
Package ‘iconr’
February 16, 2021

Title Graphical and Spatial Analysis for Prehistoric Iconography

Version 0.1.0

Description Set of formal methods for studying archaeological iconographic datasets (rock-art, pot-
tery decoration, stelae, etc.) using network and spatial analysis (Alexan-
der 2008 <doi:10.11588/propylaeumdok.00000512>; Huet 2018 <https://hal.archives-
ouvertes.fr/hal-02913656>).

License GPL-2

Encoding UTF-8

LazyData true

Imports igraph, magick, rgdal, grDevices, graphics, utils

Suggests ggplot2, knitr, rmarkdown, dplyr, kableExtra, data.tree,
dendextend

VignetteBuilder knitr

RoxygenNote 7.1.1

URL https://zoometh.github.io/iconr/

BugReports https://github.com/zoometh/iconr/issues

NeedsCompilation no

Author Thomas Huet [aut, cre] (<https://orcid.org/0000-0002-1112-6122>),
Jose Pozo [aut] (<https://orcid.org/0000-0002-0759-3510>),
Craig Alexander [ctb] (<https://orcid.org/0000-0001-7539-6415>)

Maintainer Thomas Huet <thomashuet7@gmail.com>

Repository CRAN

Date/Publication 2021-02-16 09:10:05 UTC

R topics documented:
contemp_nds . 2
labels_shadow . 3
list_compar . 4
list_dec . 6

1

https://zoometh.github.io/iconr/
https://github.com/zoometh/iconr/issues

2 contemp_nds

named_elements . 7
plot_compar . 8
plot_dec_grph . 10
read_eds . 13
read_nds . 14
same_elements . 15
side_plot . 16

Index 18

contemp_nds Select Contemporaneous Nodes

Description

Find the connected component, or subgraph, of contemporaneous nodes (connected by normal and
attribute edges) given a selected node and remove the other components

Usage

contemp_nds(nds.df, eds.df, selected.nd)

Arguments

nds.df Dataframe of the nodes as the one obtained by the function read_nds.

eds.df Dataframe of the edges as the one obtained by the function read_eds.

selected.nd The node of the decoration graph for which to extract the connected component.
It can be either the node order (numeric) or the node name/id (character).

Value

A named list of two dataframes: list(nodes,edges), collecting the contemporaneous nodes and
edges, respectivelly.

Examples

Set data folder
dataDir <- system.file("extdata", package = "iconr")

Read a decoration
nds.df <- read_nds(site = "Ibahernando",

decor = "Ibahernando",
dir = dataDir)

eds.df <- read_eds(site = "Ibahernando",
decor = "Ibahernando",
dir = dataDir)

Extract the subgraph contemporaneous to the node 2
l_dec_df <- contemp_nds(nds.df, eds.df, selected.nd = 2)

labels_shadow 3

It returns a list of two dataframes, one for nodes and one for edges:
l_dec_df

labels_shadow Plot Labels with Contrasting Shadow

Description

Plot labels (text) with a contrasting buffer to make them more visible when located on a similar
color background. This function is the shadowtext() function developed by Greg Snow. Called
by plot functions: plot_dec_grph, plot_compar

Usage

labels_shadow(x, y = NULL, labels,
col = "black", bg = "white",
theta = seq(0, 2 * pi, length.out = 50),
r = 0.1,
cex = 1, ...)

Arguments

x, y Numeric vector of coordinates where the labels should be plotted. Alternatively,
a single argument x can be provided with the same syntax as in xy.coords.

labels Set of labels provided as a character vector.

col, bg Graphical parameters for the label color and background (buffer) color.

theta Angles for generating the buffer with possible anisotropy along one direction
(default is isotropic) and controlling buffer smoothness (angular resolution).

r Thickness of the buffer relative to the size of the used font, by default 0.1.

cex Size of the label, by default 1.

... Further graphical parameter accepted by text, such as pos, offset, or family.

Value

No return value. It creates a contrasting buffer to make labels more visible.

References

https://rdrr.io/cran/TeachingDemos/man/shadowtext.html

4 list_compar

list_compar Graph Pairwise Comparison on Common Elements

Description

nds_compar identifies common nodes in a pair of graphs.

eds_compar identifies common edges in a pair of graphs.

Given a list of graphs, list_compar extract all combinations of graph pairs and compare them on
common elements (nodes and edges).

Usage

nds_compar(grphs, nd.var = "type")

eds_compar(grphs, nd.var = "type")

list_compar(lgrph, nd.var = "type",
verbose = FALSE)

Arguments

grphs A list of two graphs (pair of graphs) to be compared.

lgrph A list of any number of graphs to be pairwise compared. The list can be typically
obtained with the function list_dec

nd.var An attribute of the graph nodes containing the node variable (ie, field) on which
the comparison will be done. By default nd.var = "type".

verbose Logical. If TRUE, the names of each graph pair combination are listed on the
screen. By default verbose = FALSE.

Details

list_compar() calls the functions: nds_compar() and eds_compar() which return respectively
the common nodes and the common edges of a graph pairwise.

Nodes are common when they have the same value for a given variable, for example horse, sword,
etc., for the variable type (nd.var = "type").

Edges are common when they have the same value for starting and ending nodes (horse, sword,
etc.) and the same type of edge ('=', '+', etc.). For example, a -=-b in graph 1 is equal to a -=-b
in graph 2, but not equal to a -+-b. Edges of type = (normal edges) are undirected, so that a -=-b
is equal to b -=-a. But edges of types + (attribute edges) or > (diachronic edges) are directed, so: a
->-b is not equal to b ->-a.

If any of the graphs has multiple nodes/edges with the same value, it is considered to count for as
many coincidences as the smaller multiplicity. For instance, if there are 2 nodes with value epee in
graph 1, and 3 nodes with value epee in graph 2, their number of common nodes is min(2,3) = 2.

list_compar 5

Value

nds_compar() returns the input pair of graphs, each complemented with a new node attribute
named comm with value 1 for common nodes and 0 for non-common nodes.

eds_compar() returns the input pair of graphs, each complemented with a new edge attribute named
comm with value 1 for common edges and 0 for non-common edges.

list_compar() returns a list of all combinations of graph pairs. For each pair, both graphs are
complemented with the node attribute (comm) identifying common nodes and the edge attribute
(comm) identifying common edges. Each pair is also complemented with an attribute named nd.var
recording the compared node variable.

See Also

list_dec, plot_compar, same_elements

Examples

Read data
imgs <- read.table(system.file("extdata", "imgs.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)
nodes <- read.table(system.file("extdata", "nodes.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)
edges <- read.table(system.file("extdata", "edges.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)
Generate list of graphs from the three data.frames
lgrph <- list_dec(imgs, nodes, edges)

Generate list of all graph comparisons depending on the node "type" variable
g.compar <- list_compar(lgrph, nd.var = "type")

length(g.compar)
Ten pairwise comparisons

Inspect the second pairwise comparison of the list
g.compar[[2]]
The two compared graphs with the name of the comparison variable

Inspecting nodes:
igraph::as_data_frame(g.compar[[2]][[1]], "vertices")
Vertices from the first decoration graph

igraph::as_data_frame(g.compar[[2]][[2]], "vertices")
Vertices from the second decoration graph

Inspecting edges:
igraph::as_data_frame(g.compar[[2]][[1]])
Edges of the first decoration graph

igraph::as_data_frame(g.compar[[2]][[2]])
Edges of the second decoration graph

6 list_dec

list_dec Create Decoration’s Graphs and Store them in a List

Description

Create undirected graphs for each decoration from nodes, edges and imgs dataframes and store the
graphs in a list. The join between these dataframes is done on the two fields site and decor. Graph
names refer to imgs$idf.

Usage

list_dec(imgs,
nodes,
edges)

Arguments

imgs Dataframe of decorations

nodes Dataframe of nodes

edges Dataframe of edges

Value

A list of igraph graphs.

See Also

graph_from_data_frame

Examples

Read imgs, nodes and edges dataframes
imgs <- read.table(system.file("extdata", "imgs.csv", package = "iconr"),

sep=";", stringsAsFactors = FALSE)
nodes <- read.table(system.file("extdata", "nodes.csv", package = "iconr"),

sep=";", stringsAsFactors = FALSE)
edges <- read.table(system.file("extdata", "edges.csv", package = "iconr"),

sep=";", stringsAsFactors = FALSE)
Create the list of graphs
lgrph <- list_dec(imgs, nodes, edges)

Get the first graph
g <- lgrph[[1]]
g

Graph name
g$name

named_elements 7

Graph label
g$lbl

Graph number of nodes
igraph::gorder(g)

Graph number of edges
igraph::gsize(g)

named_elements Textual Notation of Graph Elements

Description

Create a textual notation for nodes or edges.

Usage

named_elements(grph,
focus = "edges",
nd.var = "type",
disamb.marker = "#")

Arguments

grph A decoration graph (object of class igraph).

focus Textual notation of edges (focus = "edges") or nodes (focus = "nodes"). By
default focus = "edges".

nd.var The attribute of the graph nodes containing the node variable (ie, field) for the
textual annotation. By default nd.var = "type".

disamb.marker Marker used to disambiguated repeated elements. By default disamb.marker =
"#".

Details

Edges of type '=' (normal edges) are undirected, so that the order of their nodes is irrelevant and
they are presented in alphabetical order. Conversely, edges of types '+' (attribute edges) and '>'
(diachronic edges) are directed, so that the given order of nodes is preserved.

Repeated node or edge names are disambiguated by appending the symbol disamb.marker ('#'
by default) at the end of the second appearance (suffix). Subsequent appearances are marked by
additional disamb.markers.

Value

A character vector of named nodes or edges.

8 plot_compar

See Also

list_compar, same_elements

Examples

Read data
imgs <- read.table(system.file("extdata", "imgs.tsv", package = "iconr"),

sep="\t", stringsAsFactors = FALSE)
nodes <- read.table(system.file("extdata", "nodes.tsv", package = "iconr"),

sep="\t", stringsAsFactors = FALSE)
edges <- read.table(system.file("extdata", "edges.tsv", package = "iconr"),

sep="\t", stringsAsFactors = FALSE)

Generate list of graphs from the three data.frames
lgrph <- list_dec(imgs, nodes, edges)

Textual notation of disambiguated edges
named_elements(lgrph[[2]], focus = "edges", nd.var="type")

Textual notation of disambiguated nodes
named_elements(lgrph[[2]], focus = "nodes", nd.var="type")

plot_compar Plot and Save Comparison Figures Between Pairs of Graphs

Description

Given a list of pairwise graph comparisons, the function plots any given subset selected by graph
name, displaying side-by-side pairs of graphs and highlighting common nodes or common edges
with a choice of several graphical parameters.

Usage

plot_compar(listg, dec2comp = NULL, focus = "nodes",
dir = getwd(),
nd.color = c("orange", "red"), nd.size = c(0.5, 1),
ed.color = c("orange", "red"), ed.width = c(1, 2),
lbl.size = 0.5,
dir.out = dir, out.file.name = NULL,
img.format = NULL, res = 300)

Arguments

listg A list of graph pairwise comparisons as returned by list_compar.

dec2comp A vector with the names of the graphs for which comparisons are to be plotted.
The user can select to plot all pairwise combinations (by default), all combina-
tions of a subset, or a single pair.

plot_compar 9

focus Either "nodes" (default) or "edges". It selects the type of comparison to be
plotted, highlighting common nodes or common edges, respectively.

dir Data folder including the decoration images. By default the working directory.

nd.color, nd.size, ed.color, ed.width

Graphical parameters for color and size/widths of nodes and edges. Each of
them is a vector with two values for different and common nodes/edges, re-
spectively. If only one value is provided, this unique value is taken for both
different and common elements. Labels are displayed with the same color as
common nodes. For focus = "nodes" all edges are plotted with the first value
of ed.color and ed.width.

lbl.size Graphical parameter for the size of the labels with the node names. The default
is 0.5.

dir.out Folder for the output image. By default, it coincides with the input dir.

out.file.name Name of the output image, including path from current directory and extension.
By default the name is automatically generated including site, decor, nd.var,
and the extension from img.format.

If set, out.file.name overrides dir.out and img.format.

img.format, res

Format and resolution of the saved images. The handled formats are "png",
"bmp", "tiff"/"tif", "jpeg"/"jpg", and "pdf". The default resolution is 300
(ppi). The resolution does not applies to format pdf.

if img.format=NULL (default), the plot is sent to the active device.

Details

To highlight common elements between a list of graphs, the user can focus on nodes (focus =
"nodes") or edges (focus = "edges"). As stated in the function list_compar, for a given com-
parison variable (eg. nd.var="type") if there is multiple nodes/edges with the same value, it is
considered to count for as many coincidences as the smaller multiplicity.

img.format=NULL (plot to the active device) does not make sense for more than one comparison.

Value

Generates graph decoration images, for pairwise comparisons between two or more decorations,
comparing graphs elements (nodes or edges).

If img.format=NULL, the plot is sent to the active device and no value is returned.

If img.format= "png" or "bmp" or "tiff"/"tif" or "jpeg"/"jpg" or "pdf", the return value is a
character vector with the dir/name of every saved image in the indicated format.

See Also

list_compar plot_dec_grph

10 plot_dec_grph

Examples

Read data
imgs <- read.table(system.file("extdata", "imgs.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)
nodes <- read.table(system.file("extdata", "nodes.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)
edges <- read.table(system.file("extdata", "edges.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)

Generate list of graphs from the three dataframes
lgrph <- list_dec(imgs, nodes, edges)

Generate all pairwise comparisons of the graphs with respect to nodes "type"
g.compar <- list_compar(lgrph, nd.var="type")

Generate the image showing the comparison on common nodes of graphs
'1' and '4', save it in png format, and return its path.
dataDir <- system.file("extdata", package = "iconr")
outDir <- tempdir()
plot_compar(g.compar, c(1,4), focus = "nodes",

dir = dataDir,
dir.out = outDir,
img.format = "png")

Generate the image showing the comparison on common edges of all pairwise
combinations of graphs '1','3', and '4', save them in pdf format, and return
their path.
Plot nodes involved in non-common edges in orange and
nodes involved in common edges and the corresponding labels in brown.
plot_compar(g.compar, c(1, 3, 4), focus = "edges",

dir = dataDir,
nd.color = c("orange", "brown"),
dir.out = outDir,
img.format = "pdf")

Save the png image showing the comparison on common nodes of graphs
'1' and '4'.
Then read and plot the image.
img.filename <- plot_compar(g.compar, c(1, 4), focus = "nodes",

dir = dataDir,
dir.out = outDir,
img.format = "png")

plot(magick::image_read(img.filename))

Plot directly on the active device (default) the comparison on common nodes
of graphs '1' and '4'.
plot_compar(g.compar, c(1, 4), focus = "nodes",

dir = dataDir)

plot_dec_grph Plot a Graph on a Decoration

plot_dec_grph 11

Description

Plot with nodes only, edges only, or both (geometric graph) over a decoration image.

Usage

plot_dec_grph(nodes = NULL,
edges = NULL,
imgs,
site,
decor,
dir = getwd(),
nd.var = 'id',
nd.color = 'orange',
nd.size = 0.5,
lbl.color = 'black',
lbl.size = 0.5,
ed.color = c("orange", "blue"),
ed.lwd = 1,
dir.out = dir,
out.file.name = NULL,
img.format = NULL,
res = 300)

Arguments

nodes Dataframe of nodes
edges Dataframe of edges
imgs Dataframe of decorations
site Name of the site
decor Name of the decoration
dir Data folder including the decoration images. By default the working directory.
nd.var Field name in the nodes data frame to be displayed as node labels. By default

the identifier nodes$id.
nd.color, nd.size, lbl.color, lbl.size, ed.color, ed.lwd

Graphical parameters for color and size/widths of nodes, edges, and labels.
ed.color is a vector with two values (the second value is used for diachronic
edges).

dir.out Folder for the output image. By default, it coincides with the input dir.
out.file.name Name of the output image, including path from current directory and extension.

By default the name is automatically generated including site, decor, nd.var,
and the extension from img.format.
If set, out.file.name overrides dir.out and img.format.

img.format, res

Format and resolution of the saved images. The handled formats are "png",
"bmp", "tiff"/"tif", "jpeg"/"jpg", and "pdf". The default resolution is 300
(ppi). The resolution does not applies to format pdf.
if img.format=NULL (default), the plot is sent to the active device.

12 plot_dec_grph

Details

Plot nodes only (if edges = NULL), edges only (if nodes = NULL), or both (graph) over a decoration
image.

Value

Generates graph decoration images with nodes, edges, or both, overlapping the decoration image.

If img.format=NULL, the plot is sent to the active device and no value is returned.

If img.format= "png" or "bmp" or "tiff"/"tif" or "jpeg"/"jpg" or "pdf", the return value is a
character vector with the dir/name of the saved image in the indicated format.

Examples

Set data folder
dataDir <- system.file("extdata", package = "iconr")
Decoration to be plotted
site <- "Brozas"
decor <- "Brozas"
Read nodes, edges, and decorations
nds.df <- read_nds(site, decor, dataDir)
eds.df <- read_eds(site, decor, dataDir)
imgs <- read.table(paste0(dataDir, "/imgs.tsv"),

sep="\t", stringsAsFactors = FALSE)

Plot 'Brozas' nodes and edges on the active device
with node variable "type" as labels
plot_dec_grph(nds.df, eds.df, imgs,

site, decor,
dir = dataDir,
lbl.size = 0.4,
nd.var = "type")

Save only edges of 'Brozas' with bigger widths and in image format jpg.
outDir <- tempdir()
img.filename <- plot_dec_grph(nodes = NULL, eds.df, imgs,

site, decor,
dir = dataDir,
ed.lwd = 2,
dir.out = outDir,
img.format = "jpg")

Then read and plot the image.
a.dec <- magick::image_read(img.filename)

Inspect the output image
magick::image_info(a.dec)

Plot the output image
plot(a.dec)

read_eds 13

read_eds Read Edges of a Decoration

Description

Read edges’ information from a file including all edges and extract edges of one decoration. Ac-
cepted formats are tab separated values (’tsv’), semicolon separated values (’csv’), or shapefile
(’shp’).

Usage

read_eds(site,
decor,
dir = getwd(),
edges = "edges",
nodes = "nodes",
format = "tsv")

Arguments

site Name of the site.

decor Name of the decoration.

dir Path to the working folder, by default it is the working directory.

edges Name of the edges file (a dataframe or a shapefile).

nodes Name of the nodes file (a dataframe or a shapefile).

format File extension indicating a file format from ’tsv’ (tab separated values), ’csv’
(semicolon separated values) or ’shp’ (shapefile). For ’tsv’ and ’csv’ the coordi-
nates of the edges will be calculated from the same decoration’s node dataframe.

Details

Subset the dataframe of edges depending on ’site’ and ’decor’.

Value

Dataframe of graph edges, including at least the columns "site", "decor", "a", "b", "xa", "ya", "xb",
"yb", with values for each edge (row).

Examples

Set data folder
dataDir <- system.file("extdata", package = "iconr")

Read .tsv file
eds.df <- read_eds(site = "Cerro Muriano", decor = "Cerro Muriano 1",

dir = dataDir, edges = "edges", format = "tsv")
eds.df

14 read_nds

Dataframe of edges

Read shapefile
eds.df <- read_eds(site = "Cerro Muriano", decor = "Cerro Muriano 1",

dir = dataDir, edges = "edges", format = "shp")
eds.df
Dataframe of edges

read_nds Read Nodes of a Decoration

Description

Read nodes’ information from a file including all nodes and extract nodes of one decoration. Ac-
cepted formats are tab separated values (’tsv’), semicolon separated values (’csv’), or shapefile
(’shp’).

Usage

read_nds(site,
decor,
dir = getwd(),
nodes = "nodes",
format = "tsv")

Arguments

site Name of the site

decor Name of the decoration

dir Path to the working folder, by default it is the working directory

nodes Name of the nodes file (a dataframe or a shapefile)

format File extension indicating a file format from ’tsv’ (tab separated values), ’csv’
(semicolon separated values) or ’shp’ (shapefile). For ’tsv’ and ’csv’ the files
must include node coordinates (nodes$x, nodes$y).

Value

Dataframe of graph nodes, including at least the columns "site", "decor", "id", "x", "y", with values
for each node (row).

same_elements 15

Examples

Set data folder
dataDir <- system.file("extdata", package = "iconr")

Read dataframe of nodes
nds.df <- read_nds(site = "Cerro Muriano", decor = "Cerro Muriano 1",

dir = dataDir, format = "tsv")
nds.df
Dataframe of nodes

Read shapefile of nodes
nds.df <- read_nds(site = "Cerro Muriano", decor = "Cerro Muriano 1",

dir = dataDir, format = "shp")
nds.df
Dataframe of nodes

same_elements Number of Equal Elements Between Each Decoration Pair

Description

Create the (symmetric) dataframe with the count of common nodes or common edges (see list_compar
for comparison criteria) for each pair of decorations (graphs) from a list. The diagonal of the sym-
metric dataframe is filled with counts of nodes/edges for each decoration.

Usage

same_elements(lgrph, nd.var = "type",
focus = "nodes")

Arguments

lgrph A list of any number of graphs to be pairwise compared. The list can be typically
obtained with the function list_dec

nd.var An attribute of the graph vertices containing the node variable (ie, field) on
which the comparison will be done. By default nd.var = "type".

focus Either "nodes" (default) or "edges" to select the type of elements to be com-
pared for the count.

Value

A symmetric matrix with the counts of the pairwise coincidences of nodes or edges. The matrix has
as row and column names the names of the corresponding graphs in the input list.

See Also

list_dec, list_compar, plot_compar

16 side_plot

Examples

read imgs, nodes and edges dataframes
imgs <- read.table(system.file("extdata", "imgs.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)
nodes <- read.table(system.file("extdata", "nodes.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)
edges <- read.table(system.file("extdata", "edges.tsv", package = "iconr"),

sep="\t",stringsAsFactors = FALSE)
lgrph <- list_dec(imgs,nodes,edges)

Counting same nodes
df.same_nodes <- same_elements(lgrph, nd.var = "type",

focus = "nodes")
df.same_nodes
a symmetric matrix of nodes comparisons

same edges
df.same_edges <- same_elements(lgrph, nd.var = "type",

focus = "edges")
df.same_edges
a symmetric matrix of edges comparisons

side_plot Plot Two Figures Side-by-Side Identifying Common Elements

Description

Plot two decoration graphs side-by-side identifying common nodes and common edges. This func-
tion is called by the function plot_compar.

Usage

side_plot(grph, dir, nd.var, focus = "nodes",
nd.color = c("orange", "red"),
nd.size = c(0.5, 1),
ed.color = c("orange", "red"),
ed.width = c(1, 2),
lbl.size = 0.5)

Arguments

grph List of two or more ’igraph’ graphs created with the list_compar function.

dir Working directory which contains the imgs, nodes, edges dataframes and the
decoration images.

nd.var Field of nodes on which the comparison will be done.

focus Focus on nodes or on edges, by default focus = "nodes".

side_plot 17

nd.color, nd.size, ed.color, ed.width

Graphical parameters for the nodes and edges. The different nodes/edges will
be displayed with the first values of the vectors (eg, "orange") while the common
nodes/edges will be displayed with the second values of the vectors (eg, "red").

lbl.size Size of the labels

Value

No return value, group images side-by-side

See Also

plot_compar

Index

∗ ~kwd1 graphs
contemp_nds, 2
labels_shadow, 3
read_nds, 14
side_plot, 16

∗ ~kwd1 graph
list_compar, 4
list_dec, 6
named_elements, 7
plot_compar, 8
plot_dec_grph, 10
read_eds, 13
same_elements, 15

contemp_nds, 2

eds_compar (list_compar), 4

graph_from_data_frame, 6

labels_shadow, 3
list_compar, 4, 8, 9, 15, 16
list_dec, 4, 5, 6, 15

named_elements, 7
nds_compar (list_compar), 4

plot_compar, 3, 5, 8, 15–17
plot_dec_grph, 3, 9, 10

read_eds, 2, 13
read_nds, 2, 14

same_elements, 5, 8, 15
side_plot, 16

text, 3

xy.coords, 3

18

	contemp_nds
	labels_shadow
	list_compar
	list_dec
	named_elements
	plot_compar
	plot_dec_grph
	read_eds
	read_nds
	same_elements
	side_plot
	Index

