
Introduction to the R package ‘icosa’ v0.10.1 for global triangular

and hexagonal gridding

Adam T. Kocsis

2021-01-12

1. Introduction

The purpose of this vignette is to demonstrate the basic usage of the icosa package, explain object structures
and basic functionalities. The primary targeted application of the package is in global biological sciences
(e.g. in macroecological, biogeographical analyses), but other fields might find the structures and procedures
relevant, given that they operate with point coordinate data. This is just a brief introduction to the package’s
capabilities. The complete documentation of the package, and relevant tutorials will be posten on the
evolv-ED blog (http://www.evolv-ed.net). Previous versions of this document are available at the package’s
GitHub repository (https://github.com/adamkocsis/icosa/tree/master/_archive/vignettes).

2. The grids

The primary problem with ecological samples is that due to density and uniformity issues, the data points
are to be aggregated to distinct units. As coordinate recording is very efficient on the 2d surface of a polar
coordinate system (i.e. latiude and longitude data), this was primarly achieved by rectangular gridding of
the surface (for instance 1° times 1° grid cells). Unfortunately, this method suffers from systematic biasing
effects: as the poles are approached, the cells become smaller in area, and come closer together.

The icosa package apptrroaches this problem from one of the most straightforward ways, by tessellation of a
regular icosahedron to a given resolution. This procedure ends up with a polyhedral object of triangular faces
of higly isometric properties: very similar shapes of cells which are roughly equally distanced, and similar in
cell area.

To visualize the grids in 3 dimension, you have to have rgl package installed. This is optional, but to ensure
maximum functionality when plotting with ‘rgl’, it is better to attach the ‘rgl’ package first, otherwise it will
mask out some functionalities of ‘icosa’. Attaching the package ‘rgdal’ is necessary for reading in shapefiles
and transformation of projections, while the raster package is required for some lookup functions.

library(rgdal)

library(raster)

library(rgl)

library(icosa)

2.1. Grid creation

To create a triangular grid use the function trigrid():

create a trigrid class object

tri <- trigrid()

the show() method displays basic information of the package

tri

1

http://www.evolv-ed.net
https://github.com/adamkocsis/icosa/tree/master/_archive/vignettes

A/An trigrid object with 12 vertices, 30 edges and 20 faces.

The mean grid edge length is 7053.65 km or 63.43 degrees.

Use plot3d() to see a 3d render.

plot the object in 3d

plot3d(tri, guides=F)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

Without any specified additional entry, the first line will create an icosahedron with the center of c(0,0,0)

Cartesian coordinates and the ‘R2’ (authalic, as defined by IUGG (1)) radius of Earth between the object
center and the vertices. These can be altered by setting the radius and center arguments if necessary.
When dealing with properly georeferenced data, the model ellipsoid (or in this case, the sphere) is to be taken
into account when the data and the grid interact. Therefore a slot called proj4strig is added to the grid
object, which contains a CRS class string generated automatically from the input radius. With the default
settings this is:

tri@proj4string

CRS arguments: +proj=longlat +R=6371007 +no_defs

Setting the first argument of the trigrid() function will create more complex objects that have tessellated
faces:

create a trigrid class object

gLow <- trigrid(tessellation=c(4,4))

plot the object in 3d

plot3d(gLow, guides=F)

2

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

The result is another trigrid class object with the tessellation vector of c(4,4). The tessellation vector is
the primary argument influencing grid resolution. It consists of integer values which are larger than 1. These
values will be passed in sequence to the tessellation function, using the result of the previous round as an
input. In the example of the c(4,4) grid, the icosahedron will be tessellated with the value of 4 in the first
round, meaning that every edge of the 20 faces are split to 4, which then results in 4 times 4 new triangular
faces instead of the one original (4 times 4 times 20 new faces in total). The second round will be repeated
for every newly formed face as well, so the total resolution of the grid will be 4 times 4 times 4 times 4 times
20 faces.

The obvious question is then: what is the difference between the c(2,2,2,2)), c(4,4), c(8,2), c(2,8) and
c(16) grids? The answer depends on the applied tessellation method. The icosahedron itself is smaller in
surface area and volume than the sphere. The points created between the faces need to be projected to the
sphere, which can be done in a number of different ways.

The current version of the icosa package uses a single tessellation method, which requires the least amount
of information to provide a consistent output: The "meanGC" method uses spherical functions to calculate
new points directly on the great circles that connect points which are on a single edge without any sort of
projection. The internal points are calculated by connecting the newly formed points on the edges. This
results in some scatter for these internal points, as their position depends on the pair of edges that are
connected. In this method, the points are defined as their centroids projected to the surface of the sphere,
which results in a systematic increase in cell area as the center of the tessellated face is approached. Therefore,
the answer to the question of the different tessellation vectors is: the number of faces will be equal as that is
set by the total product of the tessellation vector, but as every tessellation round includes the above described
procedure, the cell areas, cell shapes will be somewhat different with these. In the future, multiple tessellation
methods are to be incorporated that produce grid cells with exactly the same areas just to mention one.

3

As grid complexity increases the time to create the structure increases as well (The highest resolution grid
so far was the c(10,10,4) trigrid, which took about 2,500 seconds using a single thread of an Intel Xeon
E5-1620 processor, it had 3,200,000 faces, the mean edge length of 0.17 degrees (20km) and its size was almost
2GB). Performance also becomes an issue with very large tessellation values, as they currently incorporate
distance matrix calculations (will be updated later, if required).

A rectangular grid has an additional problem that is not solved by triangular replacement, which is the
definition of neighbouring cells. With both the rectangular and the triangular grid, two types of possible
connections exist: cells can share either one or two vertices (an edge), which leads to problems with cell to
cell relationship calculations. The inversion of the triangular grid solves this problem: if every center of the
face becomes a new vertex a hexagonal pattern emerges, which creates a neighbourhood pattern where the
neighbouring faces can share exactly two vertices only. Every resolution triangular grid can be turned to a
penta-hexagonal one, which is directly created by the hexagrid() function.

create a hexagrid object

hLow <- hexagrid()

plot it in 3d

plot3d(hLow, guides=F)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

By default (tessellation=1), the hexagrid() function inverts the regular icosahedron, creating a regular
pentagonal-dodecahedron. This object paradoxically has no hexagonal faces. Increasing the tessellation
vector, however, will add these, while keeping the 12 pentagonal faces at the positions which were originally
containing the icosahedron’s vertices.

4

create a hexagrid object

hLow <- hexagrid(c(4,4))

plot it in 3d

plot3d(hLow)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

The function of the tessellation vector is exactly the same as for the trigrid() function, which is invoked by
the hexagrid() function before the inversion is implemented. This naturally leads to an equality between
the vertex numbers of the hexagrid and face numbers of the trigrid, and the face numbers of the trigrid and
the vertex numbers of the hexagrid objects.

All methods that are implemented for the trigrid are implemented for the hexagrid as well. The examples
that follow use the two types of grids at random, and work interchangably.

2.2. Grid structure

The grids implented by this package represent compound objects that have different ‘dimensions’. For example,
grids represent both a regular 3d object structure and an object of interconnected cells. The primary 3d
structure of the grid is similar to a generic 3d .obj file structure. There are two main tables: one contains
the grid vertex coordinates and the other contains which coordinates form which faces. This information is
stored by the vertices and faces slots, respectively:

the beginning of the vertices matrix

head(gLow@vertices)

5

x y z

P1 0.0000 -1.854300e-13 6371.007

P2 -418.9419 -1.361225e+02 6355.760

P3 0.0000 -4.405015e+02 6355.760

P4 418.9419 -1.361225e+02 6355.760

P5 258.9203 3.563732e+02 6355.760

P6 -258.9203 3.563732e+02 6355.760

the beginning of the faces matrix

head(gLow@faces)

[,1] [,2] [,3]

F1 "P1" "P2" "P3"

F2 "P1" "P3" "P4"

F3 "P1" "P5" "P4"

F4 "P1" "P5" "P6"

F5 "P1" "P2" "P6"

F6 "P2" "P6" "P7"

The information content is stored and all the calculations are executed in XYZ Cartesian space instead
of a polar coordinate system. This facilitates the definition of additional projection methods, potential
grid-grid interaction, 3d plotting and calculations, and it also permits higher overall flexibility. The Cartesian
coordinates are based on the value of the grid radius and center.

grid radius

gLow@r

[1] 6371.007

grid center

gLow@center

[1] 0 0 0

The centers of the faces can also be directly accessed in a format that is similar to the grid vertices format:

head(gLow@faceCenters)

x y z

F1 -139.7730 -192.3810 6366.568

F2 139.7730 -192.3810 6366.568

F3 226.1574 73.4830 6366.568

F4 0.0000 237.7960 6366.568

F5 -226.1574 73.4830 6366.568

F6 -453.0188 147.1947 6353.176

Both the vertices and the faceCenters() slots are accessible using the shorthand functions vertices()

and centers(), which also do coordinate transformations, if requested.

The vertices forming the edges (these are not ordered in the current version) can be extracted from the edges

slot:

head(gLow@edges)

[,1] [,2]

E1 "P1" "P3"

E2 "P1" "P4"

E3 "P3" "P4"

E4 "P39" "P22"

E5 "P39" "P40"

6

E6 "P22" "P40"

Each grid has an orientation which is stored in the orientation slot. The values are in radians, and denote
the xyz rotation relative to the default. The faces and vertices table are organized so that both vertices and
faces spiral down from the zenith point to the nadir. This can be visualized in 3d using the gridlabs3d()

function.

plot3d(gLow)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

gridlabs3d(gLow, type="v", col="blue", cex=0.6)

Warning in rgl.texts(x = structure(c(0, -421.036574937493, 0,

421.036574937493, : "bitmap" family only supports cex = 1

The grid orientation can be changed using the rotate() function. To see the effect of this on the 3d plots,
compare the orientations of the grids using the guides3d() function that displays the polar gridding oriented
to match the cartesian coordinate system.

gLow2 <- rotate(gLow) # random rotation

plot3d(gLow2)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

guides3d(col="green")

7

2.3. Plotting

2.3.1. Three-dimensional plots

Both 3d and 2d plotting are incorporated in the package. As the grid structure exists in 3d space, 3d is
the default plotting scheme which is implemented with the package rgl’. All 3d plotting functions pass
arguments to either the points3d(), segments3d(), triangles3d() and text3d() functions.

The plot3d() method of the grids call for either the border plotting function lines3d() or the face plotting
function faces3d(). In a workflow involving 3d plotting, these functions are used usually to create a
compound plot representing different types of information. Experiment with these to optimize the 3d plotting
experience.

The inner sphere is plotted by default, but can be turned off by setting the sphere argument of the plot3d()

function to FALSE. The radius of the sphere can also be set using this argument. In case it is not set by the
user, it defaults to the distance of the planar face center from the center of the grid.

The 3d plots so far showed only linear edges, but the plotting of arcs can be forced by setting the arcs

argument to TRUE.

plot3d(tri, guides=F, arcs=T, sphere=6300)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

8

2.3.2. Two-dimensional plots

The nature of the triangular/hexagonal grids is that they are intuitive in 3 dimensions, but behave cumbersome
in 2d projections. Still, in any sort of printed or software publications, maps are the primary way to publish
geographic data, which renders the projections very important. This part of the package is linked to the sp

packages, which deal with the projection of data.

Each grid can be converted to either a SpatialLines or a SpatialPolygons object defined by the sp package.
Two dimensional plotting can only happen if the 2d representation is calculated, which is (to save computation
time) not automatic, but can be called for on demand.

hLow <- hexagrid(c(4,4), sp=TRUE)

After this procedure finishes, a regular 2d plotting function can be invoked:

plot(hLow)

9

Here are some additional examples of projections using the ‘z1’ resolution of landy polygons from the OSM
archive that can be accessed in the SpatialPolygons format using the following chunk of code.

use the rgdal package

library(rgdal)

file path

file <- system.file("extdata", "land_polygons_z1.shx", package = "icosa")

read in the shape file

wo <- readOGR(file, "land_polygons_z1")

Warning in OGRSpatialRef(dsn, layer, morphFromESRI = morphFromESRI, dumpSRS

= dumpSRS, : Discarded ellps WGS 84 in CRS definition: +proj=merc +a=6378137

+b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null

+wktext +no_defs

Warning in OGRSpatialRef(dsn, layer, morphFromESRI = morphFromESRI, dumpSRS =

dumpSRS, : Discarded datum WGS_1984 in CRS definition: +proj=merc +a=6378137

+b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null

+wktext +no_defs

Warning in showSRID(wkt2, "PROJ"): Discarded ellps WGS 84 in CRS definition:

+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m

+nadgrids=@null +wktext +no_defs

Warning in showSRID(wkt2, "PROJ"): Discarded datum WGS_1984 in CRS definition

A grid can be plotted easilly with this map, after their projection methods are adjusted:

10

transform the land data to long-lat coordinates

wo <- spTransform(wo, gLow@proj4string)

#triangular grid

gLow<-newsp(gLow)

load in a map

plot the grid (default longitude/latitude)

plot(gLow, border="gray", lty=1)

the reconstruction

lines(wo, lwd=2, col="blue")

The gridlabs() function can also be of use here to locate the vertices and faces of the plotted grid. The
type argument is used to choose which part of the grid is to be shown. The rest of the argumnets are passed
to the text() function.

a very low resolution hexagrid

hVeryLow<-hexagrid(c(4))

add 2d component

hVeryLow<-newsp(hVeryLow)

the Robinson projection

robin <- CRS("+proj=robin")

plot with labels

plot(hVeryLow, projargs=robin)

gridlabs(hVeryLow, type="f", cex=0.6,projargs=robin)

11

Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO"): Discarded

ellps unknown in CRS definition: +proj=longlat +R=6371007 +no_defs

Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO"): Discarded

datum unknown in CRS definition

Similarly useful can be the pos() function, that retrieves the position of a named element in the grid,
e.g. vertices and face centers:

pos(hLow, c("P2", "F12", NA))

long lat

P2 -54 87.86095

F12 -18 82.07063

<NA> NA NA

2.4. Layers

The grid itself operates as a scaffold for all kinds operations we can do based on data which can be organized
in layers. At this moment, the layers are built on vectors, but in the next major update of the package they
will incorporate both memory and harddrive-stored data similar to the RasterLayer class objects defined in
the raster package.

Currently only the facelayer class is defined, which link individual values to the faces of a trigrid or
hexagrid class object.

fl1<-facelayer(gLow) # the argument is the grid object to which the layer is linked

fl1

class : facelayer

12

linked grid : 'gLow' (name), trigrid (class), 4,4 (tessellation)

dimensions : 5120 (values) @ mean edge length: 481.07 km, 4.33 degrees

values : logical

max value : NA

min value : NA

missing : 5120

str(fl1)

Formal class 'facelayer' [package "icosa"] with 6 slots

..@ grid : chr "gLow"

..@ tessellation: num [1:2] 4 4

..@ gridclass : chr "trigrid"

.. ..- attr(*, "package")= chr "icosa"

..@ names : chr [1:5120] "F1" "F2" "F3" "F4" ...

..@ values : logi [1:5120] NA NA NA NA NA NA ...

..@ length : int 5120

The facelayer has the same number of values as the the number of faces in the linked grid, accessed by the
length() function

length(fl1)

[1] 5120

The stored values can be assigned or shown by the values function:

values(fl1) <-1:length(fl1)

values(fl1)[1:10]

[1] 1 2 3 4 5 6 7 8 9 10

Besides storage and data manipulation, layers can be especially useful for plotting data. For logical data the
faces3d() function will indicate which faces are occupied.

a <-facelayer(gLow)

values(a) <- sample(c(T,F), length(a), replace=T)

plot the grid first

plot3d(gLow, guides=F)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

invoke lower level plotting for the facelayer

(draws on previously plotted rgl environemnts)

faces3d(a, col="green")

13

This is the lower level graphic function, that is called when the plot3d() method of the facelayer is called.
For numeric data, heatmaps are built automatically based on the range of the data. Let’s examine the basic
case, where its number in sequence is assigned to every face.

The colors of the heatmaps can be changed by adding standard color names to the col argument:

new layer

grid frame

plot3d(gLow)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

the heatmap

faces3d(a, col=c("green", "brown"))

14

Categorical values can also be stored and plotted with the facelayer. By default, these values will be plotted
with random colours, without a legend.

new layer

catLayer<-facelayer(hLow)

assign random information

catLayer@values<-sample(c("one","two","three"),length(catLayer), replace=T)

plot(catLayer)

15

3. Application

3.1. Lookup

Until this point only those features of the package were demonstrated that have no practicality on their own.
All real world application of a gridding scheme relies on the capacity to look up coordinates and assign them
to grid cells. The overall performance of the package boils down to the speed of this procedure. icosa uses a
very efficient point-in-tetrhedron check to get the assigned cells to each set of coordinates. In the case of the
trigrid, every face on the surface of the grid outlines a tetrahedron with the center of the object. At high
resolutions this in itself can be very slow, especially if the number of queries is large, hence the necessity of
the skeleton slot and the multiple levels of tessellations. With the meanGC tessellation method, the vertices of
the input do not change, which means that every level of resolution can be retained when multiple rounds of
tessellation happen. This allows the implementation of a hierarchical lookup algorithm, which searches the
position of a point given by progressively refining the resolution, so an exhaustive lookup is not required.

3.1.1. The ‘locate()’ function - point query

The most straightforward implementation is the locate() function which is used to find the position of a set
of points on the grid:

generate 5000 random coordinates on a sphere of default radius

pointdat <- rpsphere(5000)

and locate them on the grid 'gLow'

cells<-locate(gLow, pointdat)

16

the return of this function is vector of cell names

head(cells)

[1] "F1359" "F1039" "F1176" "F78" "F3692" "F2950"

The function accepts matrices in longitude-latitude, and XYZ format as well. An object of the SpatialPoints

class defined in the package sp can alse be provided as input. In the case of the polar coordinate entry,
the coordinates will be transformed to the xyz Cartesian coordinate system using the default radius. This
function returns the names of the faces that the points fell on. In the case of points that fall on vertices
or edges (which is extremely unlikely with real world data), the returned values are by default NAs. The
locate() function is especially powerful if it combined with thetable() and tapply() functions or similar
types of iterators:

tCell <- table(cells)

fl <- facelayer(gLow,0)

[] invokes a method that save the values to places that

correspond to the names attribute of tCell

fl[] <-tCell #

heat map of the point densities

plot3d(fl)

Warning in par3d(userMatrix = structure(c(1, 0, 0, 0, 0, 0.342020143325668, :

font family "sans" not found, using "bitmap"

This function operates just as fine with the hexagrid object, and uses subfaces to locate the points. Every
hexagonal face consists of 6 subfaces and every pentagonal face contains 5 subfaces.

The performance of the locate() function is linearly related to the number of queries. It is also positively

17

related to the grid resolution, although larger tessellation values will increase computation time more than
using multiple levels of tessellations.

3.1.2. The occupied() function

For presence-absence values the function occupied() can be used. It returns a facelayer class objecte with
logical values (TRUE when the face is occupied an FALSE when the face is not).

The example below shows how the occupied cells can be shown with the points:

run function only on the first 300

fl<-occupied(hLow, pointdat[1:300,])

the plot function can also be applied to the facelayer object

plot(fl, col="blue")

show the points as well

points(CarToPol(pointdat[1:300,]), col="red", pch=3, cex=0.7)

Naturally the grid can be shown as well, for instance with lines():

the plot function can also be applied to the facelayer object

plot(fl, col="blue")

points(CarToPol(pointdat[1:300,]), col="red", pch=3, cex=0.7)

lines(hLow, col="gray")

18

The occupied() function also applies to various other object types and behaves as a wrapper function
around methods that return which faces are occupied by the input objects. Most notable among these is
the SpatialPolygons, SpatialLines, and SpatialPoints classes defined by the package sp. The method
changes the coordinate reference system (CRS) of the input object is used to transform it to the spherical
model first, and then the function transforms the coordinates to XYZ Cartesian space.

3.1.3. Handling raster-type data

Most global data compilations use raster formats to store information. These data can be fitted to the
icosahedral grids using the resample() function. The arguments of this function depend on the nature and
interpretation of the data points. As resampling requires some form of interpolation, it needs assumptions on
the representativity of the measurements. Each original data point can be thought of either as an entity that
represent the entire cell or only the center of the cell. In the first case the original raster object needs to be
upscaled with the nearest neighbour method, and in the latter, another form of interpolation is necessary
(e.g. the bilinear or bicubic resampling). The ‘method’ argument of this function is passed to the resample()

function in the raster package, and is used to generate higher resolution data from the original raster.The
resample() function can also be used to upscale, or downscale a facelayer linked to trigrid or hexagrid

object as well.

3.2. Surface-graph representation

The grid structure is a compound object, can also be understood as a graph of connected faces. This
representation is efficiently implemented using the igraph package. On default, igraph represenation of
the grid is added to the graph slot of the grid object. In this graph, each face is connected to its direct
neighbours, which allows etheir efficient lookup, the implementation of shortest path algorithms and more.

19

3.2.1. Neighbours

The most direct application of this representation is the vicinity() function that allows the user to look up
cells that are closest to a focal cell, without calculating distance matrices. This particular example gets all
the neighbouring cells of the F125 cell.

calculate a very coarse resolution grid

gVeryLow<-trigrid(8, sp=T)

names of faces that are neighbours to face F125

facenames<-vicinity(gVeryLow, "F125")

plot a portion of the grid

plot(gVeryLow, xlim=c(0,180), ylim=c(0,90))

plot the original and the neighbouring faces

plot(gVeryLow@sp[facenames], col="red", add=T)

the names of all the cells

gridlabs(gVeryLow, type="f", cex=0.5)

Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO"): Discarded

ellps unknown in CRS definition: +proj=longlat +R=6371007 +no_defs

Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO"): Discarded

datum unknown in CRS definition

3.2.2. Using ‘igraph’ in geographic calculations

Using a separate igraph class object can be especially useful when subsets of the grids are to be used for an
analysis or simulation.

20

attach igraph

library(igraph)

Please note that igraph masks out some of the auxilliary functions written in this package as well. Naturally,
you can use the induced_subgraph() function of the igraph package directly on the grid representation of
the grid.

faces<-paste("F", 1:10, sep="")

subGraph <- induced_subgraph(gVeryLow@graph,faces)

plot(subGraph)

The subsetting of the grid will also subset the igraph class representation:

lowGraph<-gLow[1:12]@graph

or you can create it from a logical facelayer, for example from the occupied cells of the land data we
imported earlier:

look up the polygons

landFaces<-occupied(hLow, wo)

Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO"): Discarded

ellps unknown in CRS definition: +proj=longlat +R=6371000 +no_defs

Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO"): Discarded

datum unknown in CRS definition

create a new grid from a facelayer

landGraph<-gridgraph(landFaces)

21

plot(landFaces, col="brown")

This particular graph is a rough estimate for the presence of terrestrial settings, and can be useful for path
calculations.

shortest path in igraph

path <- shortest_paths(landGraph, from="F432", to="F1073", output="vpath")

the names of the cells in order

cells<-path$vpath[[1]]$name

plot the map

plot(landFaces, col="brown", xlim=c(0,90), ylim=c(0,90))

make a subset of the grid - which corresponds to the path

routeGrid<-hLow[cells]

plot the path

plot(routeGrid, col="red", add=T)

22

The shortest path using grid cells is a suboptimal estimate of the actual shortest route between two points,
as the graph structure limits the angles the path can turn to. A future update will include a function that
allows more accurate estimates of the actual shortest paths.

Random walk simulations can also be built using the graph represetation. In this example a random walker
will walk 100 steps on the grid, starting from face F432.

plot the map

plot(landFaces, col="brown", xlim=c(0,90), ylim=c(0,90))

create a random walk from source cell with a given no. of steps

randomWalk <- random_walk(landGraph, steps=100, start="F432")

the names of the cells visited by the random walker

cells<-randomWalk$name

the source cell

plot(hLow["F432"], col="green",add=T)

the centers of these faces

centers<-CarToPol(hLow@faceCenters[cells,], norad=T)

draw the lines of the random walk

for(i in 2:nrow(centers)){

segments(x0=centers[i-1,1], y0=centers[i-1,2], x1=centers[i,1], y1=centers[i,2], lwd=2)

}

23

Acknowledgements

The ‘icosa’ package development is part of a Deutsche Forschungsgemeinschaft project for global biogeographic
analyses (KO 5382/1-1 and KO 5382/1-2) and the Research Unit TERSANE (FOR 2332). Special thanks
are due to all early testers of the project in particular to: Wolfgang Kiessling, Kilian Eichenseer, Carl Reddin,
Vanessa Roden, Emilia Jarochowska and Andreas Lauchstedt

References

(1) Moritz, H. 2000. Geodetic Reference System 1980. Journal of Geodesy, 74, 128-162.

24

	1. Introduction
	2. The grids
	2.1. Grid creation
	2.2. Grid structure
	2.3. Plotting
	2.3.1. Three-dimensional plots
	2.3.2. Two-dimensional plots

	2.4. Layers

	3. Application
	3.1. Lookup
	3.1.1. The `locate()' function - point query
	3.1.2. The occupied() function
	3.1.3. Handling raster-type data

	3.2. Surface-graph representation
	3.2.1. Neighbours
	3.2.2. Using `igraph' in geographic calculations

	Acknowledgements
	References

