Efficient algorithms for fitting linear / logistic regression model with Independently Interpretable Lasso. Takada, M., Suzuki, T., & Fujisawa, H. (2018). Independently Interpretable Lasso: A New Regularizer for Sparse Regression with Uncorrelated Variables. AISTATS. <http://proceedings.mlr.press/v84/takada18a/takada18a.pdf>.
Version: | 0.0.2 |
Imports: | Rcpp, Matrix |
LinkingTo: | Rcpp, BH |
Suggests: | testthat, knitr, rmarkdown, MASS, parallel |
Published: | 2018-06-21 |
Author: | Masaaki Takada |
Maintainer: | Masaaki Takada <tkdmah at gmail.com> |
License: | MIT + file LICENSE |
URL: | http://proceedings.mlr.press/v84/takada18a/takada18a.pdf |
NeedsCompilation: | yes |
Materials: | README NEWS |
CRAN checks: | iilasso results |
Reference manual: | iilasso.pdf |
Vignettes: |
Introduction to iilasso package |
Package source: | iilasso_0.0.2.tar.gz |
Windows binaries: | r-devel: iilasso_0.0.2.zip, r-release: iilasso_0.0.2.zip, r-oldrel: iilasso_0.0.2.zip |
macOS binaries: | r-release (arm64): iilasso_0.0.2.tgz, r-oldrel (arm64): iilasso_0.0.2.tgz, r-release (x86_64): iilasso_0.0.2.tgz, r-oldrel (x86_64): iilasso_0.0.2.tgz |
Old sources: | iilasso archive |
Please use the canonical form https://CRAN.R-project.org/package=iilasso to link to this page.