Package 'hrt'

September 8, 2021

Type Package

Title Heteroskedasticity Robust Testing
Version 1.0.1
Date 2021-09-08
Author David Preinerstorfer
Maintainer David Preinerstorfer david.preinerstorfer@ulb.be
Description Functions for testing affine hypotheses on the regression coefficient vector in regression models with heteroskedastic errors: (i) a function for computing various test statistics (in particular using $\mathrm{HC} 0-\mathrm{HC} 4$ covariance estimators based on unrestricted or restricted residuals); (ii) a function for numerically approximating the size of a test based on such test statistics and a user-supplied critical value; and, most importantly, (iii) a function for determining size-controlling critical values for such test statistics and a user-supplied significance level (also incorporating a check of conditions under which such a size-controlling critical value exists). The three functions are based on results in Poetscher and Preinerstorfer (2021) "'Valid Heteroskedasticity Robust Testing" arXiv:2104.12597.

License GPL-2
Imports methods, stats, Rcpp, CompQuadForm
LinkingTo Rcpp, RcppEigen
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-09-08 11:50:02 UTC

R topics documented:

hrt-package 2
critical.value 3
size 7
test.stat 11
Index 13

Description

The package hrt provides three functions in the context of testing affine restrictions on the regression coefficient vector in linear models with heteroskedastic (but independent) errors. The methods implemented in hrt are based on the article Pötscher and Preinerstorfer (2021). The package can be used to compute various heteroskedasticity robust test statistics; to numerically determine sizecontrolling critical values when the error vector is heteroskedastic and Gaussian (or, more generally, elliptically symmetric); and to compute the size of a test that is obtained from a heteroskedasticity robust test statistic and a user-supplied critical value.

Details

hrt provides three functions:

1. The function test. stat can be used to evaluate the test statistics $T_{u c}, T_{H e t}$ (with HC0-HC4 weights), $\tilde{T}_{u c}$, or $\tilde{T}_{H e t}$ (with HC0R-HC4R weights), as defined in Pötscher and Preinerstorfer (2021).
2. The function critical. value provides an implementation of Algorithm 3 in Pötscher and Preinerstorfer (2021), based on the auxiliary algorithm A equal to Algorithm 1 (if $q=1$) or Algorithm 2 (if $q>1$) in the same reference. This function can be used to determine size-controlling critical values for the test statistics $T_{u c}, T_{H e t}$ (with HC0-HC4 weights), $\tilde{T}_{u c}$, or $\tilde{T}_{H e t}$ (with HC0R-HC4R weights), whenever such critical values exist (which is checked numerically when the algorithm is applied).
3. The function size provides an implementation of Algorithm 1 or 2, respectively, in Pötscher and Preinerstorfer (2021), depending on whether $q=1$ or $q>1$. Given a user-supplied critical value, the respective algorithm can be used to determine the size of a test based on one of the test statistics $T_{u c}, T_{H e t}$ (with HC0-HC4 weights), $\tilde{T}_{u c}$, or $\tilde{T}_{H e t}$ (with HC0R-HC4R weights).
We refer the user to the description of the three functions below, and to Pötscher and Preinerstorfer (2021) for details concerning the framework, the test statistics, the algorithms, and the underlying theoretical results.

References

Pötscher, B. M. and Preinerstorfer, D. (2021). Valid Heteroskedasticity Robust Testing. arXiv:2104.12597

Description

This function provides an implementation of Algorithm 3 in Pötscher and Preinerstorfer (2021), based on Algorithm 1 (if $q=1$) or Algorithm 2 (if $q>1$) in the same reference as the auxiliary algorithm A. Which of the two algorithms is used is automatically determined as a function of q, the number of rows of R.

The user is referred to Pötscher and Preinerstorfer (2021) for definitions, a detailed description of the problems solved by the algorithms, and for a detailed description of the algorithms themselves.
Most of the input parameters to critical. value are actually used in the auxiliary Algorithm 1 or 2, respectively. Algorithm 1 is based on the function davies from the package CompQuadForm. The parameters lim and acc for davies can be supplemented by the user. Algorithms 1 and 2 are implemented using the function constrOptim from stats in Stages 1 and 2; this function is used with default parameters, but control parameters can be supplied by the user.

After determining a critical value for a given testing problem via the function critical.value, it is recommended that: (i) the user applies the function size to compute the size of the test corresponding to the critical value obtained; and (ii) to check whether the size obtained does coincide with (or is close to) the targeted level of significance (that is alpha). If (ii) is not the case, this is an indication of numerical issues, which potentially can be avoided by changing the input parameters responsible for the accuracy of the computations.

Usage

```
critical.value(alpha, R, X, hcmethod, restr.cov, Mp, M1, M2,
N0 = NULL, N1 = NULL, N2 = NULL, tol = 1e-08,
control.1 = list("reltol" = 1e-02, "maxit" = dim(X)[1]*20),
control.2 = list("reltol" = 1e-03, "maxit" = dim(X)[1]*30),
cores = 1, lower = 0, eps.close = .0001, lim = 30000, acc = 0.001,
size.tol = .001, maxit = 25, as.tol = 1e-08)
```


Arguments

alpha \quad Significance level. A real number in the interval $(0,1)$.
$\mathrm{R} \quad$ The restriction matrix. critical.value computes the (smallest) size-controlling critical value for a test of the hypothesis $R \beta=r$. R needs to be of full row rank, and needs to have the same number of columns as X .
$X \quad$ The design matrix X needs to be of full column rank. The number of columns of X must be smaller than the number of rows of X.
hcmethod Integer in [-1, 4]. Determines the method applied in the construction of the covariance estimator used in the test statistic. The value -1 corresponds to unadjusted (i.e., classical) F statistic without df adjustment; the value 0 corresponds to the HC 0 estimator; ...; the value 4 corresponds to the HC 4 estimator. Note that
in case restr.cov is TRUE the null-restricted versions of the covariance estimators are computed. Cf. Pötscher and Preinerstorfer (2021) and the references there for details.
restr.cov

Mp

M1

TRUE or FALSE. Covariance matrix estimator based on null-restricted (TRUE) or unrestricted (FALSE) residuals.
This input is used in Algorithm 1 or 2, respectively. Mp is a positive integer (should be chosen large, e.g., 50000; but the feasibility depends on the dimension of X, etc). Mp determines M_{0} in Algorithm 1 or 2 (i.e., A), respectively, that is, the number of initial values chosen in Stage 0 of that algorithm. The way initial values (i.e., the sets of variance covariance matrices Σ_{j} in Stage 0 of the algorithm; the diagonal entries of each Σ_{j} sum up to 1) are chosen is as follows:

1. If $q=1$ and lower $=0$, one of the initial values Σ_{j} is a matrix which maximizes the expectation of the quadratic form $y \mapsto y^{\prime} \Sigma^{1 / 2} A_{C} \Sigma^{1 / 2} y$ under an n-variate standard normal distribution. Here, A_{C} is a matrix that is defined Pötscher and Preinerstorfer (2021). If diagonal entries of this maximizer are 0 , then they are replaced by the value of eps.close (and the other values are adjusted so that the diagonal sums up to 1).
2. One starting value Σ_{j} is a diagonal matrix with constant diagonal entries.
3. If lower is zero, then (i) $\lceil M p / 4\rceil-1$ covariance matrices Σ_{j} are drawn by sampling their diagonals $\tau_{1}^{2}, \ldots, \tau_{n}^{2}$ from a uniform distribution on the unit simplex in R^{n}; and (ii) the remaining $M_{p}-(\lceil M p / 4\rceil-1)$ covariance matrices Σ_{j} are each drawn by first sampling a vector $\left(t_{1}, \ldots, t_{n}\right)^{\prime}$ from a uniform distribution on the unit simplex in R^{n}, and by then obtaining the diagonal $\tau_{1}^{2}, \ldots, \tau_{n}^{2}$ of Σ_{j} via $\left(t_{1}^{2}, \ldots, t_{n}^{2}\right) / \sum_{i=1}^{n} t_{i}^{2}$. If lower is nonzero, then the initial values are drawn analogously, but from a uniform distribution on the subset of the unit simplex in R^{n} corresponding to the restriction imposed by the lower bound lower.
4. n starting values equal to covariance matrices with a single dominant diagonal entry and all other diagonal entries constant. The size of the dominant diagonal entry is regulated via the input parameters eps. close and lower. In case lower is nonzero, the size of the dominant diagonal entry equals $1-(n-1) *($ lower + eps.close $)$. In case lower is zero, the size of the dominant diagonal entry equals $1-e p s . c l o s e$.
This input is used in Algorithm 1 or 2, respectively. A positive integer (should be chosen large, e.g., 500 ; but the feasibility depends on the dimension of X, etc). Corresponds to M_{1} in the description of Algorithm 1 and 2 in Pötscher and Preinerstorfer (2021). M1 must not exceed Mp.
This input is used in Algorithm 1 or 2, respectively. A positive integer. Corresponds to M_{2} in the description of Algorithm 1 and 2 in Pötscher and Preinerstorfer (2021). M2 must not exceed M1.
This input is needed in Algorithm 2. Only used in case $q>1$ (i.e., when Algorithm 2 is used). A positive integer. Corresponds to N_{0} in the description of Algorithm 2 in Pötscher and Preinerstorfer (2021).
This input is needed in Algorithm 2. Only used in case $q>1$ (i.e., when Algorithm 2 is used). A positive integer. Corresponds to N_{1} in the description of Algorithm 2 in Pötscher and Preinerstorfer (2021). N1 should be greater than N0.

N2	This input is needed in Algorithm 2. Only used in case $q>1$ (i.e., when Algorithm 2 is used). A positive integer. Corresponds to N_{2} in the description of Algorithm 2 in Pötscher and Preinerstorfer (2021). N2 should be greater than N1.
tol	This input is used in Algorithm 1 or 2, respectively. (Small) positive real number. Tolerance parameter used in checking invertibility of the covariance matrix in the test statistic. Default is $1 \mathrm{e}-08$.
control. 1	This input is used in Algorithm 1 or 2, respectively. Control parameters passed to the constrOptim function in Stage 1 of Algorithm 1 or 2, respectively. Default is control. $1=1$ ist ("reltol" $=1 \mathrm{e}-02$, "maxit" $=\operatorname{dim}(X)[1] * 20)$.
control. 2	This input is used in Algorithm 1 or 2, respectively. Control parameters passed to the constrOptim function in Stage 2 of Algorithm 1 or 2, respectively. Default is control.2 = list ("reltol" = 1e-03, "maxit" $=\operatorname{dim}(X)[1] * 30)$.
cores	The number of CPU cores used in the (parallelized) computations. Default is 1. Parallelized computation is enabled only if the compiler used to build hrt supports OpenMP.
lower	Number in $\left[0, n^{-1}\right.$) (note that the diagonal of Σ is normalized to sum up to 1 ; if lower >0, then lower corresponds to what is denoted τ_{*} in Pötscher and Preinerstorfer (2021)). lower specifies a lower bound on each diagonal entry of the (normalized) covariance matrix in the covariance model for which the user wants to obtain a critical value that achieves size control. If this lower bound is nonzero (which is the non-standard choice), then the size is only computed over all covariance matrices, which are restricted such that their minimal diagonal entry is not smaller than lower. The relevant optimization problems in Algorithm 1 and 2 are then carried out only over this restricted set of covariance matrices. The size will then in general depend on lower. See the relevant discussions concerning restricted heteroskedastic covariance models in Pötscher and Preinerstorfer (2021). Default is 0 , which is the recommended choice, unless there are strong reasons implying a specific lower bound on the variance in a given application.
eps.close	(Small) positive real number. This determines the size of the dominant entry in the choice of the initial values as discussed in the description of the input Mp above. Default is 1e-4.
lim	This input is needed in Algorithm 1. Only used in case $q=1$ (i.e., when Algorithm 1 is used). Input parameter for the function davies. Default is 30000.
acc	This input is needed in Algorithm 1. Only used in case $q=1$ (i.e., when Algorithm 1 is used). Input parameter for the function davies. Default is 1e-3.
size.tol	(Small) positive real number. ϵ in Algorithm 3. Default is 1e-3.
maxit	Maximum number of iterations in the while loop of Algorithm 3. Default is 25.
as.tol	(Small) positive real number. Tolerance parameter used in checking rank conditions for verifying Assumptions 1, 2, and for checking a non-constancy condition on the test statistic in case hcmethod is not -1 and restr.cov is TRUE. as.tol is also used in the rank computations required for computing lower bounds for size-controlling critical values. Furthermore, as.tol is used in checking the sufficient conditions for existence of a size-controlling critical value provided in Pötscher and Preinerstorfer(2021). Default is 1e-08.

Details

For details see the relevant sections in Pötscher and Preinerstorfer (2021), in particular the description of Algorithms 1 and 2 in the Appendix.

Value

The output of critical. value is the following:
critical.value The critical value obtained by Algorithm 3.
approximate.size
The approximate size of the test based on the returned critical value.
iter The number of iterations performed. If iter is smaller than maxit, then the algorithm determined because the required level of accuracy was achieved.

References

Pötscher, B. M. and Preinerstorfer, D. (2021). Valid Heteroskedasticity Robust Testing. arXiv:2104.12597

See Also

davies, constrOptim.

Examples

```
#critical value for the classical (uncorrected) F-test in a location model
#with unrestricted heteroskedasticity
#it is known that (in this very special case) the conventional critical value
#C <- qt(.975, df = 9)^2
#is size-controlling (thus the resulting size should be 5% (approximately))
R <- matrix(1, nrow = 1)
X <- matrix(rep(1, length = 10), nrow = 10, ncol = 1)
hcmethod <- -1
restr.cov <- FALSE
Mp <- 1000
M1 <- 5
M2 <- 1
#here, the parameters are chosen such that the run-time is low
#to guarantee a high accuracy level in the computation,
#Mp, M1 and M2 should be chosen much higher
critical.value(alpha = .05, R, X, hcmethod, restr.cov, Mp, M1, M2)
```


Description

This function provides an implementation of Algorithm 1 (if $q=1$) or 2 (if $q>1$), respectively, in Pötscher and Preinerstorfer (2021). Which of the two algorithms is applied is automatically determined as a function of q.
The user is referred to the just-mentioned article for definitions, a detailed description of the problem solved the algorithms, and for a detailed description of the algorithms themselves.
Algorithm 1 is based on the function davies from the package CompQuadForm. The parameters lim and acc for davies can be supplemented by the user. Algorithms 1 and 2 are implemented using the function constrOptim from stats in Stages 1 and 2; this function is used with default parameters, but control parameters can be supplied by the user.

Usage

```
size(C, R, X, hcmethod, restr.cov, Mp, M1, M2,
N0 = NULL, N1 = NULL, N2 = NULL, tol = 1e-08,
control.1 = list("reltol" = 1e-02, "maxit" = dim(X)[1]*20),
control.2 = list("reltol" = 1e-03, "maxit" = dim(X)[1]*30),
cores = 1, lower = 0, eps.close = .0001, lim = 30000, acc = 0.001,
levelCl = 0, LBcheck = FALSE, as.tol = 1e-08)
```


Arguments

C Critical value. A positive real number (for negative critical values the size of the test equals 1).
$\mathrm{R} \quad$ The restriction matrix. size computes the size of a test for the hypothesis $R \beta=$ r. R needs to be of full row rank, and needs to have the same number of columns as X .
X
The design matrix X needs to be of full column rank. The number of columns of X must be smaller than the number of rows of X.
hcmethod Integer in [-1, 4]. Determines the method applied in the construction of the covariance estimator used in the test statistic. The value -1 corresponds to the unadjusted (i.e., classical) F statistic without df adjustment; the value 0 corresponds to the HC 0 estimator; ...; the value 4 corresponds to the HC 4 estimator. Note that in case restr.cov is TRUE the null-restricted versions of the covariance estimators are computed. Cf. Pötscher and Preinerstorfer (2021) and the references there for details.
restr.cov TRUE or FALSE. Covariance matrix estimator based on null-restricted (TRUE) or unrestricted (FALSE) residuals.

Mp A positive integer (should be chosen large, e.g., 50000; but the feasibility depends on the dimension of X , etc). Mp determines M_{0} in Algorithm 1 or 2,
respectively, that is, the number of initial values chosen in Stage 0 of that algorithm. The way initial values (i.e., the sets of variance covariance matrices Σ_{j} in Stage 0 of the algorithm; the diagonal entries of each Σ_{j} sum up to 1) are chosen is as follows:

1. If $q=1$ and lower $=0$, one of the initial values Σ_{j} is a matrix which maximizes the expectation of the quadratic form $y \mapsto y^{\prime} \Sigma^{1 / 2} A_{C} \Sigma^{1 / 2} y$ under an n-variate standard normal distribution. Here, A_{C} is a matrix that is defined Pötscher and Preinerstorfer (2021). If diagonal entries of this maximizer are 0 , then they are replaced by the value of eps.close (and the other values are adjusted so that the diagonal sums up to 1).
2. One starting value Σ_{j} is a diagonal matrix with constant diagonal entries.
3. If lower is zero, then (i) $\lceil M p / 4\rceil-1$ covariance matrices Σ_{j} are drawn by sampling their diagonals $\tau_{1}^{2}, \ldots, \tau_{n}^{2}$ from a uniform distribution on the unit simplex in R^{n}; and (ii) the remaining $M_{p}-(\lceil M p / 4\rceil-1)$ covariance matrices Σ_{j} are each drawn by first sampling a vector $\left(t_{1}, \ldots, t_{n}\right)^{\prime}$ from a uniform distribution on the unit simplex in R^{n}, and by then obtaining the diagonal $\tau_{1}^{2}, \ldots, \tau_{n}^{2}$ of Σ_{j} via $\left(t_{1}^{2}, \ldots, t_{n}^{2}\right) / \sum_{i=1}^{n} t_{i}^{2}$. If lower is nonzero, then the initial values are drawn analogously, but from a uniform distribution on the subset of the unit simplex in R^{n} corresponding to the restriction imposed by the lower bound lower.
4. n starting values equal to covariance matrices with a single dominant diagonal entry and all other diagonal entries constant. The size of the dominant diagonal entry is regulated via the input parameters eps.close and lower. In case lower is nonzero, the size of the dominant diagonal entry equals $1-(n-1) *($ lower + eps.close $)$. In case lower is zero, the size of the dominant diagonal entry equals $1-$ eps.close.
5. If levelCl is nonzero (see the description of levelCl below for details concerning this input), then one further initial value may be obtained by: (i) checking whether C exceeds 5 times the critical value C_{H}, say, for which the rejection probability under homoskedasticity equals 1 - level $C l$; and (ii) if this is the case, running the function size (with the same input parameters, but with levelCl set to 0 and M2 set to 1) on the critical value C_{H}, and then using the output second.stage. parameter as a further initial value.

A positive integer (should be chosen large, e.g., 500; but the feasibility depends on the dimension of X, etc). Corresponds to M_{1} in the description of Algorithm 1 and 2 in Pötscher and Preinerstorfer (2021). M1 must not exceed Mp.
A positive integer. Corresponds to M_{2} in the description of Algorithm 1 and 2 in Pötscher and Preinerstorfer (2021). M2 must not exceed M1.
Only used in case $q>1$ (i.e., when Algorithm 2 is used). A positive integer. Corresponds to N_{0} in the description of Algorithm 2 in Pötscher and Preinerstorfer (2021).
Only used in case $q>1$ (i.e., when Algorithm 2 is used). A positive integer. Corresponds to N_{1} in the description of Algorithm 2 in Pötscher and Preinerstorfer (2021). N1 should be greater than N0.
Only used in case $q>1$ (i.e., when Algorithm 2 is used). A positive integer. Corresponds to N_{2} in the description of Algorithm 2 in Pötscher and Preinerstorfer (2021). N2 should be greater than N1.

tol	(Small) positive real number. Tolerance parameter used in checking invertibility of the covariance matrix in the test statistic. Default is 1e-08.
control. 1	Control parameters passed to the constrOptim function in Stage 1 of Algorithm 1 or 2 , respectively. Default is control. $1=\operatorname{list}(" r e l t o l "=1 e-02$, "maxit" $=\operatorname{dim}(X)[1] * 20)$.
control. 2	Control parameters passed to the constrOptim function in Stage 2 of Algorithm 1 or 2 , respectively. Default is control. $2=\operatorname{list}(" r e l t o l "=1 e-03$, "maxit" $=\operatorname{dim}(X)[1] * 30)$.
cores	The number of CPU cores used in the (parallelized) computations. Default is 1. Parallelized computation is enabled only if the compiler used to build hrt supports OpenMP.
lower	Number in $\left[0, n^{-1}\right.$) (note that the diagonal of Σ is normalized to sum up to 1 ; if lower >0, then lower corresponds to what is denoted τ_{*} in Pötscher and Preinerstorfer (2021)). lower specifies a lower bound on each diagonal entry of the (normalized) covariance matrix in the covariance model for which the user wants to compute the size. If this lower bound is nonzero, then the size is only computed over all covariance matrices, which are restricted such that their minimal diagonal entry is not smaller than lower. The relevant optimization problems in Algorithm 1 and 2 are then carried out only over this restricted set of covariance matrices. The size will then in general depend on lower. See the relevant discussions concerning restricted heteroskedastic covariance models in Pötscher and Preinerstorfer (2021). Default is 0 , which is the recommended choice, unless there are strong reasons implying a specific lower bound on the variance in a given application.
eps.close	(Small) positive real number. This determines the size of the dominant entry in the choice of the initial values as discussed in the description of the input Mp above. Default is $1 \mathrm{e}-4$.
lim	This input is needed in Algorithm 1. Only used in case $q=1$ (i.e., when Algorithm 1 is used). Input parameter for the function davies. Default is 30000.
acc	This input is needed in Algorithm 1. Only used in case $q=1$ (i.e., when Algorithm 1 is used). Input parameter for the function davies. Default is 1e-3.
levelCl	Number in $[0,1)$. This enters via the choice of the initial values as discussed in the input Mp above. levelCl should be used in case C is unusually large. In this case, the additional set of starting values provided may help to increase the accuracy of the size computation. Default is 0 .
LBcheck	Either FALSE (default) or TRUE. If TRUE, then C is compared to the theoretical lower bounds on size-controlling critical values in Pötscher and Preinerstorfer (2021). If the supplemented C is smaller than the respective lower bound, theoretical results imply that the size equals 1 and the function size is halted.
as.tol	(Small) positive real number. Tolerance parameter used in checking rank conditions for verifying Assumptions 1, 2, and for checking a non-constancy condition on the test statistic in case hcmethod is not -1 and restr.cov is TRUE. Furthermore, as.tol is used in the rank computations required for computing lower bounds for size-controlling critical values (in case LBcheck is TRUE or levelCl is nonzero). Default is $1 \mathrm{e}-08$.

Details

For details see the relevant sections in Pötscher and Preinerstorfer (2021), in particular the description of Algorithms 1 and 2 in the Appendix.

Value

The output of size is the following:
starting. parameters
The rows of this matrix are the initial values (diagonals of covariance matrices) that were used in Stage 1 of the algorithm, and which were chosen from the pool of initial values in Stage 0.
starting.rejection.probs
The null-rejection probabilities corresponding to the initial values used in Stage 1.
first.stage.parameters
The rows of this matrix are the parameters (diagonals of covariance matrices) that were obtained in Stage 1 of the algorithm.
first.stage. rejection.probs
The null-rejection probabilities corresponding to the first.stage. parameters.
second.stage. parameters
The rows of this matrix are the parameters (diagonals of covariance matrices) that were obtained in Stage 2 of the algorithm.
second.stage.rejection.probs
The null-rejection probabilities corresponding to the second. stage. parameters.
convergence Convergence codes returned from constrOptim in Stage 2 of the algorithm for each initial value.
size The size computed by the algorithm, i.e., the maximum of the second. stage.rejection.probs.

References

Pötscher, B. M. and Preinerstorfer, D. (2021). Valid Heteroskedasticity Robust Testing. arXiv:2104.12597

See Also

davies, constrOptim.

Examples

```
#size of the classical (uncorrected) F-test in a location model
#with conventional t-critical value (5% level)
#it is known that (in this very special case) the conventional critical value
#is size-controlling (i.e., the resulting size should be 5% (approximately))
C <- qt(.975, df = 9)^2
R <- matrix(1, nrow = 1)
```

```
X <- matrix(rep(1, length = 10), nrow = 10, ncol = 1)
hcmethod <- -1
restr.cov <- FALSE
Mp <- 100
M1 <- 5
M2 <- 1
#here, the parameters are chosen such that the run-time is low
#to guarantee a high accuracy level in the computation,
#Mp, M1 and M2 should be chosen much higher
size(C, R, X, hcmethod, restr.cov, Mp, M1, M2)
```

```
test.stat Computation of the test statistics
```


Description

This function computes the test statistics $T_{u c}, T_{H e t}$ (with HC0-HC4 weights), $\tilde{T}_{u c}$, or $\tilde{T}_{H e t}$ (with HC0R-HC4R weights) as defined in Pötscher and Preinerstorfer (2021).

Usage

test.stat(y, R, r, X, hcmethod, restr.cov, tol = 1e-08, cores = 1)

Arguments

y Either an observation vector, or a matrix the columns of which are observation vectors. The number of rows of an observation vector must coincide with the number of rows of the design matrix X.

R
r

X
hcmethod Integer in [-1, 4]. Determines the method applied in the construction of the covariance estimator used in the test statistic. The value -1 corresponds to unadjusted (i.e., classical) F statistic without df adjustment; the value 0 corresponds to the HC 0 estimator; ...; the value 4 corresponds to the HC 4 estimator. Note that in case restr.cov is TRUE the null-restricted versions of the covariance estimators are computed. Cf. Pötscher and Preinerstorfer (2021) and the references there for details.
restr.cov TRUE or FALSE. Covariance matrix estimator based on null-restricted (TRUE) or unrestricted (FALSE) residuals.

> tol (Small) positive real number. Tolerance parameter used in checking invertibility of the covariance matrix in the test statistic. Default is $1 \mathrm{e}-08$.
> cores The number of CPU cores used in the (parallelized) computations. Default is 1. Parallelized computation is enabled only if the compiler used to build hrt supports OpenMP.

Details

For details concerning the test statistics please see the relevant sections in Pötscher and Preinerstorfer (2021) .

Value

The function returns a list consisting of:

$$
\begin{aligned}
& \text { test.val Either a vector the entries of which correspond to the values of the test statistic } \\
& \text { evaluated at each column of the input matrix } y \text {, or, if } y \text { is a vector, the test statistic } \\
& \text { evaluated at } \mathrm{y} \text {. }
\end{aligned}
$$

References

Pötscher, B. M. and Preinerstorfer, D. (2021). Valid Heteroskedasticity Robust Testing. arXiv:2104.12597

Examples

```
n<- 20
y <- rnorm(n)
X <- cbind(rep(1, length = n), rnorm(n))
R <- matrix(1, nrow = 1, ncol = 2)
r <- 0
hcmethod <- 4
restr.cov <- FALSE
test.stat(y, R, r, X, hcmethod, restr.cov)
```


Index

constrOptim, 3, 5-7, 9, 10
critical.value, 3
davies, 3, 6, 7, 10
hrt (hrt-package), 2
hrt-package, 2
size, 7
test.stat, 11

