Package 'hierSDR'

September 23, 2021
Type Package
Title Hierarchical Sufficient Dimension Reduction
Version 0.1
Description Provides semiparametric sufficient dimension reduction for central mean sub-spaces for heterogeneous data defined by combinations of binary factors (such as chronic condi-tions). Subspaces are estimated to be hierarchically nested to respect the structure of subpopula-tions with overlapping characteristics. This package is an implementation of the pro-posed methodology of Huling and Yu (2021) doi:10.1111/biom.13546.
BugReports https://github.com/jaredhuling/hierSDR/issues
License GPL-2
Encoding UTF-8
Depends R (>= 3.2.0), MASS, Matrix, locfit, lbfgs
Imports numDeriv, optimx
RoxygenNote 7.1.1
NeedsCompilation no
Author Jared Huling [aut, cre]
Maintainer Jared Huling jaredhuling@gmail.com
Repository CRAN
Date/Publication 2021-09-23 18:20:02 UTC
R topics documented:
angle 2
hier.phd.nt 2
hier.sphd 4
phd 7
plot.hier_sdr_fit 8
projnorm 8
semi.phd 9
simulate_data 11
Index 13

```
angle Angle between two subspaces
```


Description

Measures angle between two subspaces. Smallest value is 0 , largest is 90 from http://www4.stat.ncsu.edu/~li/software/Groupl http://lexinli.biostat.berkeley.edu/softwares/dr/GroupDR.R

Usage

```
angle(B1, B2)
```


Arguments

B1	first matrix
B2	second matrix

Value

scalar value of the angle between B1 and B2

Examples

```
## case where any relation between b1 and b2 is random
b1 <- matrix(rnorm(10 * 2), ncol = 2)
b2 <- matrix(rnorm(10 * 2), ncol = 2)
angle(b1, b2)
## angle here should be small
b1 <- matrix(rnorm(10 * 2), ncol = 2)
b2 <- b1 + matrix(rnorm(10 * 2, sd = 0.2), ncol = 2)
angle(b1, b2)
```

hier.phd.nt Main hierarchical SDR fitting function

Description

fits hierarchical SDR models

Usage

```
hier.phd.nt(
    \(x\),
    \(y\),
    z,
    z.combinations,
    d,
    weights \(=\operatorname{rep}(1 \mathrm{~L}, \operatorname{NROW}(y))\),
    constrain. none. subpop = TRUE,
    pooled = FALSE,
)
```


Arguments

$x \quad$ an $n x p$ matrix of covariates, where each row is an observation and each column is a predictor
$y \quad$ vector of responses of length n
$z \quad$ an $n \times C$ matrix of binary indicators, where each column is a binary variable indicating the presence of a binary variable which acts as a stratifying variable. Each combination of all columns of z pertains to a different subpopulation. WARNING: do not use too many binary variables in z or else it will quickly result in subpopulations with no observations
z. combinations a matrix of dimensions $2^{\wedge} \mathrm{C} x \mathrm{C}$ with each row indicating a different combination of the possible values in z. Each combination represents a subpopulation. This is necessary because we need to specify a different structural dimension for each subpopulation, so we need to know the ordering of the subpopulations so we can assign each one a structural dimension
d
an integer vector of length $2^{\wedge} \mathrm{C}$ of structural dimensions. Specified in the same order as the rows in z.combinations
weights vector of observation weights
constrain. none.subpop
should the "none" subpopulation be constrained to be contained in every other subpopulation's dimension reduction subspace? Recommended to set to TRUE
pooled should the estimator be a pooled estimator?
... not used

Value

A list with the following elements

- beta a list of estimated sufficient dimension reduction matrices, one for each subpopulation
- directions a list of estimated sufficient dimension reduction directions (i.e. the reduced dimension predictors/variables), one for each subpopulation. These have number of rows equal to the sample size for the subpopulation and number of columns equal to the specified dimensions of the reduced dimension spaces.
- y.list a list of vectors of responses for each subpopulation
- z.combinations the z.combinations specified as an input
- cov list of variance covariance matrices for the covariates for each subpopulation
- sqrt.inv.cov list of inverse square roots of the variance covariance matrices for the covariates for each subpopulation. These are used for scaling

Examples

```
library(hierSDR)
```

hier.sphd Main hierarchical sufficient dimension reduction fitting function

Description

fits hierarchically nested sufficient dimension reduction models

Usage

hier.sphd(
x ,
y,
z,
z.combinations,
d,
weights $=\operatorname{rep}(1 \mathrm{~L}, \operatorname{NROW}(y))$,
maxit $=250 \mathrm{~L}$,
tol $=1 \mathrm{e}-09$,
h = NULL,
opt.method = c("lbfgs2", "lbfgs.x", "bfgs.x", "bfgs", "lbfgs", "spg", "ucminf", "CG",
"nlm", "nlminb", "newuoa"),
init.method = c("random", "phd"),
vic = TRUE,
grassmann = TRUE,
nn = NULL,
nn.try $=c(0.15,0.25,0.5,0.75,0.9,0.95)$,
n. random $=100 \mathrm{~L}$,
optimize.nn = FALSE,
separate.nn = FALSE,
constrain. none. subpop $=$ TRUE,
verbose = TRUE,
degree $=2$,
pooled = FALSE,
maxk $=5000$,
)

Arguments

X
y
Z
an nx p matrix of covariates, where each row is an observation and each column is a predictor
vector of responses of length n
an $n x C$ matrix of binary indicators, where each column is a binary variable indicating the presence of a binary variable which acts as a stratifying variable. Each combination of all columns of z pertains to a different subpopulation. WARNING: do not use too many binary variables in z or else it will quickly result in subpopulations with no observations
z. combinations a matrix of dimensions $2^{\wedge} \mathrm{C} x \mathrm{C}$ with each row indicating a different combination of the possible values in z. Each combination represents a subpopulation. This is necessary because we need to specify a different structural dimension for each subpopulation, so we need to know the ordering of the subpopulations so we can assign each one a structural dimension
d an integer vector of length $2^{\wedge} \mathrm{C}$ of structural dimensions. Specified in the same order as the rows in z . combinations
weights vector of observation weights
maxit maximum number of iterations for optimization routines
tol convergence tolerance for optimization routines. Defaults to 1e-6
h bandwidth parameter. By default, a reasonable choice is selected automatically
opt.method optimization method to use. Available choices are c("lbfgs2", "lbfgs.x", "bfgs.x", "bfgs", "lbfgs"
init.method method for parameter initialization. Either "random" for random initialization or "phd" for a principle Hessian directions initialization approach
vic logical value of whether or not to compute the VIC criterion for dimension determination
grassmann logical value of whether or not to enforce parameters to be on the Grassmann manifold
nn nearest neighbor parameter for locfit. raw
nn.try vector of nearest neighbor parameters for locfit. raw to try in random initialization
n. random integer number of random initializations for parameters to try
optimize.nn should nn be optimized? Not recommended
separate.nn should each subpopulation have its own nn? If TRUE, optimization takes much longer. It is rarely better, so recommended to set to FALSE
constrain. none.subpop
should the "none" subpopulation be constrained to be contained in every other subpopulation's dimension reduction subspace? Recommended to set to TRUE
verbose should results be printed along the way?
degree degree of kernel to use
pooled should the estimator be a pooled estimator?
maxk maxk parameter for locfit. raw. Set to a large number if an out of vertex space error occurs.
extra arguments passed to locfit. raw

Value

A list with the following elements

- beta a list of estimated sufficient dimension reduction matrices, one for each subpopulation
- beta.init a list of the initial sufficient dimension reduction matrices, one for each subpopulation - do not use, just for the sake of comparisons
- directions a list of estimated sufficient dimension reduction directions (i.e. the reduced dimension predictors/variables), one for each subpopulation. These have number of rows equal to the sample size for the subpopulation and number of columns equal to the specified dimensions of the reduced dimension spaces.
- y.list a list of vectors of responses for each subpopulation
- z.combinations the z.combinations specified as an input
- cov list of variance covariance matrices for the covariates for each subpopulation
- sqrt.inv.cov list of inverse square roots of the variance covariance matrices for the covariates for each subpopulation. These are used for scaling
- solver.obj object returned by the solver/optimization function
- value value of the objective function at the solution
- value.init value of the objective function at the initial beta (beta.init) used
- vic.est.eqn the average (unpenalized) VIC value across the r different input values. This assesses model fit
- vic.eqns the individual (unpenalized) VIC values across the r input values. Not used.
- vic the penalized VIC value. This is used for dimension selection, with dimensions chosen by the set of dimensions that minimize this penalized vic value that trades off model complexity and model fit

Examples

library(hierSDR)
set.seed(123)
dat <- simulate_data(nobs = 200, nvars = 6,
x.type = "some_categorical",
sd.y = 1, model = 2)
x <- dat\$x \#\# covariates
z <- dat\$z \#\# factor indicators
y <- dat\$y \#\# response
dat\$beta \#\# true coefficients that generate the subspaces
dat\$z.combinations \#\# what combinations of z represent different subpops
\#\# correct structural dimensions:
dat\$d.correct

```
## fit hier SPHD model:
hiermod <- hier.sphd(x, y, z, dat$z.combinations, d = dat$d.correct,
            verbose = FALSE, maxit = 250, maxk = 8200)
## validated inf criterion for choosing dimensions (the smaller the better)
hiermod$vic
cbind(hiermod$beta[[4]], NA, dat$beta[[4]])
## angles between estimated and true subspaces for each population:
mapply(function(x,y) angle(x,y), hiermod$beta, dat$beta)
## projection difference norm between estimated and true subspaces for each population:
mapply(function(x,y) projnorm(x,y), hiermod$beta, dat$beta)
```

phd PHD SDR fitting function

Description

fits SDR models (PHD approach)

Usage

$\operatorname{phd}(x, y, d=5 L)$

Arguments

$\mathrm{x} \quad$ an $\mathrm{n} x \mathrm{p}$ matrix of covariates, where each row is an observation and each column is a predictor
$y \quad$ vector of responses of length n
d an integer representing the structural dimension

Value

A list with the following elements

- beta.hat estimated sufficient dimension reduction matrix
- eta.hat coefficients on the scale of the scaled covariates
- cov variance covariance matric for the covariates
- sqrt.inv.cov inverse square root of the variance covariance matrix for the covariates. Used for scaling
- M matrix from principal Hessian directions
- eigenvalues eigenvalues of the M matrix
plot.hier_sdr_fit Plotting hierarchical SDR models

Description

Plots hier.sdr objects

Usage

\#\# S3 method for class 'hier_sdr_fit' plot(x, ...)

Arguments

$\begin{array}{ll}\mathrm{X} & \text { fitted object returned by hier. sphd } \\ \ldots & \text { not used }\end{array}$

Value

No return value, called for side effects

See Also

hier. sphd for function which fits hierarchical SDR model

Examples

library(hierSDR)
projnorm Norm of difference of projections

Description

Measures distance between two subspaces

Usage

projnorm(B1, B2)

Arguments

B1	first matrix
B2	second matrix

Value

scalar value of the projection difference norm between B1 and B2

Examples

```
    b1 <- matrix(rnorm(10 * 2), ncol = 2)
    b2 <- matrix(rnorm(10 * 2), ncol = 2)
    projnorm(b1, b2)
    ## angle here should be smalls
    b1 <- matrix(rnorm(10 * 2), ncol = 2)
    b2 <- b1 + matrix(rnorm(10 * 2, sd = 0.2), ncol = 2)
    projnorm(b1, b2)
```

 semi. phd
 Semiparametric PHD SDR fitting function

Description

fits semiparametric SDR models (PHD approach)

Usage

```
semi.phd(
    x,
    y,
    d = 5L,
    maxit = 100L,
    h = NULL,
    opt.method = c("lbfgs.x", "bfgs", "lbfgs2", "bfgs.x", "lbfgs", "spg", "ucminf", "CG",
        "nlm", "nlminb", "newuoa"),
    nn = 0.95,
    init.method = c("random", "phd"),
    optimize.nn = FALSE,
    verbose = TRUE,
    n.samples = 100,
    degree = 2,
    vic = TRUE,
    ...
)
```


Arguments

x
y
d
maxit
h
opt.method
nn
init.method
optimize.nn
verbose
n. samples
degree
vic
c
an nx p matrix of covariates, where each row is an observation and each column is a predictor
vector of responses of length n an integer representing the structural dimension
maximum number of iterations
bandwidth parameter. By default, a reasonable choice is selected automatically
optimization method to use. Available choices are c("lbfgs2", "lbfgs.x", "bfgs.x", "bfgs" , "lbfgs"
nearest neighbor parameter for locfit. raw
method for parameter initialization. Either "random" for random initialization or "phd" for a principle Hessian directions initialization approach
...
should results be printed along the way? number of samples for the random initialization method
degree of kernel to use
logical value of whether or not to compute the VIC criterion for dimension determination
extra arguments passed to locfit. raw

Value

A list with the following elements

- beta estimated sufficient dimension reduction matrix
- beta.init initial sufficient dimension reduction matrix - do not use, just for the sake of comparisons
- cov variance covariance matric for the covariates
- sqrt.inv.cov inverse square root of the variance covariance matrix for the covariates. Used for scaling
- solver.obj object returned by the solver/optimization function
- vic the penalized VIC value. This is used for dimension selection, with dimension chosen to minimize this penalized vic value that trades off model complexity and model fit
simulate_data Simulate data with hierarchical subspaces

Description

Simulates data with hierarchical subspaces. Data are generated with two factors that induce heterogeneity

Usage

```
simulate_data(
        nobs,
        nvars,
        x.type = c("continuous", "some_categorical"),
        sd.y = 1,
        rho = 0.5,
        model = c("1", "2", "3")
)
```


Arguments

nobs	positive integer for the sample size per subpopulation
nvars	positive integer for the dimension
v.type	variable type for covariates, either "continuous" (where the covariates are mul- tivariate normal with a variance-matrix with AR-1 form with parameter rho) or "some_categorical" (where half covariates are continuous and the other half are binary with dependencies on the continuous covariates)
sd.y	standard deviation of responsee
rho correlation parameter for AR-1 covariance structure for continuous covariates	
model	model number used, either "1", "2", or "3", each corresponds to a different out- come model setting

Value

A list with the following elements

- x a matrix of covariates with number of rows equal to the total sample size and columns equal to the number of variables
- z a matrix with number of rows equal to the total sample size and columns as dummy variables indicating presence of a stratifying factor
- y a vector of all responses
- beta a list of the true sufficient dimension reduction matrices, one for each subpopulation
- z.combinations all possible combinations of the stratifying factors z
- snr scalar the observed signal-to-noise ratio for the response
- d.correct the true dimensions of the dimension reduction spaces

Examples

```
library(hierSDR)
set.seed(123)
dat <- simulate_data(nobs = 100, nvars = 6,
    x.type = "some_categorical",
    sd.y = 1, model = 2)
x <- dat$x ## covariates
z <- dat$z ## factor indicators
y <- dat$y ## response
dat$beta ## true coefficients that generate the subspaces
dat$snr ## signal-to-noise ratio
str(x)
str(z)
dat$z.combinations ## what combinations of z represent different subpops
## correct structural dimensions:
dat$d.correct
```


Index

angle, 2
hier.phd.nt, 2
hier.sphd, 4, 8
locfit.raw, 5, 10
phd, 7
plot.hier_sdr_fit, 8
projnorm, 8
semi.phd, 9
simulate_data, 11

