Sampling from the binary Ising model using Gibbs sampling. This function is not efficient and is only intended to be used in the examples.

Usage

```
binaryMCMC(n, Theta, burnin, skip,trace=FALSE)
```

Arguments

n	The number of samples.
Theta	A symmetric parameter matrix for the model from which the data is being generated.
burnin	The number of samples to discard as burn in.
skip	The number of samples to discard in-between returned samples.
trace	Default value of trace=FALSE. If trace=TRUE, the progress of Gibbs sampling is printed when each observation is sampled.

Value

Χ	An n x p matrix of samples generated from the binary network specified by
	Theta.

Author(s)

Kean Ming Tan

References

Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.

See Also

HubNetwork

hbn 5

Examples

```
# generate Theta that specified the structure of a binary Ising model with p=10 variables and 2 hubs
#p<-10
#n<-50
#Theta <- HubNetwork(p,0.95,2,0.3,type="binary")$Theta

# generate samples using Gibbs sampling
#X <- binaryMCMC(n,Theta,burnin=1000,skip=500)</pre>
```

hbn

Hub binary network

Description

Estimates a binary network with hub nodes using a Lasso penalty and a sparse group Lasso penalty. The estimated Theta matrix can be decomposed as Theta = Z + V + t(V), where Z is a sparse matrix and V is a matrix that contains hub nodes. The details are given in Tan et al. (2014).

Usage

```
hbn(X, lambda1, lambda2=100000, lambda3=100000, convergence = 1e-8
, maxiter = 1000, start = "cold", var.init = NULL, trace=FALSE)
```

Arguments

Χ	An n by p data matrix. Cannot contain missing values.	
lambda1	Non-negative regularization parameter for lasso on the matrix Z. lambda=0 means no regularization.	
lambda2	Non-negative regularization parameter for lasso on the matrix V. lambda2=0 means no regularization. The default value is lambda2=100000, encouraging V to be a zero matrix.	
lambda3	Non-negative regularization parameter for group lasso on the matrix V. lambda3=0 means no regularization. The default value is lambda3=100000, encouraging V to be a zero matrix.	
convergence	Threshold for convergence. Devault value is 1e-8.	
maxiter	Maximum number of iterations of ADMM algorithm. Default is 1000 iterations.	
start	Type of start. cold start is the default. Using warm start, one can provide starting values for the parameters using object from hbn.	
var.init	Object from hbn that provides starting values for all the parameters when start="warm" is specified.	
trace	Default value of trace=FALSE. If trace=TRUE, every 10 iterations of the ADMM algorithm is printed.	

6 hbn

Details

This implements hub binary network using ADMM algorithm (see Algorithm 1 and Section 5) in Tan et al. (2014). The estimated Theta matrix can be decomposed into Z + V + t(V): Z is a sparse matrix and V is a matrix that contains dense columns, each column corresponding to a hub node.

The default value of lambda2=100000 and lambda3=100000 will yield the sparse binary network model estimate as in Hofling and Tibshirani (2009) 'Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods'.

The tuning parameters lambda1 determines the sparsity of the matrix Z, lambda2 determines the sparsity of the selected hub nodes, and lambda3 determines the selection of hub nodes.

Within each iteration of the ADMM algorithm, we need to perform an iterative procedure to obtain an update for the matrix Theta since there is no closed form solution for Theta. The Barzilai-Borwein method is used for this purpose (Barzilai and Borwein, 1988). For details, see Algorithm 2 in Appendix F in Tan et al. (2014).

Note: we recommend using this function for moderate size network. For instance, network with 50-100 variables.

Value

an object of class hbn.

Among some internal variables, this object includes the elements

Theta Theta is the estimated inverse covariance matrix. Note that Theta = Z + V +

t(V).

V is the estimated matrix that contains hub nodes used to compute Theta.

Z is the estimated sparse matrix used to compute Theta.

hubind Indices for features that are estimated to be hub nodes

Author(s)

Kean Ming Tan and Karthik Mohan

References

Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.

Hofling, H. and Tibshirani, R. (2009). Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods. Journal of Machine Learning Research, 10:883-906.

Barzilai, J. and Borwein, J. (1988). Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8:141-148.

See Also

image.hglasso plot.hglasso summary.hglasso binaryMCMC

hcov 7

Examples

```
# An implementation of Hub Binary Network
#set.seed(1000)
#n=50
#p=5
# A network with 2 hubs
#network<-HubNetwork(p,0.95,2,0.1,type="binary")</pre>
#Theta <- network$Theta</pre>
#truehub <- network$hubcol</pre>
# The four hub nodes have indices 4,5
#print(truehub)
# Generate data matrix x
#X <- binaryMCMC(n,Theta,burnin=500,skip=100)</pre>
# Run Hub Binary Network to estimate Theta
\#res1 \leftarrow hbn(X,2,1,3,trace=TRUE)
# print out a summary of the object hbn
#summary(res1)
# We see that the estimated hub nodes have indices 1,5
# We successfully recover the hub nodes
# Plot the resulting network
# plot(res1)
```

hcov

Hub covariance graph

Description

Estimates a sparse covariance matrix with hub nodes using a Lasso penalty and a sparse group Lasso penalty. The estimated covariance matrix Sigma can be decomposed as Sigma = Z + V + t(V). The details are given in Section 4 in Tan et al. (2014).

Usage

```
hcov(S, lambda1, lambda2=100000, lambda3=100000, convergence = 1e-10,
maxiter = 1000, start = "cold", var.init = NULL,trace=FALSE)
```

Arguments

S A p by p correlation/covariance matrix. Cannot contain missing values.

lambda1 Non-negative regularization parameter for lasso on the matrix Z. lambda=0 means no regularization.

8 hcov

lambda2 Non-negative regularization parameter for lasso on the matrix V. lambda2=0

means no regularization. The default value is lambda2=100000, encouraging V

to be a zero matrix.

lambda3 Non-negative regularization parameter for group lasso on the matrix V. lambda3=0

means no regularization. The default value is lambda3=100000, encouraging V

to be a zero matrix.

convergence Threshold for convergence. Devault value is 1e-10.

maxiter Maximum number of iterations of ADMM algorithm. Default is 1000 iterations.

start Type of start. cold start is the default. Using warm start, one can provide starting

values for the parameters using object from hcov.

var.init Object from hoov that provides starting values for all the parameters when start="warm"

is specified.

trace Default value of trace=FALSE. If trace=TRUE, every 10 iterations of the ADMM

algorithm is printed.

Details

This implements hub covariance graph estimation procedure using ADMM algorithm described in Section 4 in Tan et al. (2014), which estimates a sparse covariance matrix with hub nodes. The estimated covariance matrix can be decomposed into Z + V + t(V): Z is a sparse matrix and V is a matrix that contains dense columns, each column corresponding to a hub node. For the positive definite constraint Sigma \geq epsilon*I that appears in the optimization problem, we choose epsilon to be 0.001 by default.

The default value of lambda2=100000 and lambda3=100000 will yield the estimator proposed by Xue et al. (2012).

Note that tuning parameters lambda1 determines the sparsity of the matrix Z, lambda2 determines the sparsity of the selected hub nodes, and lambda3 determines the selection of hub nodes.

Value

an object of class hcov.

Among some internal variables, this object includes the elements

Sigma is the estimated covariance matrix. Note that Sigma = Z + V + t(V).

V is the estimated matrix that contain hub nodes used to compute Sigma.

Z is the estimated sparse matrix used to compute Sigma.

objective Objective is the minimized objective value of the loss-function considered in

Section 4 of Tan et al. (2014).

iteration The number of iterations of the ADMM algorithm until convergence.

hubind Indices for features that are estimated to be hub nodes

Author(s)

Kean Ming Tan

hcov 9

References

Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.

Xue et al. (2012). Positive-definite 11-penalized estimation of large covariance matrices. Journal of the American Staitstical Association, 107:1480-1491.

See Also

```
image.hcov plot.hcov summary.hcov
```

```
# Example for estimating covariance matrix
# with hubs
library(mvtnorm)
set.seed(1)
n=100
p = 100
# a covariance with 4 hubs
network <- HubNetwork(p,0.95,4,0.1,type="covariance")</pre>
Sigma <- network$Theta</pre>
hubind <- network$hubcol</pre>
x <- rmvnorm(n,rep(0,p),Sigma)</pre>
x < - scale(x)
# Estimate the covariance matrix
res1<-hcov(cov(x), 0.3, 0.2, 1.2)
summary(res1)
# correctly identified two of the hub nodes
# Plot the matrices V and Z
image(res1)
dev.off()
# Plot a graphical representation of the estimated covariance matrix --- covariance graph
plot(res1)
# Xue et al cannot identified any hub nodes
res2 <- hcov(cov(x), 0.3)
summary(res2)
plot(res2)
```

10 hglasso

hglasso Hub graphical lasso

Description

Estimates a sparse inverse covariance matrix with hub nodes using a Lasso penalty and a sparse group Lasso penalty. The estimated inverse covariance matrix Theta can be decomposed as Theta = Z + V + t(V), where Z is a sparse matrix and V is a matrix that contains hub nodes. The details are given in Tan et al. (2014).

Usage

```
hglasso(S, lambda1, lambda2=100000, lambda3=100000, convergence = 1e-10, maxiter = 1000, start = "cold", var.init = NULL, trace=FALSE)
```

Arguments

S	A p by p correlation/covariance matrix. Cannot contain missing values.
lambda1	Non-negative regularization parameter for lasso on the matrix Z. lambda=0 means no regularization.
lambda2	Non-negative regularization parameter for lasso on the matrix V. lambda2=0 means no regularization. The default value is lambda2=100000, encouraging V to be a zero matrix.
lambda3	Non-negative regularization parameter for group lasso on the matrix V. lambda 3 =0 means no regularization. The default value is lambda 3 =100000, encouraging V to be a zero matrix.
convergence	Threshold for convergence. Devault value is 1e-10.
maxiter	Maximum number of iterations of ADMM algorithm. Default is 1000 iterations.
start	Type of start. cold start is the default. Using warm start, one can provide starting values for the parameters using object from hglasso.
var.init	Object from hglasso that provides starting values for all the parameters when start="warm" is specified.
trace	Default value of trace=FALSE. If trace=TRUE, every 10 iterations of the ADMM algorithm is printed.

Details

This implements hub graphical lasso using ADMM Algorithm (see Algorithm 1) described in Tan et al. (2014), which estimates a sparse inverse covariance matrix with hub nodes. The estimated inverse covariance matrix can be decomposed into Z + V + t(V): Z is a sparse matrix and V is a matrix that contains dense columns, each column corresponding to a hub node.

The default value of lambda2=100000 and lambda3=100000 will yield the graphical lasso estimate as in Friedman et al. (2007) 'Sparse inverse covariance estimation with lasso'.

hglasso 11

Note that tuning parameters lambda1 determines the sparsity of the matrix Z, lambda2 determines the sparsity of the selected hub nodes, and lambda3 determines the selection of hub nodes.

This algorithm uses a block diagonal screening rule to speed up computations considerably. Details are given in Theorem 1 in Tan et al. (2014) 'Learning graphical models with hubs'. The idea is as follow: we first check whether the solution to the hglasso problem will be block diagonal, for a given set of tuning parameters, using Theorem 1. If so, then one can simply apply hglasso to each block separately, leading to massive speed improvements. Similar idea has been used to obtain a sparse inverse covariance matrix as in Friedman et al. (2007) in the glasso package.

Value

an object of class hglasso.

Amog some internal variables, this object include the elements

Theta is the estimated inverse covariance matrix. Note that Theta = Z + V +

t(V).

V is the estimated matrix that contains hub nodes used to compute Theta.

Z is the estimated sparse matrix used to compute Theta.

objective Objective is the minimized objective value of the loss-function considered in

Section 3 of Tan et al. (2014).

hubind Indices for features that are estimated to be hub nodes

Author(s)

Kean Ming Tan

References

Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.

Friedman et al. (2007). Sparse inverse covariance estimation with the lasso. Biostatistics, 9(3):432-441.

Witten et al. (2011). New insights and faster computations for the graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892-900.

See Also

```
image.hglasso\ plot.hglasso\ summary.hglasso\ hglassoBIC
```

12 hglassoBIC

```
set.seed(1)
n=100
p = 100
# A network with 4 hubs
network<-HubNetwork(p,0.99,4,0.1)</pre>
Theta <- network$Theta
truehub <- network$hubcol</pre>
# The four hub nodes have indices 14, 42, 45, 78
print(truehub)
# Generate data matrix x
x <- rmvnorm(n,rep(0,p),solve(Theta))</pre>
x < - scale(x)
# Run Hub Graphical Lasso to estimate the inverse covariance matrix
res1 <- hglasso(cov(x), 0.3, 0.3, 1.5)
# print out a summary of the object hglasso
summary(res1)
# we see that the estimated hub nodes have indices 14, 42, 45, 78
# We successfully recover the 4 hub nodes
# Run hglasso using with and without warm start.
# system.time(hglasso(cov(x),0.31,0.3,1.5))
# system.time(hglasso(cov(x),0.31,0.3,1.5,start="warm",var.init=res1))
# Run hglasso with larger lambda2, encouraging the hub nodes to be more sparse
res2 <- hglasso(cov(x), 0.3, 0.35, 1.5)
# Run hglasso with lambda2=lambda3=100000, the solution is the
# same as the graphical lasso solution obtain from glasso package
res3 <- hglasso(cov(x),0.3)
res4 <- glasso(cov(x),0.3,penalize.diagonal=FALSE)</pre>
# print the frobenius norm of the difference between the two estimates
print(sum((res3$Theta-res4$wi)^2))
```

hglassoBIC

BIC-type criterion for hglasso

Description

This function calculates the BIC-type criterion for tuning parameter selection for hglasso proposed in Section 3.4 in Tan et al. (2014)

Usage

```
hglassoBIC(x, S, c=0.2)
```

hglassoBIC 13

Arguments

x An object of class hglasso.

S A p by p correlation/covariance matrix. Cannot contain missing values.

c A constant between 0 and 1. When c is small, the BIC-type criterion will favor

more hub nodes. The default value is c=0.2.

Value

BIC The calculated BIC-type criterion in Section 3.4 in Tan et al. (2014).

Author(s)

Kean Ming Tan

References

Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.

See Also

hglasso

```
#library(mvtnorm)
#library(glasso)
#set.seed(1)
#n=100
#p=100
# A network with 4 hubs
#network<-HubNetwork(p,0.99,4,0.1)</pre>
#Theta <- network$Theta</pre>
#truehub <- network$hubcol</pre>
# The four hub nodes have indices 14, 42, 45, 78
#print(truehub)
# Generate data matrix x
#x <- rmvnorm(n,rep(0,p),solve(Theta))</pre>
#x <- scale(x)</pre>
#S <- cov(x)
# Run Hub Graphical Lasso with different tuning parameters
#lambdas2 <- seq(0,0.5,by=0.05)
#BICcriterion <- NULL
#for(lambda2 in lambdas2){
#res1 <- hglasso(S,0.3,lambda2,1.5)</pre>
#BICcriterion <- c(BICcriterion,hglassoBIC(res1,S)$BIC)</pre>
#}
#lambda2 <- lambdas2[which(BICcriterion==min(BICcriterion))]</pre>
```

14 HubNetwork

HubNetwork	Hub network generation	

Description

Generate an inverse covariance matrix, covariance matrix, or binary network with hub structure

Usage

```
HubNetwork(p, sparsity, hubnumber, hubsparsity, type = "Gaussian")
```

Arguments

p The number of features sparsity Sparsity of the network

hubnumber The number of hubs in the network hubsparsity Sparsity level within each hub

type Type of network. The default value type="Gaussian" generates an inverse co-

variance matrix. type="covariance" generates a covariance matrix with hubs.

type="binary" generates a binary network with hubs.

Value

Theta Theta is the generated inverse covariance matrix, covariance matrix, or binary

network.

hubcol hubcol contains indices for features that are hubs.

Author(s)

Kean Ming Tan

References

Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.

```
# Generate inverse covariance matrix with 5 hubs
# 30% of the elements within a hub are zero
# 95% of the elements that are not within hub nodes are zero
p <- 100
Theta <- HubNetwork(p,0.95,5,0.3)$Theta
# Generate covariance matrix with 5 hubs with similar structure
Sigma <- HubNetwork(p,0.95,5,0.3,type="covariance")$Theta</pre>
```

image.hglasso 15

```
# Generate binary network with 2 hubs with p=10
Theta <- HubNetwork(p=10,0.95,2,0.3,type="binary")$Theta
```

image.hglasso

Image plot of an object of class hglasso, hcov, or hbn

Description

This function plots a hglasso or hcov — the estimated matrix V and Z from hglasso, hcov, or hbn

Usage

```
## S3 method for class 'hglasso'
image(x, ...)
```

Arguments

x an object of class hglasso, hcov, or hbn.... additional parameters to be passed to image.

Details

The estimated inverse covariance matrix from hglasso, covariance matrix from hcov, and estimated binary network hbn can be decomposed as Z + V + t(V), where V is a matrix that contains hub nodes. This function creates image plots of Z and V.

Author(s)

Kean Ming Tan

References

Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.

See Also

plot.hglasso summary.hglasso hglasso hcov hbn

16 plot.hglasso

```
p=100

# A network with 4 hubs
Theta<-HubNetwork(p,0.99,4,0.1)$Theta

# Generate data matrix x
x <- rmvnorm(n,rep(0,p),solve(Theta))
x <- scale(x)

# Run Hub Graphical Lasso to estimate the inverse covariance matrix
res1 <- hglasso(cov(x),0.3,0.2,2)

# image plots for the matrix V and Z
image(res1)
dev.off()</pre>
```

plot.hglasso

Plot an object of class hglasso, hcov, or hbn

Description

This function plots an object hglasso or hcov — graphical representation of the estimated inverse covariance matrix from hglasso, covariance matrix from hcov, or binary network from hbn

Usage

```
## S3 method for class 'hglasso'
plot(x, layout=NULL,...)
```

Arguments

x an object of class hglasso, hcov, or hbn.
layout the layout of the graph to use. If not specified, layout.kamada.kawai is used.
... additional parameters to be passed to plot.igraph.

Details

This function plots a graphical representation of the estimated inverse covariance matrix or covariance matrix. The hubs are colored in red and has a large vertex size. Features indices for hubs are shown.

Author(s)

Kean Ming Tan

summary.hglasso 17

References

Tan et al. (2014). Learning graphical models with hubs. To appear in Journal of Machine Learning Research. arXiv.org/pdf/1402.7349.pdf.

See Also

```
image.hglasso summary.hglasso hglasso hcov hbn
```

Examples

```
# Example from Figure 1 in the manuscript
# A toy example to illustrate the results from
# Hub Graphical Lasso
library(mvtnorm)
set.seed(1)
n=100
p=100
# A network with 4 hubs
Theta<-HubNetwork(p,0.99,4,0.1)$Theta
# Generate data matrix x
x <- rmvnorm(n,rep(0,p),solve(Theta))</pre>
x < - scale(x)
# Run Hub Graphical Lasso to estimate the inverse covariance matrix
res1 <- hglasso(cov(x), 0.3, 0.3, 1.5)
# Graphical representation of the estimated Theta
plot(res1,main="conditional independence graph")
```

summary.hglasso

Plot an object of class hglasso, hcov, or hbn

Description

This function provides some information for an object hglasso, hcov, or hbn.

Usage

```
## S3 method for class 'hglasso'
summary(object, ...)
```

Arguments

```
object an object of class hglasso, hcov, or hbn.
... any other arguments passed to print.
```

18 summary.hglasso

Details

Some information for an object hglasso, hcov, or hbn: (1) The number of observations n and the number of features p. (2) The number of edges in Theta, V, and Z. (3) The indices for hub nodes, and also the number of edges within each hub node.

Author(s)

Kean Ming Tan

References

Tan et al. (2014). Learning graphical models with hubs. Journal of Machine Learning Research 15(Oct):3297-3331.

See Also

image.hglasso plot.hglasso hglasso hcov hbn

Examples

See example in hglasso, hcov, or hbn.

Index

```
* package
    hglasso-package, 2
binaryMCMC, 2, 4, 6
hbn, 2, 3, 5, 15–18
hcov, 2, 3, 7, 15–18
hglasso, 2, 3, 10, 12, 13, 15–18
hglasso-package, 2
hglassoBIC, 2, 11, 12
HubNetwork, 2, 4, 14
image, 15
image.hbn (image.hglasso), 15
image.hcov, 9
image.hcov (image.hglasso), 15
image.hglasso, 2, 6, 11, 15, 17, 18
layout.kamada.kawai, 16
plot.hbn (plot.hglasso), 16
plot.hcov, 9
plot.hcov (plot.hglasso), 16
plot.hglasso, 2, 6, 11, 15, 16, 18
{\tt plot.igraph}, {\color{red} 16}
summary.hbn (summary.hglasso), 17
summary.hcov, 9
summary.hcov (summary.hglasso), 17
summary.hglasso, 2, 6, 11, 15, 17, 17
```