Package ‘inlmisc’

January 24, 2022

Title Miscellaneous Functions for the USGS INL Project Office
Version 0.5.5

Description A collection of functions for creating high-level graphics,
performing raster-based analysis, processing MODFLOW-based models,
selecting subsets using a genetic algorithm, creating interactive web maps,
accessing color palettes, etc. Used to support packages and scripts written
by researchers at the United States Geological Survey (USGS)

Idaho National Laboratory (INL) Project Office.

Depends R (>=3.5.0)

Imports checkmate, data.table, GA, graphics, grDevices, htmltools,
htmlwidgets, igraph, knitr, leaflet, methods, parallel, raster,
rgdal, rgeos, rmarkdown, scales, sp, stats, tinytex, tools,
webshot, wordcloud2, xtable, yaml

Suggests alphahull, dichromat, doParallel, doRNG, grid, gstat,
maptools, png, remotes, roxygen2, testthat

SystemRequirements pandoc (https://pandoc.org/) and phantomjs
(https://phantomyjs.org/)

License CCO

Copyright This software is in the public domain because it contains
materials that originally came from the United States
Geological Survey (USGS), an agency of the United States
Department of Interior. For more information, see the official
USGS copyright policy at
https://www.usgs.gov/information-policies-and-instructions/copyrights-and-credits

URL https://github.com/USGS-R/inlmisc

BugReports https://github.com/USGS-R/inlmisc/issues

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation yes

Author Jason C. Fisher [aut, cre] (<https://orcid.org/0000-0001-9032-8912>)

Maintainer Jason C. Fisher <jfisher@usgs.gov>

1

https://github.com/USGS-R/inlmisc
https://github.com/USGS-R/inlmisc/issues
https://orcid.org/0000-0001-9032-8912

2 R topics documented:

Repository CRAN
Date/Publication 2022-01-24 20:32:53 UTC

R topics documented:

AddColorKey e e 3
AddGradientLegend 4
AddInsetMap 6
AddIntervals e 8
AddNorthArrow L e 9
AddPoints e 10
AddScaleBar 13
AddWebMapElements oL 15
BuildVignettes e e e 17
BumpDisconnectCells L 18
BumpRiverStage 19
CreateWebMap 20
ExportRasterStack L 21
ExtractAlongTransect 22
FindOptimalSubset 24
FormatPval 27
GetColors e 28
GetDaysInMonth 35
GetlnsetLocation e 35
GetRegionOfInterest L 37
Grid2Polygons e e e 38
MakeWordCloud 41
PlotCrossSection e 42
PlotGraph e 46
PlotMap e e 50
POSIXct2Character o e 54
PrintFigure e 56
PrintPackageHelp 58
PrintTable e 59
ReadCodeChunks 62
ReadModflowBinary 63
RecreateLibrary 64
ReplacelnTemplate 67
RmSmallCellChunks 68
SetHinge e 69
SetPolygons e 72
SummariseBudget e 73
ToScientific e 75
usgs_article L 76

Index 78

AddColorKey

AddColorKey

Add Color Key to Plot

Description

Add a color key to a plot.

Usage

AddColorKey(
breaks,

is.categorical = FALSE,

col = NULL,
at = NULL,

labels = TRUE,
scipen = getOption("scipen”, @),

explanation
padx = 0.2,
log = FALSE,
mai = NULL
)
Arguments
breaks

is.categorical

col

at

labels

scipen

explanation

NULL,

‘numeric’ vector. Finite breakpoints for the colors: must have one more break-
point than color and be in increasing order.

’logical’ flag. If true, color-key values represent categorical data; otherwise,
these data values are assumed continuous.

"character’ vector. Colors to be used in the plot. This argument requires breaks
specification for continuous data. For continuous data there should be one less
color than breaks; whereas, categorical data require a color for each category.

‘numeric’ vector. Points at which tick-marks and labels are to be drawn, only
applicable for continuous data. The tick marks will be located at the color breaks
if the length of at is greater than or equal to one minus the length of breaks.
Tick-mark labels are omitted where they would abut or overlap previously drawn
labels (labels are drawn left to right).

’logical’ flag, ’character’ vector, ’expression’ vector, ‘numeric’ vector, or 'fac-
tor’ vector. Can either be a flag specifying whether (numerical) annotations are
to be made at the tick marks, or a vector of labels to be placed at the tick points.

’integer’ count. Penalty to be applied when deciding to format numeric values
in scientific or fixed notation. Positive values bias towards fixed and negative
towards scientific notation: fixed notation will be preferred unless it is more than
scipen digits wider. Specify NULL to format all numbers, with the exception of
zero, in scientific notation.

"character’ string. Label that describes the data values.

4 AddGradientLegend

padx ‘numeric’ number. Inner padding for the left and right margins specified in
inches.
log ’logical’ flag. Whether the axis is to be logarithmic.
mai ‘numeric’ vector of length 4. Margin size in inches and of the form c(bottom, left, top,right).
Value

Invisible NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

PlotCrossSection, PlotMap

Examples

op <- par(mfrow = c(7, 1), omi = c(1, 1, 1, 1),
mar = c(2, 3, 2, 3))

AddColorKey(breaks = 0:10,

explanation = "Example description of data variable.”)
AddColorKey(breaks = 0:1000, at = pretty(0:1000))
AddColorKey(breaks = c(@, 1, 2, 4, 8, 16))
breaks <- c(pi * 10%(-5:5))
AddColorKey(breaks = breaks, log = TRUE)
AddColorKey(breaks = breaks,

at = breaks[as.logical(seq_along(breaks) %% 2)1,

scipen = NULL, log = TRUE)
AddColorKey(is.categorical = TRUE, labels = LETTERS[1:5])
AddColorKey(is.categorical = TRUE,

col = GetColors(5, scheme = "bright"))

par(op)

AddGradientLegend Add Color Gradient Legend to Plot

Description

Add a continuous color gradient legend strip to a plot.

AddGradientLegend 5
Usage
AddGradientLegend(
breaks,
pal = GetColors,
at = NULL,
n=>5,
labels = TRUE,
scientific = FALSE,
title = NULL,
strip.dim = c(2, 8),
)
Arguments
breaks ‘numeric’ vector. Finite numeric breakpoints for the colors, must be in increas-
ing order.
pal “function’. Color palette function to be used to assign colors in the legend.
at ‘numeric’ vector. Points at which tick-marks and labels are to be drawn.
n ’integer’ count. Desired number of tick-marks to be drawn. Unused if at argu-
ment is specified.
labels ’logical’ flag or ’character’ vector. Can either be a logical value specifying
whether annotations are to be made at the tickmarks, or a vector of labels to
be placed at the tickpoints.
scientific ’logical’ flag. Whether labels should be formatted for scientific notation, see
ToScientific for details.
title "character’ string. Title to be placed at the top of the legend.
strip.dim ‘numeric’ vector of length 1 or 2, value is recycled as necessary. Dimensions
(width and height) of the color strip, in picas.
Additional arguments to be passed to the GetInsetLocation function—used to
position the legend in the main plot region.
Value

Invisible NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

PlotMap

6 AddInsetMap

Examples

plot(NA, xlim = c(@, 100), ylim = c(-10, 10),

nin nin

ylab = "y", xaxs = "i", yaxs = "i")

n

xlab = "x",
breaks <- 0:200
AddGradientLegend(breaks, title = "Title", loc = "bottomleft")
AddGradientLegend(breaks, pal = GetColors(scheme = "iridescent”),
title = "Title"”, loc = "bottomleft”,
inset = ¢(0.2, 0.1))
AddGradientLegend(breaks, pal = GetColors(scheme = "turbo"),
loc = "center”, labels = FALSE)
breaks <- seq(@, 2e+06, length.out = 5)
AddGradientLegend(breaks, pal = GetColors(scheme = "discrete rainbow”),
scientific = TRUE, strip.dim = c(1, 14),
inset = ¢(0.2, 0.1))
AddGradientLegend(breaks, pal = GetColors(scheme = "Y10rBr"),
loc = "topright”, inset = 0.1)

AddInsetMap Add Inset Map to Plot

Description

Add an inset map to a plot.

Usage

AddInsetMap(
p,
col = c("#D8D8D8", "#BFAT6F"),
main.label = list(label = NA, adj = NULL),
sub.label = list(label = NA, adj = NULL),
loc = "topright”,
inset = 0.02,
width = NULL,
e = graphics::par("usr"),
bty = c("0", "n"),
feature = NULL

)
Arguments
p ’SpatialPolygons’. Polygon describing the large map.
col "character’ vector of length 2. Colors for filling the large map polygon p and the
smaller plot extent rectangle.
main.label ’list’. List with components 1label and adj. The text label and position (x and

y adjustment of the label) for the large map, respectively.

AddInsetMap 7

sub.label ’list’. Identical to the main.label argument but for the plot extent rectangle.

loc "character’ string. Position of the inset map in the main plot region; see GetInsetLocation
function for keyword descriptions.

inset ‘numeric’ vector of length 1 or 2, value is recycled as necessary. Inset distance(s)
from the margins as a fraction of the main plot region. Defaults to 2 percent of
the axis range.

width ‘numeric’ number. Width of the inset map in inches.

e ‘numeric’ vector of length 4. Extent of the smaller axis-aligned rectangle (rel-
ative to the larger map polygon). Defaults to the user coordinate extent of the
main plot region.

bty "character’ string. Type of box to be drawn about the inset map. A value of "o"
(the default) results in a box and a value of "n" suppresses the box.

feature ’list’. One or more spatial objects, along with style arguments, to add to the
inset map. Each list element is a ’list’-class object that contains the following
components: the first component is the name of the plotting function; the sec-
ond component is the object to be plotted; and the remaining components are
reserved for arguments to be passed to the function.

Value

Invisible NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

PlotMap

Examples

file <- system.file("extdata/county.geojson”,
package = "inlmisc")[1]
county <- rgdal::readOGR(file)
ext <- c(-113.4005, -112.2764, 43.30, 44.11)
PlotMap(county, xlim = ext[1:2], ylim = ext[3:4],
dms.tick = TRUE)
sp::plot(county, add = TRUE)
AddInsetMap(county, width = 2,
main.label = list("IDAHO", "adj" = c(@, -10)),
sub.label = list("Map area”, "adj" = c(0, -4)),
loc = "topright")

8 AddlIntervals

AddIntervals Add Interval Symbols to Plot

Description

Add interval symbols (also known as error bars) to plots.

Usage

AddIntervals(
X,
yo,
y1,
hin = NULL,
col = "black”,
1ty =1,
lwd = 0.7,
cex =1,
xpd = FALSE,

L

nondetects = NULL

)
Arguments
X ‘numeric’ or ’Date’ vector. x coordinate of interval symbols.
yo ‘numeric’ vector. y coordinate of points from which to draw.
y1 ‘numeric’ vector. y coordinate of points to which to draw.
hin ‘numeric’ number. Horizontal length of an interval head, in inches.

col, 1ty, 1wd, cex, xpd
graphical parameters; see par for details. NA values in col cause the interval to
be omitted.

Additional graphical parameters to the points function.

nondetects ’list’. Overrides graphical parameters used for left- and right-censored data.
Passed arguments include col, 1ty, and 1wd.
Details

For each observation i, the data type is identified using (y@[i], Inf) for right-censored, yo[i] =
y1[i] for exact, and (-Inf,y1[i]) for left-censored, and (y@[i],y1[i]) for interval-censored.
Where infinity may be represented with either Inf or NA.

Value

Invisible NULL

AddNorthArrow 9

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

set.seed(1)

X <- stats::runif(12)

y <- stats::rnorm(12)

plot(x, y)

dy <- sort.int(y) / 5

AddIntervals(x, y - dy, y + dy, col = "red”, xpd = TRUE)

n <- 50
X <- sort.int(stats::runif(n, max = 100))
y1 <- y@ <- stats::runif(n, max = 100)
y1[sample.int(n, 5)] <- stats::runif(5, max
y@[sample.int(n, 5)] <- -Inf
y1[sample.int(n, 5)] <- Inf
ylim <- range(pretty(c(yQ, y1)))
plot(NA, xlim = range(x), ylim = ylim, xlab = "x", ylab = "y")
AddIntervals(x, y@, yl1, col = "blue"”, xpd = TRUE,

nondetects = list("col” = "red”, "lty" = 2))
print(cbind(x, yo, y1))

100)

AddNorthArrow Add North Arrow to Plot

Description

Add a north arrow aligned to true north to a plot.

Usage
AddNorthArrow(crs = sp::CRS(), len = 0.05, lab = "N", rotate =0, ...)
Arguments
crs "CRS’, ’Raster*’, or *Spatial’. Coordinate reference system (CRS), or any object
with a CRS attribute that can be extracted using the crs function. If missing (the
default) the north arrow is point to the top of the plot unless the rotate argument
is specified.
len ‘numeric’ number. Arrow length expressed as a fraction of the plot height, by
default is 5-percent.
lab "character’ string. North label, by default is “N”.
rotate ‘numeric’ number. Arrow offset-rotation in degrees, where positive values are

taken to be clockwise.

Additional arguments to be passed to the GetInsetLocation function—used to
position the north arrow in the main plot region.

10

Value

Invisible NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also
PlotMap

Examples
m <- datasets::volcano
m <= m[nrow(m):1, ncol(m):1]
x <- seq(from = 2667405, length.out
y <- seq(from = 6478705, length.out
r <- raster::raster(m, xmn = min(x),

= ncol(m), by
= nrow(m), by
xmx = max(x),

10)
10)

ymn = min(y), ymx = max(y),
crs = "+init=epsg:27200")

PlotMap(r, pal = GetColors(scheme =
AddNorthArrow(raster::crs(r), loc =
AddNorthArrow(raster::crs(r), inset
AddNorthArrow(raster::crs(r), loc =

"DEM screen”))
"center"”)

=0.1)

"topleft”, inset = 0.1)

AddPoints

AddPoints Add Points to Plot

Description

Add point symbols to a plot. Proportional circle symbols may be used to represent point data, where
symbol area varies in proportion to an attribute variable.

Usage

AddPoints(
X,
y = NULL,
z = NULL,
zcol =1,
crs = NULL,
xlim = NULL,
ylim = NULL,
zlim = NULL,

inches = c(0, 0.2),

scaling = c("perceptual”, "mathematical”, "radius"),

bg = "#1F1F1FCB",

AddPoints

bg.neg = NULL,
fg = NA,

lwd = 0.7,
cex = 0.7,

format = NULL,
legend.loc = "topright”,
inset = 0.02,

bty = c("0", "n"),
breaks = NULL,
break.labels = NULL,
quantile.breaks = FALSE,
make.intervals = FALSE,
title = NULL,

subtitle = NULL,
draw.legend = TRUE,
draw.points = FALSE,

add = TRUE,

11

Arguments

X,y

zcol
crs

x1lim
ylim
zlim

inches

scaling

bg

bg.neg

‘numeric’ vector or ’SpatialPoints*’. x and y coordinates for the centers of the
circle symbols. If numeric, can be specified in any way which is accepted by
Xy .coords.

‘numeric’ vector, ’integer’ vector, or ’factor’. Attribute variable. For objects
of class factor, a fixed radius is used for circle symbols, see inches argument
description.

’integer’ count or 'character’ string. Attribute name or column number to extract
from if x is of class ’SpatialGridDataFrame’.

"character’ string or ’CRS’. Coordinate reference system arguments

‘numeric’ vector of length 2. x limits for the plot.

‘numeric’ vector of length 2. y limits for the plot.

‘numeric’ vector of length 2. z limits for the plot.

‘numeric’ vector of length 2. Radii limits for the drawn circle symbol. Alterna-
tively, a single number can be given resulting in a fixed radius being used for all
circle symbols; this overrides proportional circles and the function behaves like
the points function.

"character’ string. Selects the scaling algorithm to use for symbol mapping.
Specify "perceptual” or "mathematical” for proportional scaling (Tanimura
and others, 2006), or "radius" for scaling symbol size to radius (usually a bad
idea).

"character’ vector or *function’. Fill color(s) for circle symbols. A color palette
also may be specified.

"character’ vector or "function’. Fill color(s) for circle symbols corresponding
to negative z values. A color palette also may be specified. For circle symbols
corresponding to positive z values, the bg argument is used for color(s).

12 AddPoints

fg "character’ string. Outer-line color for circle symbols. Specify a value of NA to
remove the symbols outer line, and NULL to match the outer-line color with the
symbols fill color.

lwd ‘numeric’ number. Line width for drawing circle symbols.

cex ‘numeric’ number. Character expansion factor for legend labels.

format “character’ string. Formatting for legend values, see formatC for options.

legend. loc "character’ string. Position of the legend in the main plot region; see GetInsetLocation

function for keyword descriptions.

inset ‘numeric’ number. Inset distance of the legend from the margins as a fraction of
the main plot region. Defaults to 2 percent of the axis range.

bty "character’ string. Type of box to be drawn about the legend. A value of "0"
(the default) results in a box and a value of "n" suppresses the box.

breaks ‘numeric’ vector. Finite breakpoints for the legend circle symbols.

break.labels "character’ vector. Break labels with length equal to breaks.

quantile.breaks
’logical’ flag. If true, breaks are set to the sample quantiles of z.

make.intervals ’logical’ flag. If true, represent z within intervals. See findInterval function
for details. Unused if quantile.breaks is true.

title "character’ string. Main title to be placed at the top of the legend.

subtitle “character’ string. Legend subtitle to be placed below the main title.
draw.legend ’logical’ flag. If true, a legend is drawn.

draw.points ’logical’ flag. If true, the circle symbols are drawn.

add ’logical’ flag. If true, circle symbols (and an optional legend) are added to an

existing plot.

Graphics parameters to be passed to PlotMap. Unused if add = TRUE.

Value

Invisible NULL

Note

To avoid overplotting, circle symbols are drawn in order of decreasing radius.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

Tanimura, S., Kuroiwa, C., and Mizota, T., 2006, Proportional Symbol Mapping in R: Journal of
Statistical Software, v. 15, no. 5, 7 p.

AddScaleBar 13

Examples

set.seed(2)

n <- 50L

x <= cbind(runif(n, 1, 10), runif(n, 1, 500))

z <- runif(n, 0, 1000)

z[sample.int(n, 2)] <- @

AddPoints(x, z = z, fg = "#00000080", lwd = 0.5, title = "Title",
subtitle = "Subtitle”, add = FALSE)

idxs <- sample.int(n, floor(n / 2))
z[idxs] <- -z[idxs]
AddPoints(x, z = z, bg.neg = "#2A8FBDCB",
breaks = pretty(z, n = 8),
legend.loc = "bottomleft”, add = FALSE)

Pal1l <- colorRampPalette(c("#CAQ@20CB", "#F4A582CB"), alpha = TRUE)
Pal2 <- colorRampPalette(c("#0571B0CB", "#92C5DECB"), alpha = TRUE)
AddPoints(x, z = z, bg = Pall, bg.neg = Pal2, add = FALSE)

AddPoints(x, z = z, bg = Pall, bg.neg = Pal2, add = FALSE,
make.intervals = TRUE)

AddPoints(x, z = z, bg = Pall, bg.neg = Pal2, add = FALSE,
make.intervals = TRUE, inches = 0.1)

AddPoints(x, z = abs(z), title = "Quantiles"”, bg = topo.colors,
quantile.breaks = TRUE, add = FALSE)

z <- as.factor(rep(c("dog”, "cat", "ant”, "pig"”, "bat"),
length.out = n))

bg <- GetColors(nlevels(z), scheme = "bright"”, alpha = 0.8)

AddPoints(x, z = z, bg = bg, add = FALSE)

AddPoints(x, draw.legend = FALSE, add = FALSE)

AddScaleBar Add Scale Bar to Plot

Description

Add a scale bar (also known as a rake scale) to a plot.

Usage

AddScaleBar(
unit = NULL,
conv.fact = NULL,
vert.exag = NULL,

14 AddScaleBar

longlat = FALSE,
loc = "bottomleft”,

Arguments

unit "character’ vector of length 1 or 2, value is recycled as necessary. Label(s)
describing the unit of measurement of scale distances, such as "METERS".

conv.fact ‘numeric’ vector of length 1 or 2, value is recycled as necessary. Conversion
factor(s) for changing the unit of measurement for scale distances. For exam-
ple, if user coordinates of the plotting region are in meters, specify 3.28084 to
display scale distances in feet. A dual-unit scale bar is created by specifying a
second conversion factor.

vert.exag ’logical’ flag, ‘'numeric’ vector, or ’character’ vector. Either a logical value in-
dicating whether to include a vertical exaggeration label; or a custom y/x aspect
ratio to include in this label.

longlat ’logical’ flag. Whether user coordinates of the plotting region are in longitude
and latitude; if true, scale distances are in kilometers. Scale distances are cal-
culated at the maps latitude midpoint using the Great Circle distance (WGS84
ellipsoid) method.

loc "character’ string. Position of the scale bar in the main plot region; see GetInsetLocation
function for keyword descriptions.

Additional arguments to be passed to the GetInsetLocation function—used to
position the scale bar in the main plot region.

Value

Invisible NULL

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

PlotMap, PlotCrossSection

Examples

plot(-100:100, -100:100, type = "n"”, xlab = "x in meters”,
ylab = "y in meters”, asp = 2)

AddScaleBar()

AddScaleBar(loc = "center")

AddScaleBar(unit = "METERS"”, loc = "topleft”, padin = 0.2)

AddScaleBar(unit = c("METERS", "FEET"), conv.fact = c(1, 3.28084),
loc = "topright”, padin = c(0.5, 0))

AddScaleBar(unit = c("METERS", "FEET"), conv.fact = c(1, 3.28084),
vert.exag = TRUE, loc = "bottomright”, inset = 0.1)

AddWebMapElements 15

plot(c(-38.31, -35.5), c(40.96, 37.5), type = "n",
xlab = "longitude”, ylab = "latitude")
AddScaleBar(unit = "KILOMETERS", longlat = TRUE)
AddScaleBar(unit = "MILES", conv.fact = 0.621371, longlat = TRUE,
loc = "topright"”, padin = c(0.4, 0))
AddScaleBar(unit = c("KILOMETERS", "MILES"),
conv.fact = c(1, 0.621371), longlat = TRUE,
loc = "topleft”, inset = 0.05)

AddWebMapElements Add Elements to Web Map

Description

Augment a Leaflet web map with additional elements. The AddHomeButton function adds a button
that zooms to the initial map extent. The AddClusterButton function adds a button that toggles
marker clusters on and off. The AddSearchButton function adds a control that may be used to
search markers/features location by property. And the AddCirclelLegend function adds a map
legend.

Usage

AddHomeButton(map, extent = NULL, position = "topleft")

AddClusterButton(map, clusterId, position = "topleft")

AddSearchButton(
map,
group,
propertyName = "label”,
zoom = NULL,
textPlaceholder = "Search...”,
openPopup = FALSE,
position = "topleft”

AddLegend(
map,
labels,
colors,
radius,
opacity = 0.5,
symbol = c("square", "circle"),
title = "EXPLANATION",
position = "topright”

https://leafletjs.com/

16

Arguments

map

extent

position

clusterlId
group

propertyName

zoom

textPlaceholder

openPopup

labels
colors
radius
opacity
symbol
title

Value

AddWebMapElements

’leaflet’. Map widget object

’Spatial*’, "Raster*’, ’Extent’, matrix’, or ‘numeric’ vector. Extent object (or
object from which an raster: :extent object can be extracted/created) repre-
senting a rectangular geographical area on the map. The extent must be specified
in the coordinate reference system (CRS) of the web map, usually in latitude and
longitude using WGS 84 (also known as EPSG:4326). By default, the extent ob-
ject is read from the map widget.

"character’ string. Position of the button on the web map. Possible values are
"topleft”, "topright”, "bottomleft"”, and "bottomright”.

"character’ string. Identification for the marker cluster layer.
"character’ string. Name of the group whose features will be searched.

"character’ string. Property name used to describe markers, such as, "label”
and "popup”.

’integer’ count. Zoom level for move to location after marker found in search.

"character’ string. Message to show in search element.

’logical’ flag. Whether to open the marker popup associated with the searched
for marker.

"character’ vector. Labels in the legend.

"character’ vector. HTML colors corresponding to labels.

‘numeric’ number. Border radius of symbols in the legend, in pixels.
‘numeric’ number. Opacity of symbols in the legend, from O to 1.
"character’ string. Symbol type in the legend, either "square” or "circle”.

"character’ string. Legend title

An object of class ’leaflet’. A new map object with added element.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

CreateWebMap

Examples

city <- rgdal::readOGR(system.file("extdata/city.geojson”,

package = "inlmisc”)[1])

opt <- leaflet::markerClusterOptions(showCoverageOnHover = FALSE)
map <- CreateWebMap("Topo")
map <- leaflet::addMarkers(map, label = ~name, popup = ~name,

https://epsg.io/4326

BuildVignettes 17

clusterOptions = opt,
clusterId = "cluster”,
group = "marker"”, data = city)
map <- AddHomeButton(map)
map <- AddClusterButton(map, clusterId = "cluster")
map <- AddSearchButton(map, group = "marker"”, zoom = 15,
textPlaceholder = "Search city names...")
map

labels <- c(”"Non-capital”, "Capital”)

colors <- c("green”, "red")

fillColor <- colors[(city@data$capital > @) + 1]

map <- CreateWebMap("Topo")

map <- leaflet::addCircleMarkers(map, radius = 6, color = "white”,
weight = 1, opacity = 1,
fillColor = fillColor,
fillOpacity = 1, fill = TRUE,

data = city)
map <- AddLegend(map, labels = labels, colors = colors, radius = 5,
opacity = 1, symbol = "circle")
map
BuildVignettes Build Package Vignettes
Description

Build package vignettes from their source files using the buildVignettes function. Writes the
PDF and (or) HTML documents of the package vignettes, and their executable code files.

Usage

BuildVignettes(
dir = getwd(),
doc = file.path(dir, "inst/doc"),

gs_quality = c("ebook”, "printer”, "screen", "none"),
clean = TRUE,
quiet = TRUE
)
Arguments
dir "character’ string. Path to a package’s root source directory, by default the work-
ing directory. Its subdirectory ‘vignettes’ is searched for vignette source files.
doc "character’ string. Path to write the vignette output files, by default ‘inst/doc’

under the working directory.

18 BumpDisconnectCells

gs_quality "character’ string. Quality of compacted PDF files, the options are "ebook”
(150 dpi, default), "printer” (300 dpi), "screen” (72 dpi), and "none” (no
compression). See compactPDF function for details.

clean ’logical’ flag. Whether to remove all intermediate files generated by the build.
quiet ’logical’ flag. Whether to suppress most output.
Value

Invisible NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

BumpDisconnectCells Adjust Vertically Disconnected Cells

Description

Given upper and lower surfaces (raster layers) of a three-dimensional (3D) model layer, this function
incrementally decreases lower cell values until a minimum vertical overlap between adjacent model
cells is satisfied.

Usage

BumpDisconnectCells(rs, min.overlap = 2, bump.by = 0.1, max.itr = 10000)

Arguments
rs ’Raster®’. Collection of two raster layers, the first and second layers represent
the upper and lower surface of a 3D model layer.
min.overlap ‘numeric’ number. Minimum vertical overlap between horizontally adjacent
model cells.
bump. by ‘numeric’ number. Amount to decrease a cell value by during each iteration of
the algorithm.
max.itr ’integer’ count. Maximum number of iterations.
Details

During each iteration of the algorithm: (1) Cells are identified that violate the minimum vertical
overlap between adjacent cells; that is, the bottom of cell i is greater than or equal to the top of an
adjacent cell j minus the minimum overlap specified by the min.overlap argument. (2) For cells
violating the minimum vertical overlap, lower raster layer (rs[[2]]) values are decreased by the
value specified in the bump.by argument.

BumpRiverStage 19

Value

An object of class ’RasterLayer’ that can be added to rs[[2]] to ensure connectivity between
model layer cells. Cell values in the returned raster grid represent vertical adjustments.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

set.seed(Q)

r_top <- raster::raster(ncols = 10, nrows = 10)

r_bot <- raster::raster(ncols = 10, nrows = 10)
r_top[] <- rnorm(raster::ncell(r_top), mean = 12)
r_bot[] <- rnorm(raster::ncell(r_bot), mean = 10)

rs <- raster::stack(r_top, r_bot)

r <- BumpDisconnectCells(rs, min.overlap = 0.1)
raster::plot(r, col = GetColors(255, reverse = TRUE))
summary(r[1)

r_bot_new <- r_bot + r

BumpRiverStage Adjust Implausible River Stage

Description
Decrease stage values in river cells if they are implausible with respect to water always flowing
downhill.

Usage

BumpRiverStage(r, outlets, min.drop = 1e-06)

Arguments
r "RasterLayer’. Numeric cell values representing river stages.
outlets ’SpatialPoints*’, *SpatialLines*’, ’SpatialPolygons*’ or ’Extent’. Designates
the location of discharge outlets. The rasterize function is used to locate
outlet cells in the raster grid r.
min.drop ‘numeric’ number. Minimum drop in stage between adjacent river cells.
Details

The Lee algorithm (Lee, 1961) is used to identify flow paths among the modeled river cells. An
analysis of river cell stage values along a flow path identifies any problematic cells that are ob-
structing downhill surface-water flow. Stage values for these problematic cells are then lowered to
an acceptable elevation.

https://en.wikipedia.org/wiki/Lee_algorithm

20 CreateWebMap

Value
An object of class "RasterLayer’ with cell values representing the vertical change in stream stage.
These changes can be added to r to ensure that water always flows downhill.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

Lee, C.Y., 1961, An algorithm for path connections and its applications: IRE Transactions on Elec-
tronic Computers, v. EC-10, no. 2, p. 346-365.

CreateWebMap Create a Web Map Using TNM Services

Description

Create a Leaflet map widget with base maps offered through The National Map (TNM). Information
about the content of these base maps can be found within the TNM Base Maps document.

Usage
CreateWebMap(maps, ..., collapsed = TRUE, service = c("rest”, "wms"))
Arguments
maps “character’ vector. TNM base maps to include in the web map. Possible maps
include "Topo”, "Imagery"”, "Imagery Topo"”, "Hydrography”, "Hill Shade”,
and "Blank”. All base maps are included by default.
Arguments to be passed to the leaflet function.
collapsed ’logical’ flag. Whether the layers control should be rendered as an icon that
expands when hovered over.
service "character’ string. Mapping services for accessing TNM base-map tiles. Select
"rest"” for representational state transfer services (the default) and "wms" for
web map services.
Details

Map service endpoints are offered through TNM with no use restrictions. However, map content is
limited to the United States and territories. This function integrates TNM endpoint services within
an interactive web map using Leaflet for R.

https://leafletjs.com/
https://www.usgs.gov/programs/national-geospatial-program/national-map
https://www.usgs.gov/programs/national-geospatial-program/national-map
https://apps.nationalmap.gov/services
https://rstudio.github.io/leaflet/

ExportRasterStack 21

Value

An object of class ’leaflet’, a hypertext markup language (HTML) widget object. See example for
instructions on how to add additional graphic layers (such as points, lines, and polygons) to the map
widget. Graphic layers added to the web map must be in latitude and longitude using WGS 84 (also
known as EPSG:4326).

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

AddWebMapElements

Examples

map <- CreateWebMap(collapsed = FALSE)
11 <- rbind(c(-112.049705, 43.517810),
c(-122.171257, 37.456526),
c(-77.367458, 38.947206),
c(-149.803565, 61.187905),
c(-80.248344, 26.080860))
map <- leaflet::addMarkers(map, 11[, 11, 11[, 21)
map

ExportRasterStack Export a Raster Stack

Description

Write a raster-stack, a collection of raster layers, to local directories using multiple file formats.

Usage
ExportRasterStack(rs, path, zip = "", col = NULL)
Arguments
rs "RasterStack’ or ’RasterBrick’. Collection of RasterLayer objects with the
same extent and resolution.
path "character’ string. Path name to write raster stack.
zip "character’ string. If there is no zip program on your path (on windows), you

can supply the full path to a ‘zip.exe’ here, in order to make a KMZ file.

col >character’ vector. Color names

https://epsg.io/4326

22 ExtractAlongTransect

Details

Five local directories are created under path and named after their intended file formats: Comma-
Separated Values (‘csv’), Portable Network Graphics (‘png’), Georeferenced TIFF (‘tif’), R Data
(‘rda’), and Keyhole Markup Language (‘kml’). For its reference system, ‘kml’ uses geographic
coordinates: longitude and latitude components as defined by the World Geodetic System of 1984.
Therefore, the conversion of gridded data between cartographic projections may introduce a new
source of error.

Value

Invisible NULL

Note

If the zip program is unavailable on windows, install it by downloading the latest binary version
from the Info-ZIP website; select one of the given FTP locations, enter directory ‘win32’, download
‘zip300xn.zip’, and extract.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples
Not run:
rs <- raster::stack(system.file("external/rlogo.grd",
package = "raster"))
print(rs)

path <- file.path(getwd(), "rlogo")

dir.create(path)

ExportRasterStack(rs, path)

list.files(normalizePath(path, winslash = "/"),
full.name = TRUE, recursive = TRUE,
include.dirs = TRUE)

unlink(path, recursive = TRUE)

End(Not run)

ExtractAlongTransect Extract Raster Values Along a Transect Line

Description

Extract values from raster layer(s) along a user defined transect line.

https://www.7-zip.org/download.html

ExtractAlongTransect 23

Usage

ExtractAlongTransect(transect, r)

Arguments
transect ’SpatialPoints’ or ’SpatialLines’. Transect line or its vertices.
r ’RasterLayer’, ’RasterStack’, or 'RasterBrick’. Raster layer(s)
Details

The transect line is described using a simple polygonal chain. The transect line and raster layer(s)
must be specified in a coordinate reference system.

Value

A ’list” with components of class *SpatialPointsDataFrame’. These components represent contin-
uous piecewise line segments along the transect. The following variables are specified for each
coordinate point in the line segment:

dist distance along the transect line.

2,...,n extracted value for each raster layer in r, where column names match their respective
raster layer name.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

PlotCrossSection

Examples

coords <- rbind(c(-100, -90), c(80, 90), c(80, 0), c(40, -40))
crs <- sp::CRS("+init=epsg:4326")
transect <- sp::SpatialPoints(coords, proj4string = crs)
r <- raster::raster(nrows = 10, ncols = 10,

ymn = -80, ymx = 80, crs = crs)
names(r) <- "value"
set.seed(0)
rf(] <- runif(raster::ncell(r))
rf4, 6] <- NA
PlotMap(r)
1 <- sp::Lines(list(sp::Line(coords)), ID = "Transect")
lines(sp::SpatiallLines(list(l), proj4string = crs))
points(transect, pch = 19)
segs <- ExtractAlongTransect(transect, r)
for (i in seq_along(segs)) points(segs[[il])

dev.new()

24

xlab <- "Distance along transect”

ylab <- "Raster value”

xlim <- range(vapply(segs, function(i) {
range(i@datal, "dist"])

}, c(o, 0)))

ylim <- range(vapply(segs, function(i) {
range(i@datal, "value"], na.rm = TRUE)

}, c(o, 0)))

PlotGraph(NA, xlab = xlab, ylab = ylab,

xlim = x1lim, ylim = ylim, type = "n")
cols <- GetColors(length(segs), scheme = "bright")
for (i in seqg_along(segs))

lines(segs[[i]]@datal, c("dist”, "value")],
col = cols[i], lwd = 2)
coords <- sp::coordinates(transect)
n <- length(transect)

d <- cumsum(c(@, as.matrix(dist((coords)))[cbind(1:(n - 1), 2:n)1))

abline(v = d, 1ty = 2)

mtext(sprintf (" (%d, %d)", coords[1, 1], coords[1, 2]),
line = -1, adj = 0, cex = 0.7)

mtext(sprintf (" (%d, %d)", coords[n, 11, coords[n, 21),
line = -1, adj =1, cex = 0.7)

graphics.off()

FindOptimalSubset

FindOptimalSubset Find Optimal Subset Using a GA

Description

Find optimal subset of a fixed size k from a finite sequence of length n. A distributed multiple-
population genetic algorithm (GA) is used to do subset selection based on the maximization of a

user-supplied fitness function.

Usage

FindOptimalSubset(
n,
K,
Fitness,

popSize = 100,

numIslands = 4,

migrationRate = 0.1,

migrationInterval = 10,

pcrossover = 0.8,

pmutation = 0.1,

elitism = max(1, round(popSize/numIslands * ©.05)),

FindOptimalSubset

maxiter = 1000,

run = maxiter,
suggestions = NULL,
parallel = TRUE,
monitor = NULL,

25

seed = NULL
)
Arguments

n ’integer’ count. Maximum permissible index, that is, the length of the finite
sequence (1:n). The GA chooses a subset from this sequence.

k ’integer’ count. Number of indices to choose, that is, the fixed size of the subset.

Fitness “function’. Fitness function, also known as the objective function, is any allow-
able R function which takes as its first argument the binary string representing
a potential solution. And as its second argument the maximum permissible in-
dex, n. Use the DecodeChromosome(string,n) command to decode the binary
string. The fitness function returns a single numerical value describing its fit-
ness. Recall that the GA searches for a maximum fitness value.
Additional arguments to be passed to the fitness function.

popSize ’integer’ count. Population size that is distributed evenly between islands.

numIslands “integer’ count. Number of islands

migrationRate ’numeric’ number. Proportion of individuals that should migrate between is-
lands.

migrationInterval
’integer’ count. Number of generations at which exchange of individuals (or
migration) takes place. This interval between migrations is called an epoch.

pcrossover ‘numeric’ number. Probability of crossover between pairs of chromosomes.

pmutation ‘numeric’ number. Probability of mutation in a parent chromosome.

elitism ’integer’ count. Number of chromosomes to survive into the next generation.
Defaults to 5-percent of the island population.

maxiter ’integer’ count. Maximum number of generations to run on each island before
the GA search is halted.

run ’integer’ count. Number of consecutive generations without any improvement
in the “best” fitness value before the GA is stopped.

suggestions integer “matrix’. Integer chromosomes to be included in the initial population.
See returned solution component for a suggested value for this argument.

parallel ’logical’ flag or ’integer’ count. Whether to use parallel computing. This argu-
ment can also be used to specify the number of cores to employ; by default, this
is the number of physical CPUs/cores. The parallel and doParallel packages
must be installed for parallel computing to work.

monitor "function’. Function that takes as input the current state of the gaisl-class
object, and is run at each epoch of the islands GA search.

seed ’integer’ count. Random number generator state for random number generation,

used to replicate the results. The doRNG package must be installed if using
parallel computing.

26 FindOptimalSubset

Details

The fitness function (see Fitness argument) is solved using the gaisl function in the GA package
(Scrucca, 2013, 2016). The function implements an islands evolution model (first proposed by
Cohoon and others, 1987). to maximize a fitness function using islands parallel genetic algorithms
(ISLPGAs) (Luke, 2013, p. 103-104; Scrucca, 2016, p. 197-200). Independent GAs are configured
to use integer chromosomes represented with a binary codification, linear-rank selection, uniform
crossover, and uniform mutation.

Value

A ’list” with components:

call original call which can be used for later re-use.

solution a’matrix’ representation of the best solution found. Each row represents a unique solu-
tion giving the best fitness at the final generation. More than one row indicates a non-unique
solution. The number of columns is equal to the subset size k.

ga_output output from the ISLPGAs, see gaisl-class for format description.

ga_time time required to run the ISLPGAs, see system. time for details.

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

Cohoon, J.P.,, Hegde, S.U., Martin, W.N., and Richards, D., 1987, Punctuated Equilibria: A Parallel
Genetic Algorithm, in Genetic Algorithms and their Applications: Proceedings of the Second Inter-

national Conference on Genetic Algorithms, Grefenstette, J.J., Lawrence Earlbaum Associates, p.
155-161.

Luke, Sean, 2015, Essentials of metaheuristics (2nd ed.): Lulu, 263 p., available for free at https://cs.gmu.edu/~sean/book/met

Scrucca, Luca, 2013, GA: A Package for Genetic Algorithms in R: Journal of Statistical Software,
v. 53, no. 4, p. 1-37, doi: 10.18637/jss.v053.104.

Scrucca, Luca, 2017, On some extensions to GA package: hybrid optimisation, parallelisation and
islands evolution: The R Journal, v. 9, no. 1, p. 187-206, https://journal.r-project.org/
archive/2017/RJ-2017-008/.

Examples

Problem: Choose the 4 smallest numbers from a list

of 100 values generated from a standard
uniform distribution.

k <-4

n <- 100

seed <- 123

set.seed(seed); numbers <- sort.int(runif(n))
Fitness <- function(string, n, numbers) {
idxs <- DecodeChromosome(string, n)
-1 * sum(numbers[idxs])

https://doi.org/10.18637/jss.v053.i04
https://journal.r-project.org/archive/2017/RJ-2017-008/
https://journal.r-project.org/archive/2017/RJ-2017-008/

FormatPval 27

}

Not run:

out <- FindOptimalSubset(n, k, Fitness, numbers, run = 10,
monitor = GA::gaislMonitor, seed = seed)

plot(out[["ga_output”]1])

summary (out[["ga_output”]1])

print(out[["solution”]1])

print(out[["ga_output”]]@fitnessValue)

End(Not run)

FormatPval Format P Values

Description

Format p-values for pretty printing.

Usage

FormatPval(
X)
digits = max(1, getOption("digits") - 2),
eps = .Machine$double.eps,

na.form = "NA",
scientific = NA
)
Arguments
X ‘numeric’ vector. p-values
digits ’integer’ count. Number of significant digits to be used.
eps ‘numeric’ number. Numerical tolerance, values less than eps are formatted as
"< [eps]”.
na.form “character’ string. Value used for missing values.
scientific ’logical’ flag. Whether values should be encoded in scientific format using La-
TeX notation. A missing value lets R decide whether fixed or scientific notation
is used.
Value

A ’character’ vector of formatted p-values.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

28

See Also

ToScientific

Examples

GetColors

x <- c(stats::runif(5), pi*-100, NA)

FormatPval (x)
format.pval (x)

x <- c(0.1, 0.0001, 1e-27)
FormatPval(x, scientific = TRUE)
FormatPval(x, digits = 3, eps = 0.001)

GetColors

Get Palette Colors

Description

Create a vector of n colors from qualitative, diverging, and sequential color schemes.

Usage
GetColors(
n)
scheme = "smooth rainbow”,
alpha = NULL,
stops = c(0, 1),
bias = 1,
reverse = FALSE,
blind = NULL,
gray = FALSE,
)
Arguments
n ’integer’ count. Number of colors to be in the palette. The maximum number
of colors in a generated palette is dependent on the specified color scheme, see
‘Details’ section for maximum values.
scheme "character’ string. Name of color scheme, see ‘Details’ section for scheme de-
scriptions. Argument choices may be abbreviated as long as there is no ambigu-
ity.
alpha ‘numeric’ number. Alpha transparency, values range from 0 (fully transparent)

to 1 (fully opaque). Specify as NULL to exclude the alpha channel value from
colors.

GetColors

stops

bias

reverse
blind

gray

Details

29

‘numeric’ vector of length 2. Color stops defined by interval endpoints (be-
tween 0 and 1) and used to select a subset of the color palette. Only suitable for
schemes that allow for color interpolations.

‘numeric’ number. Interpolation bias where larger values result in more widely
spaced colors at the high end.

’logical’ flag. Whether to reverse the order of colors in the scheme.

"character’ string. Type of color blindness to simulate: specify "deutan” for
green-blind vision, "protan” for red-blind vision, "tritan” for green-blue-
blind vision, or "monochrome” for total-color blindness. A partial-color blind-
ness simulation requires that the dichromat package is available, see dichromat
function for additional information. Argument choices may be abbreviated as
long as there is no ambiguity.

’logical’ flag. Whether to subset/reorder the "bright”, "high-contrast”,
"vibrant"”, and "muted” schemes to work well after conversion to gray scale.

Not used

The suggested data type for color schemes and the characteristics of generated palettes are given
in the tables below. [Type: is the type of data being represented, either qualitative, diverging, or
sequential. Max n: is the maximum number of colors in a generated palette. And the maximum
n value when scheme colors are designed for gray-scale conversion is enclosed in parentheses. A
value of infinity indicates that the scheme allows for color interpolations. N: is the not-a-number
color. B: is the background color. F: is the foreground color. Abbreviations: —, not available]

Table 1. Scheme by Anton Mikhailov (2019); released under an open license.

Type

Scheme Palette Max n N B F

Sequential

o - - -

turbo

Table 2. Schemes by Paul Tol (2018) with permission granted to distribute in Oct 2018.

Type Scheme Palette Max n N B F
Diverging BuRd [R | oo - -
PRGn B B | o _ _

sunset [B | oo _ -

Qualitative bright E [703) - - -
dark I 6 - - -

ground cover N R N n 14 - - -

high-contrast [] 5(5) - - -

light H B 9 _ _ _

muted Pl B e 9(5) - - -

pale 6 - - -

vibrant B N | 74 - -

Sequential discrete rainbow ' 23 - -

iridescent
smooth rainbow
Y10rBr

8
EEEE

[

|

30

GetColors

Table 3. Schemes by Thomas Dewez (2004) with permission granted to distribute in Oct 2018.

Type Scheme Palette Max n N B F
Sequential DEM poster l _ oo
DEM print | 3 oo | |
DEM screen - - o . .

Table 4. Scheme by unknown author; discovered on gnuplot-info by Edzer Pebesma.

Type Scheme Palette Max n N B F

Sequential bpy N oo — _ _

GetColors

Table 5. Schemes collected by Wessel and others (2013) and released under an open license.

31

Type

Scheme

Palette

Max n

N

B

F

Diverging

Sequential

polar
red2green
split
abyss
acton
bam
bamako
bamO
bathy
batlow
batlowK
batlowW
bilbao
brocO
buda
cool
copper
corkO
cubhelix
davos
deml
dem2
dem3
dem4
devon
drywet
elevation
gray
grayC
hawaii
haxby
hot
imola
inferno
jet
lajolla
lapaz
magma
nuuk
ocean
oslo
plasma
romaO
seafloor
seis
tokyo
turku
vanimo
vikO
viridis
Wysiwyg

g 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 83 8 8 8 8 8 8 8 8

32 GetColors

Schemes "pale”, "dark”, and "ground cover"” are intended to be accessed in their entirety and
subset using vector element names.

Value

When argument n is specified the function returns an object of class ’inlpal’ that inherits behav-
ior from the ’character’ class. And when n is unspecified a variant of the GetColors function is
returned that has default argument values set equal to the values specified by the user.

The inlpal-class object is comprised of a ’character’ vector of n colors in the RGB color system.
Colors are specified with a string of the form "#RRGGBB" or "#RRGGBBAA" where RR, GG, BB, and
AA are the red, green, blue, and alpha hexadecimal values (00 to FF), respectively. Attributes of
the returned object include: "names”, the informal names assigned to colors in the palette, where
NULL indicates no color names are specified; "NaN", a *character’ string giving the color meant for
missing data, in hexadecimal format, where NA indicates no color is specified; and "call”, an object
of class ’call’ giving the unevaluated function call (expression) that can be used to reproduce the
color palette. Use the eval function to evaluate the "call” argument. A simple plot method is
provided for the “inlpal’ class that shows a palette of colors using a sequence of shaded rectangles,
see ‘Examples’ section for usage.

Note

Sequential color schemes "Y10rBr" and "iridescent” work well for conversion to gray scale.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

Dewez, Thomas, 2004, Variations on a DEM palette, accessed October 15,2018 athttp://soliton.
vm.bytemark.co.uk/pub/cpt-city/td/index.html

Mikhailov, Anton, 2019, Turbo, an improved rainbow colormap for visualization: Google Al Blog,
accessed August 21,2019 athttps://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.
html.

Tol, Paul, 2018, Colour Schemes: SRON Technical Note, doc. no. SRON/EPS/TN/09-002, issue
3.1, 20 p., accessed September 24, 2018 at https: //personal.sron.nl/~pault/data/colourschemes.
pdf.

Wessel, P, Smith, W.H.F., Scharroo, R., Luis, J.F., and Wobbe, R., 2013, Generic Mapping Tools:
Improved version released, AGU, v. 94, no. 45, p. 409—410 https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1002/2013E0450001

See Also

SetHinge function to set the hinge location in a color palette derived from one or two color schemes.

col2rgb function to express palette colors represented in the hexadecimal format as RGB triplets
(R, G, B).

http://soliton.vm.bytemark.co.uk/pub/cpt-city/td/index.html
http://soliton.vm.bytemark.co.uk/pub/cpt-city/td/index.html
https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
https://personal.sron.nl/~pault/data/colourschemes.pdf
https://personal.sron.nl/~pault/data/colourschemes.pdf
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013EO450001
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013EO450001

GetColors

Examples

pal <- GetColors(n = 10)
print(pal)
plot(pal)

Pal <- GetColors(scheme = "turbo")

formals(Pal)

filled.contour(datasets::volcano, color.palette = Pal,
plot.axes = FALSE)

Diverging color schemes (scheme)

op <- par(mfrow = c(6, 1), oma = c(@, @, 0, 0))
plot(GetColors(9, scheme = "BuRd"))
plot(GetColors(255, scheme = "BuRd"))
plot(GetColors(9, scheme = "PRGn"))
plot(GetColors(255, scheme = "PRGn"))
plot(GetColors(11, scheme = "sunset"))
plot(GetColors(255, scheme = "sunset"))

par(op)

Qualitative color schemes (scheme)

op <- par(mfrow = c(7, 1), oma = c(@, 0, @, 0))
plot(GetColors(7, scheme = "bright"))
plot(GetColors(6, scheme = "dark"))
plot(GetColors(5, scheme = "high-contrast”))
plot(GetColors(9, scheme = "light"))
plot(GetColors(9, scheme = "muted”))
plot(GetColors(6, scheme = "pale"))
plot(GetColors(7, scheme = "vibrant”))

par(op)

Sequential color schemes (scheme)

op <- par(mfrow = c(7, 1), oma = c(@, 0, 0, 0))
plot(GetColors(23, scheme = "discrete rainbow"))
plot(GetColors(34, scheme = "smooth rainbow"))
plot(GetColors(255, scheme = "smooth rainbow"))
plot(GetColors(9, scheme = "Y10rBr"))
plot(GetColors(255, scheme = "Y10rBr"))
plot(GetColors(23, scheme = "iridescent"))
plot(GetColors(255, scheme = "iridescent"))
par(op)

Alpha transparency (alpha)

op <- par(mfrow = c(5, 1), oma = c(@, @, 0, 0))
plot(GetColors(34, alpha = 1.9))
plot(GetColors(34, alpha = 0.8))
plot(GetColors(34, alpha = 0.6))
plot(GetColors(34, alpha = 0.4))
plot(GetColors(34, alpha = 0.2))

par(op)

Color stops (stops)

34

op <- par(mfrow = c(4, 1), oma = c(@, @, 0, 0))

plot(GetColors(255, stops = c(0.0, 1.0)))
plot(GetColors(255, stops = c(0.0, 0.5)))
plot(GetColors(255, stops = c(0.5, 1.0)))
plot(GetColors(255, stops = c(0.3, 0.9)))
par(op)

Interpolation bias (bias)

op <- par(mfrow = c(7, 1), oma = c(@, 0, @, 0))

plot(GetColors(255, bias = 0.4))
plot(GetColors(255, bias = 0.6))
plot(GetColors(255, bias = 0.8))
plot(GetColors(255, bias = 1.0))
plot(GetColors(255, bias = 1.2))
plot(GetColors(255, bias = 1.4))
plot(GetColors(255, bias = 1.6))

par(op)

Reverse colors (reverse)

op <- par(mfrow = c(2, 1), oma = c(0, 0, 0, @),

cex = 0.7)
plot(GetColors(10, reverse = FALSE))
plot(GetColors(10, reverse = TRUE))
par(op)

Color blindness (blind)

op <- par(mfrow = c(5, 1), oma = c(@, 0, 0, 0))

plot(GetColors(34, blind = NULL))
plot(GetColors(34, blind = "deutan”))
plot(GetColors(34, blind = "protan”))
plot(GetColors(34, blind = "tritan"))
plot(GetColors(34, blind = "monochrome”))
par(op)

Gray-scale preparation (gray)

op <- par(mfrow = c(8, 1), oma = c(@, 0, 0, 0))

plot(GetColors(3, "bright"”, gray = TRUE))
plot(GetColors(3, "bright"”, gray = TRUE,
blind = "monochrome"”))
plot(GetColors(5, "high-contrast”, gray
plot(GetColors(5, "high-contrast”, gray
blind = "monochrome"”))
plot(GetColors(4, "vibrant”, gray = TRUE))
plot(GetColors(4, "vibrant”, gray = TRUE,
blind = "monochrome"”))
plot(GetColors(5, "muted”, gray = TRUE))
plot(GetColors(5, "muted”, gray = TRUE,
blind = "monochrome"”))

par(op)

TRUE))
TRUE,

GetColors

GetDaysInMonth 35

GetDaysInMonth Get Number of Days in a Year and Month

Description

Calculate the number of days in a year and month.

Usage

GetDaysInMonth(x)
Arguments

X ’integer’ vector. Year and month, with a required date format of YYYYMM.
Value

A ’integer’ vector indicating the number of days for each year and month value in x.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

GetDaysInMonth(c(”199802", "199804", "200412"))

GetInsetLocation Get Location for Inset in Plot

Description

Calculate x and y co-ordinates that can be used to position an inset in a plot frame at a specified
keyword location.

Usage

GetInsetlLocation(dx, dy, loc = "bottomright”, inset = @, pad = 0, padin = 0)

36 GetlnsetLocation

Arguments
dx, dy ‘numeric’ number. Width and height of the inset, respectively.
loc "character’ string. Single keyword used to specify the position of the inset
in the main plot region: "bottomright”, "bottom”, "bottomleft”, "left",
"topleft”, "top”, "topright”, "right"”, or "center” to denote inset loca-
tion.
inset ‘numeric’ vector of length 1 or 2, value is recycled as necessary. Inset distance
from the margins as a fraction of the main plot region.
pad ‘numeric’ vector of length 1 or 2, value is recycled as necessary. Padding dis-
tance from the margins in user coordinate units.
padin ‘numeric’ vector of length 1 or 2, value is recycled as necessary. Padding dis-
tance from the margins in inches.
Value

A ’numeric’ vector of length 2 giving the user coordinates for the bottom-left corner of the inset.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

plot(NA, NA, xlim = c(@, 100), ylim = c(0, 1),

xlab = "x", ylab = "y", xaxs = "i", yaxs = "i")
dx <- 20; dy <- 0.2
xy <- GetInsetLocation(dx, dy, loc = "bottomleft")
rect(xy[1], xy[2], xy[1] + dx, xy[2] + dy, border = "red")
points(xy[1], xy[2], pch = 16, xpd = TRUE)
print(xy)

xy <- GetInsetLocation(dx, dy, loc = "bottomleft”, inset = 0.05)
rect(xy[1], xy[2], xy[1] + dx, xy[2] + dy, border = "pink")
points(xy[1], xy[2], pch = 16)

print(xy)

xy <- GetInsetLocation(dx, dy, loc = "topright”, padin = 0.5)
rect(xy[1], xy[2], xy[1] + dx, xy[2] + dy, border = "blue")

xy <- GetInsetLocation(dx, dy, loc = "left"”, pad = c(5, 0))
rect(xy[1], xy[2], xy[1] + dx, xy[2] + dy, border = "green")

xy <- GetlInsetLocation(dx, dy, loc = "center")
rect(xy[11, xy[2], xy[1] + dx, xy[2] + dy, border = "brown")

GetRegionOfInterest 37

GetRegionOfInterest Get Region of Interest

Description

Create a spatial polygon describing the convex hull of a set of spatial points.

Usage
GetRegionOfInterest(x, y = NULL, alpha = NULL, width = NULL, ...)
Arguments
X,y Coordinate vectors of a set of points. Alternatively, a single argument x can
be provided. Functions xy.coords and coordinates are used to extract point
coordinates.
alpha ‘numeric’ number. Value of «, used to implement a generalization of the convex
hull (Edelsbrunner and others, 1983). As « decreases, the shape shrinks. Re-
quires that the alphahull and maptools packages are available. The alphahull
package is released under a restrictive non-free software license.
width ‘numeric’ number. Buffer distance from geometry of convex hull.
Additional arguments to be passed to the gBuffer function.
Value

An object of class *SpatialPolygons’.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

Edelsbrunner, H., Kirkpatrick, D.G. and Seidel, R., 1983, On the shape of a set of points in the
plane: IEEE Transactions on Information Theory, v. 29, no. 4, p. 551-559.

See Also

Functions chull and ashape are used to calculate the convex hull and generalized convex hull,
respectively.

Function checkPolygonsHoles is used to identify polygon holes.

https://CRAN.R-project.org/package=alphahull

38

Examples
set.seed(123)
n <- 50
x <= list("x" = stats::runif(n), "y" = stats::runif(n))
sp::plot(GetRegionOfInterest(x, width = ©.05), border = "blue”, lty = 2)
sp: :plot(GetRegionOfInterest(x), border = "red”, add = TRUE)
sp::plot(GetRegionOfInterest(x, width = -0.05), 1ty = 2, add = TRUE)
points(x, pch = 3)
Not run:

n <- 300
theta <- stats::runif(n, @, 2 * pi)
r <- sgrt(stats::runif(n, 0.25*2, 0.50"2))
X <- sp::SpatialPoints(cbind(@.5 + r x cos(theta), 0.5 + r * sin(theta)),
proj4string = sp::CRS("+init=epsg:32610"))
sp::plot(GetRegionOfInterest(x, alpha = 0.1, width = 0.05),
col = "green")
sp::plot(GetRegionOfInterest(x, alpha = 0.1),
col = "yellow”, add = TRUE)
sp::plot(x, add = TRUE)

End(Not run)

Grid2Polygons

Grid2Polygons Convert Spatial Grids to Polygons

Description

Convert gridded spatial data to spatial polygons. Image files created with spatial polygons are
reduced in size, can easily be transformed from one coordinate reference system to another, and

result in much "cleaner” images when plotted.

Usage

Grid2Polygons(
grd,
zcol =1,
level = FALSE,
at = NULL,
cuts = 20,
pretty = FALSE,
xlim = NULL,
ylim = NULL,
zlim = NULL,
ply = NULL,

check_validity = TRUE

Grid2Polygons

Arguments

grd

zcol

level

at

cuts

pretty

x1lim
ylim
zlim
ply

check_validity

Value

39

’SpatialGridDataFrame’, ’SpatialPixelsDataFrame’, or *Raster*’. Spatial grid

"character’ string or ’integer’ count. Layer to extract from a multi-layer spatial
grid.

’logical’ flag. If true, a set of levels is used to partition the range of attribute
values, its default is false.

‘numeric’ vector. Breakpoints along the range of attribute values.

’integer’ count. Number of levels the range of attribute values would be divided
into.

’logical’” flag. Whether to use pretty cut locations.

‘numeric’ vector of length 2. Left and right limits of the spatial grid, data outside
these limits is excluded.

‘numeric’ vector of length 2. Lower and upper limits of the spatial grid, data
outside these limits is excluded.

‘numeric’ vector of length 2. Minimum and maximum limits of the attribute
variable, data outside these limits is excluded.

’SpatialPolygons’, or ’SpatialGridDataFrame’. Cropping polygon

’logical’ flag. If true (default), check the validity of polygons. If any of the
polygons are invalid, try making them valid by zero-width buffering.

An object of class ’SpatialPolygonsDataFrame’. The objects data slot is a data frame, number of
rows equal to the number of Polygons objects and a single column containing attribute values. If
level is true, attribute values are set equal to the midpoint between breakpoints. The status of the
polygon as a hole or an island is taken from the ring direction, with clockwise meaning island, and
counter-clockwise meaning hole.

Note

The traditional R graphics model does not draw polygon holes correctly, holes overpaint their con-
taining "Polygon’ object using a user defined background color (white by default). Polygon holes
are now rendered correctly using the plot method for spatial polygons (SpatialPolygons-class),
see polypath for more details. The Trellis graphics model appears to rely on the traditional method
so use caution when plotting with spplot.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

As an alternative, consider using the rasterToPolygons function in the raster package, setting

dissolve = TRUE.

40 Grid2Polygons
Examples
Example 1
z <-c(1.1, 1.5, 4.2, 4.1, 4.3, 4.7,
1.2, 1.4, 4.8, 4.8, NA, 4.1,
1.7, 4.2, 1.4, 4.8, 4.0, 4.4,
1.1, 1.3, 1.2, 4.8, 1.6, NA,
3.3, 2.9, NA, 4.1, 1.0, 4.0)
m<-5
n<-=6
X <= rep(@:n, m + 1)
y <- rep(@:m, each = n + 1)

xc <- c(rep(seq(@.5, n - 0.5, by = 1), m))
yc <- rep(rev(seq(@.5, m - 0.5, by = 1)), each = n)
grd <- data.frame(z = z, xc = xc, yc = yc, stringsAsFactors = TRUE)
sp::coordinates(grd) <- ~ xc + yc
sp::gridded(grd) <- TRUE
grd <- as(grd, "SpatialGridDataFrame")
image(grd, col = gray.colors(30), axes = TRUE)
grid(col = "black”, 1ty = 1)
points(x = x, y =y, pch = 16)
text(cbind(xc, yc), labels = z)
text(cbind(x = x + 0.1, y = rev(y + 0.1)),
labels = 1:((m + 1) * (n + 1)), cex = 0.6)
at <- 1:ceiling(max(z, na.rm = TRUE))
plys <- Grid2Polygons(grd, level = TRUE, at = at)
cols <- GetColors(length(plys), scheme = "bright"”, alpha = 0.3)
sp::plot(plys, add = TRUE, col = cols)
zz <- plys[[1]1]
legend("top"”, legend = zz, fill = cols, bty = "n"”, xpd = TRUE,
inset = c(@, -0.1), ncol = length(plys))

vl <= rbind(c(1.2, 0.5), c(5.8, 1.7), c(2.5, 5.1), c(1.2, 0.5))
v2 <= rbind(c(2.5, 2.5), c(3.4, 1.8), c(3.7, 3.1), c(2.5, 2.5))
v3 <- rbind(c(-0.3, 3.3), c(1.7, 5.1), c(-1.0, 7.0), c(-0.3, 3.3))
pl <- sp::Polygon(vl, hole = FALSE)

p2 <- sp::Polygon(v2, hole = TRUE)

p3 <- sp::Polygon(v3, hole = FALSE)

p <- sp::SpatialPolygons(list(sp::Polygons(list(pl, p2, p3), 1)))
plys <- Grid2Polygons(grd, level = TRUE, at = at, ply = p)

cols <- GetColors(length(zz), scheme = "bright"”, alpha = 0.6)

cols <- cols[zz %in% plys[[11]1]

sp::plot(plys, col = cols, add = TRUE)

text(cbind(xc, yc), labels = z)

[oBNg}

Example 2
data(meuse.grid, package = "sp")
sp::coordinates(meuse.grid) <- ~ x +y

sp::gridded(meuse.grid) <- TRUE

meuse.grid <- as(meuse.grid, "SpatialGridDataFrame")
meuse.plys <- Grid2Polygons(meuse.grid, "dist”, level = FALSE)
op <- par(mfrow = c(1, 2), oma = rep(@, 4), mar = rep(0, 4))
sp::plot(meuse.plys, col = heat.colors(length(meuse.plys)))

MakeWordCloud 41

title("level = FALSE", line = -7)

meuse.plys.lev <- Grid2Polygons(meuse.grid, "dist”, level = TRUE)
sp::plot(meuse.plys.lev, col = heat.colors(length(meuse.plys.lev)))
title("level = TRUE", line = -7)

par(op)

Example 3

m <- datasets::volcano

m <- m[nrow(m):1, ncol(m):1]

x <- seq(from = 2667405, length.out = ncol(m), by = 10)

y <- seq(from = 6478705, length.out = nrow(m), by = 10)

r <- raster::raster(m, xmn = min(x), xmx = max(x), ymn = min(y),

ymx = max(y), crs = "+init=epsg:27200")
plys <- Grid2Polygons(r, level = TRUE)
cols <- GetColors(length(plys), scheme = "DEM screen”)
sp::plot(plys, col = cols, border = "#515151")

MakeWordCloud Create a Word Cloud from a Frequency Table of Words

Description

Create a word cloud from a frequency table of words, and save to a PNG file. Visualizations are
created using the ‘wordcloud2.js’ JavaScript library.

Usage

MakeWordCloud(
X,
max_words = 200L,
size = 1,
shape = "circle”,
ellipticity = 0.65,

width = 91eL,
output = NULL,
display = FALSE

)
Arguments
X ’data.frame’. A frequency table of words that includes "word” and "freq"” in
each column.
max_words ’integer’ number. Maximum number of words to include in the word cloud.

size ‘numeric’ number. Font size, where the larger size indicates a bigger word.

https://wordcloud2-js.timdream.org/

42 PlotCrossSection

shape "character’ string. Shape of the “cloud” to draw. Possible shapes include a
"circle”, "cardioid”, "diamond”, "triangle-forward”, "triangle”, "pentagon”,
and "star"”.

ellipticity ‘numeric’ number. Degree of “flatness” of the shape to draw, a value between 0
and 1.

Additional arguments to be passed to the wordcloud?2 function.
width “integer’ number. Desired image width in pixels.

output "character’ string. Path to the output file, by default the word cloud is copied to
a temporary file.

display ’logical’ flag. Whether to display the saved PNG file in a graphics window.
Requires access to the png package.

Details

The webshot package requires the external program PhantomJS, which may be installed using the
webshot: :install_phantomjs() command. To recompress the PNG file to a smaller size requires
that the external program OptiPNG is accessible through a command window.

Value

The word cloud plots in PNG format, and the path of the output file is returned.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

Not run:
MakeWordCloud(wordcloud2: :demoFreq, size = 1.5, display = TRUE)

End(Not run)

PlotCrossSection Plot Cross Section

Description

Draw a cross-section view of raster data. A key showing how the colors map to raster values is
shown below the map. The width and height of the graphics region will be automagically deter-
mined in some cases.

https://phantomjs.org/
http://optipng.sourceforge.net/

PlotCrossSection 43

Usage

PlotCrossSection(
transect,
rs,
geo.lays = names(rs),
val.lays = NULL,
wt.lay = NULL,

asp = 1,

ylim = NULL,

max.dev.dim = c(43, 56),
n = NULL,

breaks = NULL,

pal = NULL,

col = NULL,

ylab = NULL,

unit = NULL,

id = c("A", "A'™),
labels = NULL,
explanation = NULL,
features = NULL,
max.feature.dist = Inf,
draw.key = TRUE,
draw.sep = TRUE,
is.categorical = FALSE,
contour.lines = NULL,
bg.col = NULL,

wt.col = "#FFFFFFD8",
bend.label = "BEND",
scale.loc = NULL,

file = NULL
)
Arguments

transect ’SpatialLines’. Piecewise linear transect line.

rs "RasterStack’ or "RasterBrick’. Collection of raster layers with the same extent
and resolution.

geo.lays "character’ vector. Names in rs that specify the geometry-raster layers; these
must be given in decreasing order, that is, from the upper most (such as land
surface) to the lowest (such as a bedrock surface).

val.lays "character’ vector. Names in rs that specify the value-raster layers (optional).
Values from the first layer are mapped as colors to the area between the first and
second geometry layers; the second layer mapped between the second and third
geometry layers, and so on.

wt.lay "character’ string. Name in rs that specifies the water-table-raster layer (op-

tional).

44

asp

ylim

max.dev.dim

breaks

pal

col

ylab
unit

id

labels

explanation

features

PlotCrossSection

‘numeric’ number. y/x aspect ratio for spatial axes. Defaults to 1 (one unit on the
x-axis equals one unit on the y-axis) when r is projected, otherwise, a calculated
value based on axes limits is used.

‘numeric’ vector of length 2. Minimum and maximum values for the y-axis.

‘numeric’ vector of length 2, value is recycled as necessary. Maximum width
and height for the graphics device in picas, respectively. Where 1 pica is equal
to 1/6 of an inch, 4.2333 of a millimeter, or 12 points. Suggested dimensions for
single-column, double-column, and side title figures are c(21,56), c(43,56),
and c(56,43), respectively. This argument is only applicable when the file
argument is specified.

’integer’ count. Desired number of intervals to partition the range of raster val-
ues (optional).

‘numeric’ vector. Break points used to partition the colors representing numeric
raster values (optional).

"function’. Color palette to be used to assign colors in the plot.

"character’ vector. Colors to be used in the plot. This argument requires breaks
specification for numeric raster values and overrides any palette function spec-
ification. For numeric values there should be one less color than breaks. Cate-
gorical data require a color for each category.

"character’ string. Label for the y axis.
"character’ string. Label for the measurement unit of the x- and y-axes.

“character’ vector of length 2. Labels for the end points of the transect line,
defaults to A-A’.

’list’. Location and values of labels in the color key. This list may include
components at and labels.

"character’ string. Label explaining the raster cell value.

’SpatialPointsDataFrame’. Point features adjacent to the transect line that are
used as reference labels for the upper geometry layer. Labels taken from first
column of embedded data table.

max.feature.dist

draw.key

draw.sep

is.categorical

contour.lines

bg.col

wt.col

‘numeric’ number. Maximum distance from a point feature to the transect line,
specified in the units of the rs projection.

’logical’ flag. Whether a color key should be drawn.
’logical’ flag. Whether lines separating geometry layers are drawn.

’logical’ flag. If true, cell values in val.lays represent categorical data; other-
wise, these data values are assumed continuous.

’list’. If specified, contour lines are drawn. The contours are described using a
list of arguments supplied to the contour function. Passed arguments include
drawlables, method, and col.

"character’ string. Color used for the background of the area below the top
geometry-raster layer.

"character’ string. Color used for the water-table line.

PlotCrossSection 45

bend. label “character’ vector. Labels to place at top of the bend-in-section lines, values are
recycled as necessary to the number of bends.

scale.loc "character’ string. Position of the scale bar in the main plot region; see GetInsetLocation
function for keyword descriptions.

file "character’ string. Name of the output file. Specifying this argument will start
a graphics device driver for producing a PDF or PNG file format—the file ex-
tension determines the format type. The width and height of the graphics region
will be automagically determined and included with the function’s returned val-
ues, see "Value" section for details; these device dimensions can be useful when
creating similar map layouts in dynamic reports.

Value
A ’list” with the following graphical parameters:

din device dimensions (width,height), in inches.
usr extremes of the coordinates of the plotting region (x1,x2,y1,y2).

heights relative heights on the device (upper, lower) for the map and color-key plots.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

AddScaleBar, AddColorKey, ExtractAlongTransect

Examples

m <- datasets::volcano
m <= m[nrow(m):1, ncol(m):1]
x <- seq(from = 2667405, length.out = ncol(m), by = 10)
y <- seq(from = 6478705, length.out = nrow(m), by = 10)
r1 <- raster::raster(m, xmn = min(x), xmx = max(x), ymn = min(y),
ymx = max(y), crs = "+init=epsg:27200")

r2 <- min(r1f1) - r1 / 10
r3i<-rl -r2
rs <- raster::stack(r1l, r2, r3)
names(rs) <- c("r1", "r2", "r3")
Xy <- rbind(c(2667508, 6479501),

c(2667803, 6479214),

c (2667508, 6478749))
transect <- sp::Lines(list(sp::Line(xy)), ID = "Transect”)
transect <- sp::SpatiallLines(list(transect),

proj4string = raster::crs(rs))

xy <- rbind(c(2667705, 6478897),

c(2667430, 6479178))
p <- sp::SpatialPoints(xy, proj4string = raster::crs(rs))
d <- data.frame("label” = c("Peak”, "Random"), stringsAsFactors = TRUE)
features <- sp::SpatialPointsDataFrame(p, d, match.ID = TRUE)

46 PlotGraph

bg.image <- raster::hillShade(raster::terrain(r1l, "slope"),
raster::terrain(rl, "aspect"))
PlotMap(r1, bg.image = bg.image,
pal = GetColors(scheme = "DEM screen”, alpha = 0.8),

scale.loc = "top"”, arrow.loc = "topright”,
contour.lines = list("col” = "#1F1F1FA6"),
useRaster = TRUE)

lines(transect)

raster::text(as(transect, "SpatialPoints"”),
labels = c("A", "BEND", "A'"),
halo = TRUE, cex = 0.7, pos = c(3, 4, 1),
offset = 0.1, font = 4)
points(features, pch = 19)
raster::text(features, labels = features@data$label, halo = TRUE,
cex = 0.7, pos = 4, offset = 0.5, font = 4)

dev.new()

asp <- 5

unit <- "METERS"

explanation <- "Vertical thickness between layers, in meters.”

PlotCrossSection(transect, rs, geo.lays = c("r1", "r2"),
val.lays = "r3"”, ylab = "Elevation”, asp = asp,
unit = unit, explanation = explanation,
features = features, max.feature.dist = 100,
bg.col = "#ET1E1E1", bend.label = "BEND IN\nSECTION",
scale.loc = NULL)

AddScaleBar(unit = unit, vert.exag = asp, inset = 0.05)

val <- PlotCrossSection(transect, rs, geo.lays = c("r1", "r2"),
val.lays = "r3", ylab = "Elevation”, asp = 5,
unit = "METERS", explanation = explanation,

file = "Rplots.png")
print(val)

graphics.off()
file.remove("Rplots.png")

PlotGraph Plot Graph

Description

Draw a sequence of points, lines, or box-and-whiskers.

Usage
PlotGraph(
X ’
Y,

PlotGraph 47
xlab,
ylab,
main = NULL,
asp = NA,
xlim = NULL,
ylim = NULL,
xn = 5,
yn =5,
ylog = FALSE,
type = n s n s
1ty = 1,
lwd = 0.7,
pch = NULL,
col = NULL,
bg = NA,
fill = "none”,
fillcolor = NULL,
pt.cex =1,
xpd = FALSE,
seq.date.by = NULL,
scientific = NA,
conversion.factor = NULL,
boxwex = 0.8,
center.date.labels = FALSE,
bg.polygon = NULL,
add.grid = TRUE
)
Arguments
X,y ’Date’ vector, 'numeric’ vector, 'matrix’, or ’data.frame’. Data for plotting
where the vector length or number of rows should match. If y is missing, then x
=x[,1Jandy =x[,-11].
xlab "character’ string. Title for x axis.
ylab “character’ vector of length 2. Title for the 1st and 2nd-y axes. The title for the
2nd-y axis is optional and requires conversion. factor be specified.
main "character’ string. Main title for the plot.
asp ‘numeric’ number. y/x aspect ratio for spatial axes. Defaults to 1 (one unit on the
x-axis equals one unit on the y-axis) when r is projected, otherwise, a calculated
value based on axes limits is used.
x1lim ‘numeric’ or "Date’ vector of length 2. Minimum and maximum values for the
X-axis.
ylim ‘numeric’ vector of length 2. Minimum and maximum values for the y-axis.
Xn, yn “integer’ count. Desired number of intervals between tick-marks on the x- and
y-axis, respectively.
ylog ’logical’ flag. Whether a logarithm scale is used for the y axis.

48

type

1ty

1wd
pch
col

bg

fill

fillcolor

pt.cex

xpd

seq.date. by

scientific

PlotGraph

"character’ string. Plot type, possible types are

» "p" for points,

e "1" for lines,

* "b" for both points and lines,

 "s" for stair steps (default),

¢ "w" for box-and-whisker,

» "i" for interval-censored data, see "Details" section below, and

* "n" for no plotting.
“integer’ vector. Line type, see par function for all possible types. Line types
are used cyclically.
‘numeric’ number. Line width
“integer’ count. Point type, see points function for all possible types.
’character’ vector or ’function’. Point or line color, see par function for all
possible ways this can be specified. Colors are used cyclically.
"character’ vector. Background colors for the open plot symbols given by pch =
21:25 asin points.
"character’ string. Used to create filled area plots. Specify "tozeroy” to fill
to zero on the y-axis; "tominy” to fill to the minimum y value in the plotting
region; and "tomaxy"” to fill to the maximum. Requires plot type = "1", "b",
and "s".
"character’ vector. Colors for basic filled area plots. Defaults to a half-transparent
variant of the line color (col).
‘numeric’ number. Expansion factor for the point symbols.
’logical’ flag. Whether to prevent point and (or) line symbols from being clipped
to the plot region.
"character’ string, ‘numeric’ number, or ’difftime’. The increment of the date
sequence, see the by argument in the seq.Date function for all possible ways
this can be specified.
’logical’ vector of length 1, 2, or 3, value is recycled as necessary. Whether
axes labels should be encoded in nice scientific format. Vector elements cor-
respond to the x-axis, y-axis, and second y-axis labels. Values are recycled
as necessary. Missing values correspond to the current default penalty (see

options(”scipen”)) to be applied when deciding to print numeric values in
fixed or scientific notation.

conversion.factor

boxwex

‘numeric’ number. Conversion factor for the 2nd-y axis.

‘numeric’ number. Scale factor to be applied to all boxes, only applicable for
box-and-whisker plots.

center.date.labels

bg.polygon

add.grid

’logical’ flag. If true, date labels are horizontally centered between x-axis tick-
marks.

’list’. If specified, a background polygon is drawn. The polygon is described
using a list of arguments supplied to the polygon function. Passed arguments
include "x" and "col”.

’logical’ flag. Whether to draw a rectangular grid.

PlotGraph 49

Details

Interval censored data (type = "i") requires y be matrix of 2 columns. The first column contains
the starting values, the second the ending values. Observations are represented using (y@,Inf) for
right-censored value, (y@,y®) for exact value, and (-Inf,y1) for left-censored value, and (y@,y1)
for an interval censored value. Where infinity is represented as Inf or NA, and y is a numeric value.

Value

Invisible NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

AddIntervals

Examples

n <- 50L

X <- as.Date("2008-07-12") + 1:n

y <- sample.int(n, replace = TRUE)

PlotGraph(x, y, ylab = paste(”Random number in"”, c("meters”, "feet")),
main = "Main Title", type = "p", pch = 16,
scientific = FALSE, conversion.factor = 3.28)

y <- data.frame(lapply(1:3, function(i) sample(n, replace = TRUE)),
stringsAsFactors = TRUE)
PlotGraph(x, y, ylab = "Random number"”, pch = 1,
seg.date.by = "days", scientific = TRUE)

y <- sapply(1:3, function(i) {
sample((1:100) + i * 100, n, replace = TRUE)
»
m <- cbind(as.numeric(x), y)
col <- GetColors(3, scheme = "bright")
PlotGraph(m, xlab = "Number"”, ylab = "Random number"”, type = "b",
pch = 15:17, col = col, pt.cex = 0.9)
legend("topright”, LETTERS[1:3], inset = 0.02, col = col, 1ty =1,
pch = 15:17, pt.cex = 0.9, cex = 0.7, bg = "white")

d <- data.frame(x = as.Date("2008-07-12") + 1:8 * 1000,
y0 = c(NA, NA, 1, 3, 1, 4, 2, pi),
y1 = c(1, 2, NA, NA, 4, 3, 2, pi),
stringsAsFactors = TRUE)

PlotGraph(d, type = "i", ylim = c(@, 5), xpd = TRUE)

50

PlotMap

PlotMap Plot Map

Description

Draw a map of raster data and geographical features. A key showing how the colors map to raster
values is shown below the map. The width and height of the graphics region will be automagically

determined in some cases.

Usage
PlotMap(

r,
layer = 1,
att = NULL,
n = NULL,
breaks = NULL,
xlim = NULL,
ylim = NULL,
zlim = NULL,
asp = NULL,

extend.xy = FALSE,
extend.z = FALSE,
reg.axs = TRUE,
dms.tick = FALSE,
bg.lines = FALSE,
bg.image = NULL,
bg.image.alpha = 1,
pal = NULL,

col = NULL,

max.dev.dim = c(43, 56),

labels = NULL,
scale.loc = NULL,
arrow.loc = NULL,
explanation = NULL,
credit = NULL,
shade = NULL,
contour.lines = NULL,
rivers = NULL,
lakes = NULL,

roads = NULL,
draw.key = NULL,
draw.raster = TRUE,
file = NULL,
close.file = TRUE,
useRaster,

simplify

PlotMap

Arguments

r

layer

att

breaks

xlim
ylim

zlim

asp

extend.xy

extend.z

reg.axs

dms.tick

bg.lines

bg.image

bg.image.alpha
pal

col

51

’Raster®’, *Spatial*’, or ’CRS’. Object that can be converted to a raster layer, or
coordinate reference system (CRS).

’integer’ count. Layer to extract from if r is of class ’RasterStack/Brick’ or
’SpatialGridDataFrame’.

’integer’ count or ’character’ string. Levels attribute to use in the Raster At-
tribute Table (RAT); requires r values of class factor.

’integer’ count. Desired number of intervals to partition the range of raster val-
ues (or z1im if specified) (optional).

‘numeric’ vector. Break points used to partition the colors representing numeric
raster values (optional).

‘numeric’ vector of length 2. Minimum and maximum values for the x-axis.

‘numeric’ vector of length 2. Minimum and maximum values for the y-axis.

‘numeric’ vector of length 2. Minimum and maximum raster values for which
colors should be plotted.

‘numeric’ number. y/x aspect ratio for spatial axes. Defaults to 1 (one unit on the
x-axis equals one unit on the y-axis) when r is projected, otherwise, a calculated
value based on axes limits is used.

’logical’ flag. If true, the spatial limits will be extended to the next tick mark on
the axes beyond the grid extent.

’logical’ flag. If true, the raster value limits will be extended to the next tick mark
on the color key beyond the measured range. Not used if the z1im argument is
specified.

’logical’ flag. If true, the spatial data range is extended.

’logical’ flag. If true and r is projected, the axes tickmarks are specified in
degrees, minutes, and decimal seconds (DMS).

’logical’ flag. If true, grids or graticules are drawn in back of the raster layer
using white lines and a grey background.

’RasterLayer’. An image to be drawn in back of the main raster layer r, image
colors are derived from a vector of gray levels. Raster values typically repre-
sent hill shading based on the slope and aspect of land-surface elevations, see
hillShade function.

‘numeric’ number. Opacity of the background image from O to 1.
“function’. Color palette to be used to assign colors in the plot.

"character’ vector. Colors to be used in the plot. This argument requires breaks
specification for numeric values of r and overrides any palette function specifi-
cation. For numeric values there should be one less color than breaks. Factors
require a color for each level.

52

max.dev.dim

labels

scale.loc

arrow. loc

explanation
credit

shade

contour.lines

rivers

lakes

roads

draw.key
draw.raster
file

close.file

useRaster

PlotMap

‘numeric’ vector of length 2, value is recycled as necessary. Maximum width
and height for the graphics device in picas, respectively. Where 1 pica is equal
to 1/6 of an inch, 4.2333 of a millimeter, or 12 points. Suggested dimensions for
single-column, double-column, and side title figures are c(21,56), c(43,56),
and c(56,43), respectively. This argument is only applicable when the file
argument is specified.

’list’. Location and values of labels in the color key. This list may include
components at and labels.

"character’ string. Position of the scale bar in the main plot region; see GetInsetlLocation

function for keyword descriptions.

"character’ string. Position of the north arrow in the main plot region; see
GetInsetLocation function for keyword descriptions.

"character’ string. Label explaining the raster cell value.
"character’ string. Label crediting the base map.

"list’. If specified, a semi-transparent shade layer is drawn on top of the raster
layer. This layer is described using a list of arguments supplied to the hillShade
function. Passed arguments include angle and direction. Additional argu-
ments also may be passed that control the vertical aspect ratio (z.factor) and
color opacity (alpha).

"list’. If specified, contour lines are drawn. The contours are described using a
list of arguments supplied to the contour function. Passed arguments include
drawlables, method, and col.

’list’. If specified, lines are drawn. The lines are described using a list of argu-
ments supplied to the plot method for class *SpatiallLines’. Passed arguments
include x, col, and lwd.

"list’. If specified, polygons are drawn. The polygons are described using a list
of arguments supplied to the plot method for class *SpatialPolygons’. Passed
arguments include x, col, border, and lwd. Bitmap images require a regular
grid.

"list’. If specified, lines are drawn. The lines are described using a list of argu-
ments supplied to the plot method for class *SpatiallLines’. Passed arguments
include x, col, and 1lwd.

’logical’ flag. Whether a color key should be drawn.
’logical’ flag. Whether the raster image should be drawn.

"character’ string. Name of the output file. Specifying this argument will start
a graphics device driver for producing a PDF or PNG file format—the file ex-
tension determines the format type. The width and height of the graphics region
will be automagically determined and included with the function’s returned val-
ues, see "Value" section for details; these device dimensions can be useful when
creating similar map layouts in dynamic reports.

’logical’ flag. Whether the graphics device driver should be shut down after the
function exits. Unused if file = NULL

"logical’ flag. If true, a bitmap raster is used to plot r instead of using individual
polygons for each raster cell. If UseRaster is not specified, raster images are

PlotMap 53

used when the getOption("preferRaster”) is true. Unused if simplify =
TRUE.

simplify ‘numeric’ number. Specifying this argument will convert the raster r to spatial
polygons prior to plotting, see Grid2Polygons function for details. If simplify
> @ the geometry of the spatial polygons is generalized using the Douglas-Peucker
algorithm (Douglas and Peucker, 1961); and simplify is the numerical toler-
ance value to be used by the algorithm. See gSimplify function for additional
information.

Value
A ’list’ with the following graphical parameters:

din device dimensions c(width,height), in inches.
usr extremes of the coordinates of the plotting region c(x1,x2,y1,y2).

heights relative heights on the device c(upper, lower) for the map and color-key plots.

Author(s)
J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

Douglas, D., and Peucker, T., 1961, Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature: The Canadian Cartographer, v. 10, no. 2, p. 112-122.

See Also
AddColorKey

Examples

r <- raster::raster(nrow = 10, ncol = 10, crs = NA)
rf] <- 1L
r(51:100] <- 2L
r(3:6, 1:5] <- 8L
r <- raster::ratify(r)
rat <- cbind(raster::levels(r)[[1]],
land.cover = c("Pine”, "Oak", "Meadow"))
levels(r) <- rat
PlotMap(r)

data(meuse, meuse.grid, package = "sp")
sp::coordinates(meuse.grid) <- ~x+y
sp::projdstring(meuse.grid) <- sp::CRS("+init=epsg:28992")

sp::gridded(meuse.grid) <- TRUE

meuse.grid <- raster::raster(meuse.grid, layer = "soil")
model <- gstat::gstat(id = "zinc”, formula = zinc~1,
locations = ~x+y, data = meuse)

r <- raster::interpolate(meuse.grid, model)
r <- raster::mask(r, meuse.grid)

54

POSIXct2Character

Pal <- function(n) GetColors(n, stops=c(0.3, 0.9))
breaks <- seq(@, 2000, by = 200)
credit <- paste(”Data collected in a flood plain of the river Meuse,"”,
"near the village of Stein (Netherlands),”,
"\nand iterpolated on a grid with 40m by 40m spacing”,
"using inverse distance weighting.")
PlotMap(r, breaks = breaks, pal = Pal, dms.tick = TRUE,
bg.lines = TRUE, contour.lines = list("col” = "#1F1F1F"),
credit = credit, draw.key = FALSE, simplify = @)
AddScaleBar(unit = c("KILOMETER", "MILES"),
conv.fact = c(0.001, 0.000621371),
loc = "bottomright”, inset = c(@0.1, 0.05))
AddGradientlLegend(breaks, Pal, at = breaks,
title = "Topsoil zinc\nconcentration\n(ppm)",
loc = "topleft”, inset = c(0.05, 0.1),
strip.dim = c(2, 20))

<- datasets::volcano
<- m[nrow(m):1, ncol(m):1]
seq(from = 2667405, length.out = ncol(m), by = 10)
<- seq(from = 6478705, length.out = nrow(m), by = 10)
<- raster::raster(m, xmn = min(x), xmx = max(x), ymn = min(y),
ymx = max(y), crs = "+init=epsg:27200")
bg.image <- raster::hillShade(raster::terrain(r, "slope"),
raster::terrain(r, "aspect”))
credit <- paste("Digitized from a topographic map by Ross Ihaka",
"on a grid with 10-meter by 10-meter spacing."”)
explanation <- "Elevation on Auckland's Maunga Whau volcano, in meters."”
PlotMap(r, extend.z = TRUE, bg.image = bg.image,
pal = GetColors(scheme = "DEM screen”, alpha = 0.8),

09K X 3 3
N
1

scale.loc = "bottomright”, arrow.loc = "topright”,
explanation = explanation, credit = credit,
contour.lines = list("col” = "#1F1F1FA6"), "useRaster” = TRUE)

out <- PlotMap(r, file = "Rplotsl.pdf")
print(out)

pdf(file = "Rplots2.pdf”, width = out$din[1], height = out$din[2])
PlotMap(r)

raster::contour(r, col = "white”, add = TRUE)

dev.off()

file.remove(c("Rplotsl.pdf”, "Rplots2.pdf"))
graphics.off()

POSIXct2Character Convert from POSIXct to Character

Description

Convert objects from "POSIXct’ class to *character’ class.

POSIXct2Character 55

Usage

POSIXct2Character(x, fmt = "%Y-%m-%d %H:%M:%0S3")

Arguments

X "POSIXct’ vector. Calendar date and time

fmt "character’ string. Conversion specification format
Value

A ’character’ vector representing time.

Note

R incorrectly formats objects of calss "POSIXct” with fractional seconds. For example, a "POSIXct’
time with fractional part .3 seconds (stored as ©.29999) is printed as .2 when represented with
one decimal digit. The fractional part on outputs is not rounded. Decimal precision is down to
milliseconds on Windows, and down to (almost) microseconds on the other operating systems.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

txt <- ¢c("11/10/2011 07:49:36.3",
"04/01/2013 17:22:08.123",
"01/06/2013 01:02:16.123",
"12/14/2038 15:42:04.123456")
date.time <- as.POSIXct(txt, format = "%m/%d/%Y %H:%M:%0S")

options("digits.secs” = 3)
format(date.time, fmt = "%d/%m/%Y %H:%M:%0S")
format(date.time, fmt "%d/%m/%Y %H:%M:%0S3")

POSIXct2Character(date.time, fmt = "%d/%m/%Y %H:%M:%0S3")
POSIXct2Character(date.time, fmt = "%d/%m/%Y %H:%M:%0S4")
POSIXct2Character(date.time, fmt = "%d/%m/%Y %H:%M:%0S2")

POSIXct2Character(date.time, fmt = "%H:%M:%0S3 %Y-%m-%d")

56

PrintFigure

PrintFigure

Print as LaTeX Figure

Description

Print the LaTeX code associated with the supplied figure. A figure can be composed of several
subfigures and passed to the function as R plotting commands. The applied output format attempts
to adhere to the design recommendations for figures in United States Geological Survey (USGS)

publications.

Usage

PrintFigure(
fig,
nr =1,
nc =1,
label = ""
title = "”

)

title_lof = title,

headings =

nn

pos =

Arguments

fig

nr, nc

label

title
title_lof

headings

pos

nn

’

"character’ vector. Figure plotting commands written in R. The length of the
vector is either equal to the number of subfigures, or 1 when a single plot is
desired. An element in the vector contains the commands for creating a single
plot.

’integer’ count. Maximum number of rows and columns in the subfigure layout
on a page in the output document.

"character’ string. LaTeX label anchor. Subfigures are labeled using a concate-
nation of the label argument and an index number. For example, specifying
label = "id" for a figure composed of 3 subfigures results in: labels "id-1",
"id-2", and "id-3".
“character’ string. Figure caption
“character’ string. Figure caption to be listed at the beginning of the paper in a
“List of Figures”.
"character’ vector. Subfigure captions, values are recycled as necessary to match
the vector length of the fig argument. To exclude a subfigure caption specify
its vector element as NA.
"character’ string. Placement specifiers to be used in \begin{figure}[pos].
The specifiers can consist of the following characters in any order:

* "h" place the float about at the same point it occurs in the source text;

* "t" position at the top of the page;

PrintFigure 57

e "b" position at the bottom of the page;
* "p" put on a special page for floats only;

e "1" override internal parameters LaTeX uses for determining float posi-
tions; and

* "H" places the float at precisely the location in the source text, requires
\usepackage{float} in the LaTeX preamble.

Details

Requires \usepackage{caption} and \usepackage{subcaption} in the LaTeX preamble. The
width and height, in inches, to be used in the graphics device (that is, a single plot) are specified
in the code-chunk options fig.width and fig.height, respectively. And always write raw results
from R into the output document by also specifying results = "asis” in the code-chunk options.

Value

Invisible NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

Not run:
cat("\\documentclass{article}",
"\\usepackage[labelsep=period, labelfont=bfJ]{caption}"”,
"\\usepackage{subcaption}"”,
"\\captionsetup[figurel{skip=10pt}",
"\\captionsetup[subfigurel{skip=0pt, labelfont={bf, it}}",
"\\renewcommand{\\thesubfigure}{\\Alph{subfigure}}",
"\\begin{document}",
"<<id, echo=FALSE, fig.width=3, fig.height=2, results='asis'>>=",
"par(mar=c(2.1, 2.1, 1.1, 1.1))",
"n <- 10",
"fig <- sprintf('inlmisc::PlotGraph(runif(%s))', 2:n)",
"headings <- sprintf('Subfigure caption, $n=%s$', 2:n)",
"PrintFigure(fig, 3, 2, 'id', title='Caption', headings=headings)”,
nen
"\\end{document}",
file = "test-figure.Rnw"”, sep = "\n")
knitr::knit2pdf("test-figure.Rnw"”, clean = TRUE) # requires LaTeX
system("open test-figure.pdf")

unlink(c("test-figure.x", "figure"), recursive = TRUE)

End(Not run)

58

PrintPackageHelp

PrintPackageHelp

Print Package Help Documentation

Description

Print the HTML code associated with the help documentation of one or more R packages.

Usage

PrintPackageHelp(

pkg,
file = ",

internal = FALSE,

toc = FALSE,
title_to_name
notrun = TRUE
sep = "<hr>",
links = pkg,

Arguments

pkg
file

internal
toc
title_to_name

notrun

sep
links

Value

Invisible NULL

Author(s)

= FALSE,

’

"character’ vector. Package name(s)

’connection’ or ’character’ string. Names the file to append output to. Prints to
the standard output connection by default.

’logical’ flag. Whether to print help topics flagged with the keyword “internal”.

"logical’ flag. Whether to format level-2 headers (help-topic titles) using a Mark-
down syntax. This is required when specifying the table-of-contents (toc) format
option in R Markdown, see rmarkdown: : render function for details.

’logical’ flag. Whether to replace the help-topic “title” with its “name”.

’logical’ flag. Whether to include ## Not run comments in the Examples section
of help documentation.

“character’ string. HTML to separate help topics, a horizontal line by default.

"character’ vector. Names of packages searched (level 0) when creating internal
hyperlinks to functions and datasets.

Not used

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

PrintTable 59

Examples

Not run:

cat("---",
"title: \"Help Documentation\"",
"output:",
" html_document:"”,

toc: true”,

toc_float: true”,

sep = "\n", file = "test-help.Rmd")
PrintPackageHelp(”"inlmisc”, file = "test-help.Rmd"”, toc = TRUE,
title_to_name = TRUE, notrun = FALSE)
rmarkdown: : render ("test-help.Rmd")
url <- file.path("file:/", getwd(), "test-help.html")
utils::browseURL (url)

file.remove("test-help.Rmd”, "test-help.html")

End(Not run)

PrintTable Print as LaTeX Table

Description

Print the LaTeX code associated with the supplied data table. The applied output format attempts
to adhere to the design recommendations for tables in United States Geological Survey (USGS)

publications.
Usage

PrintTable(
d,
colheadings = NULL,
align = NULL,
digits = NULL,
label = NULL,
title = NULL,

headnotes = NULL,
footnotes = NULL,
nrec = nrow(d),
hline = NULL,

na = "\\textemdash”,
rm_dup = NULL,
landscape = FALSE,

60 PrintTable

Arguments
d ’data.frame’ or 'matrix’. Data table to print.
colheadings "character’ vector, ‘matrix’, or ’data.frame’. Column headings. For table ob-

jects, rows represent layers of headings (stacked headings). The number of
columns (or vector length) must equal the number of columns in argument d.
A column heading can span multiple columns by repeating adjacent headings.
Use \\\\ to code a line break.

align "character’ vector. Column alignment. Specify "1" to left align, "r" to right
align, "c” to center align, and "S" to align on the decimal point.

digits “integer’ vector. Number of digits to display in the corresponding columns.

label "character’ string. LaTeX label anchor. Specifying this argument allows you
to easily reference the table within the LaTeX document. For example, when
label = "id", use \ref{id} to reference the table within a sentence.

title "character’ string. Table caption

headnotes "character’ string. Label placed below the table caption to provide information
pertaining to the caption, to the table as a whole, or to the column headings.

footnotes "character’ string. Label placed at the end of the table to provide explanations
of individual entries in the table.

nrec ’integer’ vector of length 1 or 2, value is recycled as necessary. Maximum num-
ber of records to show on the first page, and every subsequent page, respectively.

hline “integer’ vector. Numbers between 1 and nrow(d) -1 indicating the table rows
after which a horizontal line should appear.

na "character’ string. Value to be used for missing values in table entries.

rm_dup “integer’ count. End value of a sequence of column indexes (1:rm_dup). Du-

plicate values contained in these columns will be set equal to an empty string.
Where duplicates in a column are determined from the ’character’ vector formed
by combining its content with the content from all previous columns in the table.

landscape ’logical’ flag. If true, conforming PDF viewers will display the table in land-
scape orientation. This option requires \usepackage[pdftex]{1lscape} in the
LaTeX preamble.

Additional arguments to be passed to the print.xtable function. The argu-
ments type, hline.after and add. to. row should not be included.

Details

Requires \usepackage{caption}, \usepackage{booktabs}, \usepackage{makecell}, \usepackage{multirow},
and \usepackage{siunitx} in the LaTeX preamble.

Value

Invisible NULL

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

PrintTable

Examples

d <- datasets::iris[, c(5, 1:4)]
colheadings <- rbind(c(”Species \\\\ type"”, rep("Sepal”, 2), rep("Petal”, 2)),
c("", rep(c("Length”, "wWidth"), 2)))
align <- c("1", "c", "c", "c", "c")
digits <- c(o, 1, 1, 1, 1)
title <- "Measurements of sepal length and width and petal
length and width for three species of Iris flower."
headnotes <- "\\textbf{Iris Species}: setosa, versicolor, and virginica.
\\textbf{Abbreviations}: cm, centimeters”
levels(d[[11]) <- sprintf("%s\\footnotemark[%d]", levels(d[[111), 1:3)
footnotes <- sprintf(”\\footnotemark[%d] Common name is %s iris."”,
1:3, c("Wild Flag"”, "Blue Flag"”, "Virginia"))
footnotes <- paste(footnotes, collapse = "\\\\")
hline <- utils::tail(which(!duplicated(d[[11]1)), -1) - 1L
PrintTable(d, colheadings, align, digits, title = title,
headnotes = headnotes, footnotes = footnotes,
hline = hline, nrec = c(41, 42), rm_dup = 1)

Not run:
sink("test-table.tex")
cat(”"\\documentclass{article}",
"\\usepackage{geometry}",
"\\usepackage[labelsep = period, labelfont = bf]{caption}”,
"\\usepackage{siunitx}",
"\\sisetup{input-ignore = {,}, input-decimal-markers = {.}
" group-separator = {,}, group-minimum-digits = 4
"\\usepackage{booktabs}",
"\\usepackage{makecell}",
"\\usepackage{multirow}",
"\\usepackage[pdftex]{1lscape}”,
"\\makeatletter"”,
"\\setlength{\\@fptop}{opt}",
"\\makeatother"”,
"\\begin{document}", sep = "\n")
PrintTable(d, colheadings, align, digits, title = title,
headnotes = headnotes, footnotes = footnotes,
hline = hline, nrec = c(41, 42), rm_dup = 1)
cat(”"\\clearpage\n")
PrintTable(datasets::C02[, c(2, 3, 1, 4, 5)1,
digits = c(o, 0, 0, 0, 1),
title = "Carbon dioxide uptake in grass plants.”,
nrec = 45, rm_dup = 3)
cat("\\clearpage\n")
digits <- c(1, @, 1, @, 2, 3, 2, 0, 0, 0, 0)
PrintTable(datasets::mtcars, digits = digits,
title = "Motor trend car road tests.”,
landscape = TRUE, include.rownames = TRUE)
cat("\\clearpage\n")
X <= ¢(1.2, 1.23, 1121.2, 184, NA, pi, 0.4)
d <- data.frame(matrix(rep(x, 4), ncol = 4),
stringsAsFactors = TRUE)

n
)

’
}u
’

62 ReadCodeChunks

d[, 1] <- prettyNum(d[, 11)
d[, 4] <~ formatC(d[, 4], digits = 2, format = "e")
colheadings <- paste("Wide heading”, 1:ncol(d))
align <- c("s", "S",
"S[round-mode = places, round-precision = 2]",
"S[scientific-notation = true, table-format = 1.2e+1]")
PrintTable(d, colheadings, align)
cat("\\end{document}\n")
sink()
tinytex: :pdflatex("test-table.tex") # requires LaTeX
system("open test-table.pdf")

file.remove("test-table.tex"”, "test-table.pdf")

End(Not run)

ReadCodeChunks Read Knitr Code Chunks

Description

Read knitr code chunks into the current session.

Usage
ReadCodeChunks(path)
Arguments
path "character’ string. Path name of the knitr source document (‘.Rnw’ or ‘.Rmd’),
or R code that has been extracted from a knitr source document (‘.R’).
Details

If the source document is ‘.Rnw’ or ‘.Rmd’ the purl function is used to extract the R code. The R
code is read into the current session using a chunk separator of the from ## ----chunk-name (at
least four dashes before the chunk name) in the script. Unnamed chunks (that is, chunk-name is
missing) will be assigned names like unnamed-chunk-i where i is the chunk number.

Value

A ’list’ of length equal to the number of code chunks in path. Each list component is named after
its corresponding chunk name (chunk-name). The returned object includes the value of the path
argument as an attribute.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

ReadModflowBinary 63

Examples

file <- system.file("misc/knitr-markdown.Rmd"”, package = "inlmisc")
chunks <- ReadCodeChunks(file)

print(chunks)

attr(chunks, "path”)

txt <- chunks[c("unnamed-chunk-3", "named-chunk-4")]
eval (parse(text = unlist(txt)))

ReadModflowBinary Read MODFLOW Binary File

Description

Read binary files output from MODFLOW-based models, the U.S. Geological Survey’s three-
dimensional finite-difference groundwater model.

Usage

ReadModflowBinary(
path,
data.type = c("array”, "flow"),
endian = c("little”, "big"),
rm.totim.@ = FALSE

)
Arguments
path "character’ string. Path to a MODFLOW binary file.
data.type "character’ string. Description of how the data were saved. Specify "array" for
array data (such as hydraulic heads or drawdowns) and "flow” for cell-by-cell
flow data (budget data).
endian "character’ string. Endian-ness (or byte-order) of the binary file.
rm.totim.@ "logical’ flag. Whether data associated with the stress period at time zero should
be removed.
Value

A ’list’ of length equal to the number of times data were written to the binary file. List components
are as follows:

d matrix of values. The matrix dimensions typically coincide with the horizontal model grid. The
exception is for flow data (data.type = "flow") when the cell-by-cell budget file is saved
using the "COMPACT BUDGET" output option; for this case, matrix columns are: cell
index ("icell"”), model-grid layer ("layer"), model-grid row ("row"), model-grid column
("column”), cell-by-cell flow ("flow"), and any auxiliary variables saved using the "AUXIL-
IARY'" output option.

https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs

64 RecreateLibrary

kstp time step

kper stress period

desc description of data-type, such as "wells".
layer model-grid layer

delt time-step size

pertim elapsed time in the current stress period.
totim total elapsed time

The layer component (layer) and time components (delt, pertim, totim) are only available for flow
data when the cell-by-cell budget file is saved using the "COMPACT BUDGET" output option.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

SummariseBudget

Examples

path <- system.file("extdata”, "ex.hds", package = "inlmisc")
heads <- ReadModflowBinary(path, "array")

image (heads[[1]]$d)

str(heads[[1]])

path <- system.file("extdata”, "ex.bud", package = "inlmisc")
budget <- ReadModflowBinary(path, "flow")

image (budget[[111$d)

str(budget[[1]11)

str(budget[[11]11)

RecreatelLibrary Recreate R Library

Description

Recreate an existing library on a new installation of R. The SavePackageDetails function writes
the details of installed packages to a text file. And the RecreatelLibrary function reads this file
and downloads and installs any ‘missing’ packages from the Comprehensive R Archive Network
(CRAN), CRAN-like repositories, and local package-installation files.

RecreateLibrary 65

Usage

RecreatelLibrary(
file = "R-packages.tsv"”,
lib = .libPaths()[1],
repos = getOption("repos”),
snapshot = FALSE,
local = NULL,
versions = FALSE,
parallel = TRUE,
quiet = FALSE
)

SavePackageDetails(file = "R-packages.tsv”, lib = .libPaths(), pkg = NULL)

Arguments

file “character’ string. Name of the file for reading (or writing) the list of package
details. For a file name that does not contain an absolute path, the name is
assumed relative to the current working directory (see getwd function). A *.gz’
file extension indicates the file is compressed by gzip.

lib "character’ vector. Library tree(s) to search through when locating installed
packages (see .libPaths function), or the library directory where to install
packages.

repos "character’ vector. Base URL(s) of the CRAN-like repositories (includes CRAN)
to use when installing packages. For example, the URL of the RStudio spon-
sored CRAN mirror is "https://cloud.r-project.org/". And the URL of
the Geological Survey R Archive Network (GRAN)is "https://owi.usgs.gov/R".

snapshot ’logical’ flag, "Date’, or ’character’ string. Calendar date for a CRAN snapshot
in time, see the Microsoft R Application Network (MRAN) website for details.
If true, the snapshot date is read from the first line of the package-details file.
A snapshot date can also be specified directly using the required date format,
YYYY-MM-DD. This argument masks any CRAN mirror specified in repos.

local "character’ vector. Paths to local repositories. Packages are installed from local
files in these directories. Files can contain binary builds of packages (‘.zip’ on
Windows and ‘. tgz’ on macOS) or be source packages (‘. tar.gz’).

versions ’logical’ flag. If true, installed package versions will be identical to version
numbers stored in the package-details file. Only applies to packages from
CRAN-like repositories and local package-installation files. Requires that the
devtools package is available.

parallel ’logical’ flag or ’integer’ count. Whether to use parallel processes for a parallel
install of more than one source package. This argument can also be used to
specify the number of cores to employ.

quiet ’logical’ flag. Whether to reduce the amount of output.

pkg "character’ vector. Names of package(s) located under 1ib. Only packages
specified in pkg, and the packages that pkg depend on/link to/import/suggest,
will be included in the package-details file.

https://owi.usgs.gov/R/gran.html
https://mran.microsoft.com/

66 RecreateLibrary

Details

A typical workflow is as follows: Run the SavePackageDetails() command on an older version
of R. It will print to a text file a complete list of details for packages located under your current R
library tree(s). If the older version of R no longer needed, uninstall it. Then, on a freshly installed
version of R with the inlmisc package available, run the RecreatelLibrary() command. It will
download and install the packages listed in the package-details file.

The type of package to download and install from CRAN-like repositories is binary on Windows
and some macOS builds, and source on all others. Package installation from a local ‘. tar.gz’ file
is always a source installation. If a package is installed from source, and it contains code that needs
compiling, you must have a working development environment. On Windows, install the Rtools
collection and have the PATH environment variable set up as required by Rtools. On macOS, install
Xcode from the Mac App Store. And on Linux, install a compiler and various development libraries.

Daily snapshots of CRAN are stored on MRAN and available as far back as September 17, 2014.
Use the snapshot argument to install older package versions from MRAN. Newer versions of R
may not be compatible with older versions of packages. To avoid any package installation issues,
install the R version that was available from CRAN on the snapshot date.

The package-details file is of the following format:

Date modified: YYYY-MM-DD HH:MM:SS UTC
R version 9.9.9 (YYYY-MM-DD)

Package Version

name 9.9.9

Where the first two lines are reserved for the timestamp and R-version number, respectively. And
package data are stored in a tabular structure, that is, data-table values are separated by a TAB
character. The data format is flexible enough to add additional extraneous metadata and table fields,
for example,

Date modified: 2017-08-12 05:14:33 UTC

R version 3.4.1 (2017-06-30)

Running under: Windows 10 x64 (build 14393)
Platform: x86_64-w64-mingw32

Package Version Priority Depends Imports

akima 0.6-2 NA R (>=2.0.0) sp

animation 2.5 NA R (>= 2.14.0) NA
Value

The SavePackageDetails function returns (invisibly) the MD5 hash of the package-details file
content. Any changes in the file content will produce a different MDS5 hash. Use the md5sum func-
tion to verify that a file has not been changed. The RecreatelLibrary function returns (invisibly)
NULL.

https://cran.r-project.org/bin/windows/Rtools/
https://mran.microsoft.com/snapshot/

ReplacelnTemplate 67

Note

This package-installation method does not offer one-hundred percent reproducibility of existing R
libraries. Alternative methods, that offer better reproducibility, are available using the checkpoint
and packrat packages; both of which provide robust tools for dependency management in R.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

Run on old version of R
SavePackageDetails()

Run on new version of R, and ensure 'inlmisc' package is available.
if (interactive()) {
repos <- c(CRAN = "https://cloud.r-project.org/")
if (system.file(package = "inlmisc") == "")
utils::install.packages(”"inlmisc”, repos = repos["CRAN"],
dependencies = TRUE)
inlmisc: :RecreatelLibrary(repos = repos)

}

Clean up example
file.remove("R-packages.tsv")

ReplaceInTemplate Replace Values in a Template Text

Description
Replace keys within special markups in a template text with specified values. Pieces of R code can
be put into the markups of the template text, and are evaluated during the replacement.

Usage

ReplaceInTemplate(text, replacement = list())

Arguments
text “character’ vector. Template text
replacement ’list’. Values to replace in text.
Details

Keys are enclosed into markups of the form $(KEY) and @{CODE}.

68 RmSmallCellChunks

Value

A ’character’ vector of strings after key replacement.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

References

This code was derived from the sensitivity: : template. replace function, accessed on Feb 6, 2015.

See Also

SummariseBudget

Examples

text <- c("Hello $(name)!”, "$(a) + $(b) = @{3$(a) + $(b)}",
"pi = @{format(pi, digits = 5)}")

cat(text, sep = "\n")

replacement <- list("name” = "world”, "a" =1, "b" = 2)

cat(ReplaceInTemplate(text, replacement), sep = "\n")

RmSmallCellChunks Remove Small Cell Chunks

Description

Remove small cell chunks from a raster layer, where a cell chunk is defined as a group of connected
cells with non-missing values. The cell chunk with the largest surface area is preserved and all
others removed.

Usage

RmSmallCellChunks(r)
Arguments

r ’RasterLayer’. Raster grid layer with cell values.
Value

An object of class ’RasterLayer’ giving r with cell values in the smaller cell chunks set to NA.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

https://CRAN.R-project.org/package=sensitivity

SetHinge

Examples

set.seed(2)

r <- raster::raster(ncols = 10, nrows = 10)
rf] <- round(runif(raster::ncell(r)) *x 0.7)
r <- raster::clump(r)

r <- raster::ratify(r)

PlotMap(r)

r_new <- RmSmallCellChunks(r)
PlotMap(r_new)

graphics.off()

69

SetHinge Set Hinge Location in Color Palette

Description

The hinge indicates a dramatic color change in a palette that is typically located at the midpoint of
the data range. An asymmetrical data range can result in an undesired hinge location, a location
that does not necessarily coincide with the break-point in the user’s data. This function can be used

to specify a hinge location that is appropriate for your data.

Usage

SetHinge(
X,
hinge,
scheme = "sunset"”,
alpha = NULL,
reverse = FALSE,
buffer = 0,
stops = c(0, 1),
allow_bias = TRUE

)
Arguments
X ‘numeric’ object that can be passed to the range function with NA’s removed.
The user’s data range.
hinge ‘numeric’ number. Hinge value (such as, at sea-level) in data units.
scheme "character’ vector of length 1 or 2, value is recycled as necessary. Name of

color scheme(s). The color palette is derived from one or two color schemes.
The scheme(s) must be suitable for continuous data types and allow for color
interpolation. See GetColors function for a list of possible scheme names. Ar-
gument choices may be abbreviated as long as there is no ambiguity.

70

alpha

reverse

buffer

stops

allow_bias

Value

SetHinge

‘numeric’ vector of length 1 or 2, value is recycled as necessary. Alpha trans-
parency applied separately on either side of the hinge. Values range from 0 (fully
transparent) to 1 (fully opaque). Specify as NULL to exclude the alpha channel
value from colors.

’logical’ vector of length 1 or 2, value is recycled as necessary. Whether to
reverse the order of colors in the scheme(s). Values applied separately on either
side of the hinge.

‘numeric’ vector of length 1 or 2, value is recycled as necessary. Color buffer
around the hinge measured as a fraction of the color range. Values applied
separately on either side of the hinge.

‘numeric’ vector of length 2. Color stops defined by interval endpoints (between
0 and 1) and used to select a subset of the color palette(s).

"logical’ flag. Whether to allow bias in the color spacing.

A ’function’ that takes an ’integer’ argument (the required number of colors) and returns a ’charac-
ter’ vector of colors.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

Plot <- inlmisc::

:plot.inlpal

Pal <- SetHinge(x = c(-3, 7), hinge = 0)

Plot(Pal(n = 19))

x <- datasets::volcano

Pal <- SetHinge(x, hinge = 140, scheme = c("abyss”, "dem1"))

filled.contour(x, color.palette = Pal, nlevels = 50,
plot.axes = FALSE)

Data range (x)

hinge <- @; n <-

20

op <- par(mfrow = c(5, 1), oma = c(@, @, 0, 0))
Plot(SetHinge(c(-10, @), hinge)(n))
Plot(SetHinge(c(-7, 3), hinge)(n))
Plot(SetHinge(c(-5, 5), hinge)(n))
Plot(SetHinge(c(-3, 7), hinge)(n))
Plot(SetHinge(c(@, 10), hinge)(n))

par(op)

Hinge value (hinge)
x <= ¢c(-5, 5); n <- 255
op <- par(mfrow = c(5, 1), oma = c(@, 0, @, 0))

Plot(SetHinge(x,
Plot(SetHinge(x,
Plot(SetHinge(x,

hinge = -6)(n))
hinge = -2)(n))
hinge = 0)(n))

SetHinge

Plot(SetHinge(x, hinge = 2)(n))
Plot(SetHinge(x, hinge 6)(n))
par (op)

Color scheme (scheme)

x <= ¢(-10, 10); hinge <- -3; n <- 255

op <- par(mfrow = c(3, 1), oma = c(@, @, 0, 0))
Plot(SetHinge(x, hinge, scheme = "roma”)(n))
Plot(SetHinge(x, hinge, scheme = "BuRd"”)(n))
Plot(SetHinge(x, hinge, scheme = c("ocean”, "copper"”))(n))
par(op)

Alpha transparency (alpha)

x <= c(-5, 5); hinge <- @; scheme <- c("drywet”, "hawaii"”); n <- 255
op <- par(mfrow = c(4, 1), oma = c(@, 0, @, 0))

Plot(SetHinge(x, hinge, scheme, alpha = 1.0)(n))

Plot(SetHinge(x, hinge, scheme, alpha = 0.5)(n))

Plot(SetHinge(x, hinge, scheme, alpha = c(1.0, 0.5))(n))
Plot(SetHinge(x, hinge, scheme, alpha = c(0.5, 1.0))(n))

par(op)

Reverse colors (reverse)

x <- ¢(-10, 10); hinge <- -3; n <- 255

op <- par(mfrow = c(6, 1), oma = c(@, 0, 0, 0))

Plot(SetHinge(x, hinge, "roma”, reverse = FALSE)(n))

Plot(SetHinge(x, hinge, "roma"”, reverse = TRUE)(n))

Plot(SetHinge(x, hinge, c("davos”, "hawaii"),
reverse = FALSE)(n))

Plot(SetHinge(x, hinge, c("davos”, "hawaii"),
reverse = TRUE)(n))

Plot(SetHinge(x, hinge, c("davos"”, "hawaii'),
reverse = c(TRUE, FALSE))(n))

Plot(SetHinge(x, hinge, c("davos”, "hawaii"),
reverse = c(FALSE, TRUE))(n))

par(op)

Buffer around hinge (buffer)

x <= c(-5, 5); hinge <- -2; n <- 20

op <- par(mfrow = c(6, 1), oma = c(@, 0, 0, 0))

Plot(SetHinge(x, hinge, buffer = 0.0)(n))

Plot(SetHinge(x, hinge, buffer = 0.2)(n))

Plot(SetHinge(x, hinge, buffer = c(0.4, 0.2))(n))

Plot(SetHinge(x, hinge, c("gray"”, "plasma"),
buffer = 0.0)(n))

Plot(SetHinge(x, hinge, c("gray", "plasma"),
buffer = 0.2)(n))

Plot(SetHinge(x, hinge, c("gray", "plasma"),
buffer = c(0.2, 0.4))(n))

par(op)

Color stops (stops)
x <= ¢c(-5, 5); hinge <- 1; n <- 20
op <- par(mfrow = c(6, 1), oma = c(@, 0, @, 0))

72 SetPolygons

Plot(SetHinge(x, hinge, stops = c(0.0, 1.0))(n))

Plot(SetHinge(x, hinge, stops = c(0.2, 0.8))(n))

Plot(SetHinge(x, hinge, stops = c(0.4, 0.6))(n))

Plot(SetHinge(x, hinge, c("gray"”, "plasma"),
stops = ¢(0.0, 1.0))(n))

Plot(SetHinge(x, hinge, c("gray", "plasma"),
stops = c(0.2, 0.8))(n))

Plot(SetHinge(x, hinge, c("gray", "plasma"),
stops = c(0.4, 0.6))(n))

par(op)

Allow bias (allow_bias)

x <= ¢c(-3, 7); n <- 20

op <- par(mfrow = c(4, 1), oma = c(@, 0, 0, 0))
Plot(SetHinge(x, hinge = @, allow_bias = TRUE)(n))

Plot(SetHinge(x, hinge = @, allow_bias = FALSE)(n))
Plot(SetHinge(x, hinge = 4, allow_bias = TRUE)(n))
Plot(SetHinge(x, hinge = 4, allow_bias = FALSE)(n))
par(op)
SetPolygons Overlay Multi-Polygon Objects
Description

Calculate the intersection or difference between two multi-polygon objects.

Usage

SetPolygons(x, y, cmd = c("gIntersection”, "gDifference"), buffer.width = NA)

Arguments
X ’SpatialPolygons®’. Multi-polygon object
y ’SpatialPolygons*’ or *Extent’. Multi-polygon object
cmd “character’ string. Specifying "glntersection", the default, cuts out portions of
the x polygons that overlay the y polygons. If "gDifference" is specified, only
those portions of the x polygons falling outside the y polygons are copied to the
output polygons.
buffer.width ‘numeric’ number. Expands or contracts the geometry of y to include the area
within the specified width, see gBuffer. Specifying NA, the default, indicates no
buffer.
Details

This function tests if the resulting geometry is valid. If invalid, an attempt is made to make the
geometry valid by zero-width buffering.

SummariseBudget 73

Value

An object of class *SpatialPolygons*’.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

mla <- rbind(c(17.5, 55.1),

c(24.7, 55.0),

c(22.6, 61.1),

c(16.5, 59.7),

c(17.5, 55.1))
mlb <- mla
mib[, 1] <- mib[, 1] + 11
pl <- list(sp::Polygon(mla, FALSE), sp::Polygon(mlb, FALSE))
p1 <- sp::SpatialPolygons(list(sp::Polygons(pl, 1)))
sp::plot(pl, col = "blue")

m2a <- rbind(c(19.6, 60.0),
c(35.7, 58.8),
c(28.2, 64.4),
c(19.6, 60.0))
m2b <- rbind(c(20.6, 56.2),
c(30.9, 53.8),
c(27.3, 51.4),

c(20.6, 56.2))
p2 <- list(sp::Polygon(m2a, FALSE), sp::Polygon(m2b, FALSE))
p2 <- sp::SpatialPolygons(list(sp::Polygons(p2, 2)))
sp::plot(p2, col = "red"”, add = TRUE)

p <- SetPolygons(pl, p2, "glntersection”)
sp::plot(p, col = "green”, add = TRUE)

p <- SetPolygons(p2, p1, "gDifference")
sp::plot(p, col = "purple”, add = TRUE)

SummariseBudget Summarize MODFLOW Water Budget

Description
Summarize MODFLOW volumetric flow rates by boundary condition types. Cell-by-cell flow data
is split into subsets, summary statistics computed for each subset, and a summary table returned.
Usage

SummariseBudget (budget, desc = NULL, id = NULL)

https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs

74 SummariseBudget

Arguments
budget "character’ string or ’list’. Either the path to a MODFLOW cell-by-cell budget
file or the object returned from the ReadModflowBinary function.
desc “character’ vector. Data-type descriptors, such as c("wells”,"drains”). If
missing, all data types are summarized.
id "character’ string. Name of auxiliary variable, a variable of additional values
associated with each cell saved using the "AUXILIARY'"' output option.
Details

Subsets are grouped by data type (desc), stress period (kper), time step (kstp), and optional auxiliary
variable. Data in the MODFLOW cell-by-cell budget file must be saved using the "COMPACT
BUDGET"' output option.

Value
A ’data.table’ with the following variables:

desc description of data type, such as "wells".
kper stress period

kstp time step

id auxiliary variable name

delt length of the current time step.

pertim time in the stress period.

totim total elapsed time

count number of cells in each subset.
flow.sum total volumetric flow rate
flow.mean mean volumetric flow rate
flow.median median volumetric flow rate
flow.sd standard deviation of volumetric flow rate.

flow.dir flow direction where "in" and "out" indicate water entering and leaving the groundwater
system, respectively.
Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

See Also

ReadModflowBinary

Examples

path <- system.file("extdata”, "ex.bud"”, package = "inlmisc")
out <- SummariseBudget(path, desc = "river leakage", id = "iface")
print(out)

ToScientific

75

ToScientific

Format for Scientific Notation

Description

Format numbers in scientific notation m x 10™.

Usage

ToScientific(

X7

digits = NULL,
type = c("latex”, "plotmath"),
na = as.character(NA),

zero = "0",
delimiter = "$",
scipen = NULL,
big.mark = ",",
)
Arguments
X ‘numeric’ vector. Numbers
digits “integer’ count. Desired number of digits after the decimal point.
type "character’ string. Specify "latex"” to return numbers in the LaTeX markup
language (default), or "plotmath” to return as plotmath expressions.
na "character’ string. Value to use for missing values (NA). By default, no string
substitution is made for missing values.
zero “character’ string. Value to use for zero values. Specify as NULL to prevent string
substitution.
delimiter "character’ string. Delimiter for LaTeX mathematical mode, inline ($. . . $) by
default. Does not apply to missing value strings.
scipen ’integer’ count. Penalty to be applied when deciding to format numeric values
in scientific or fixed notation. Positive values bias towards fixed and negative
towards scientific notation: fixed notation will be preferred unless it is more than
scipen digits wider. Specify NULL to format all numbers, with the exception of
zero, in scientific notation.
big.mark “character’ string. Mark inserted between every big interval before the decimal

point. By default, commas are placed every 3 decimal places for numbers larger
than 999.

Not used

76 usgs_article

Value

When type = "latex” returns a ’character’ vector of the same length as argument x. And when
type = "plotmath” returns a ’expression’ vector of the same length as x.

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

Examples

x <- c(-1e+09, @, NA, pi * 10%(-5:5))

n n

ToScientific(x, digits = 2, na = "---
ToScientific(x, digits = 2, scipen = @)

x <- seq(@, 20000, by = 4000)
ToScientific(x, scipen = 0)

lab <- ToScientific(x, type = "plotmath”, scipen = @)

i <- seg_along(x)

plot(i, type = "n", xaxt = "n", yaxt = "n", ann = FALSE)
axis(1, i, labels = lab)

axis(2, i, labels = lab)

usgs_article USGS Article Format

Description

Format for creating a U.S. Geological Survey (USGS) article.

Usage

usgs_article(...)

Arguments

Arguments passed to the pdf_document function.

Value

R Markdown output format to pass to render

Author(s)

J.C. Fisher, U.S. Geological Survey, Idaho Water Science Center

usgs_article

Examples
Not run:
rmarkdown: :draft("myarticle.Rmd",
template = "usgs_article”,
package = "inlmisc")

rmarkdown: :render ("myarticle/myarticle.Rmd")
system("open myarticle/wrapper.pdf")

unlink("myarticle”, recursive = TRUE)

End(Not run)

Index

* 1O
ExportRasterStack, 21
ReadModflowBinary, 63
ReplaceInTemplate, 67

* color
GetColors, 28
SetHinge, 69

+ documentation
PrintPackageHelp, 58
usgs_article, 76

* hplot
AddColorKey, 3
AddGradientlLegend, 4
AddInsetMap, 6
AddIntervals, 8
AddNorthArrow, 9
AddPoints, 10
AddScaleBar, 13
AddWebMapElements, 15
CreateWebMap, 20
GetInsetLocation, 35
MakeWordCloud, 41
PlotCrossSection, 42
PlotGraph, 46
PlotMap, 50

* manip
Grid2Polygons, 38
POSIXct2Character, 54

* optimize
FindOptimalSubset, 24

* print
PrintFigure, 56
PrintTable, 59

+ utilities
BuildVignettes, 17

BumpDisconnectCells, 18

BumpRiverStage, 19

ExtractAlongTransect, 22

FormatPval, 27

78

GetDaysInMonth, 35

GetRegionOflInterest, 37

ReadCodeChunks, 62
RecreatelLibrary, 64
RmSmallCellChunks, 68
SetPolygons, 72
SummariseBudget, 73
ToScientific, 75
.libPaths, 65

AddClusterButton (AddWebMapElements), 15

AddColorKey, 3, 45, 53
AddGradientLegend, 4

AddHomeButton (AddWebMapElements), 15

AddInsetMap, 6
AddIntervals, 8, 49

AddLegend (AddWebMapElements), 15

AddNorthArrow, 9
AddPoints, 10
AddScaleBar, 13, 45

AddSearchButton (AddWebMapElements), 15

AddWebMapElements, 15, 21
ashape, 37

BuildVignettes, 17
buildVignettes, 17
BumpDisconnectCells, 18
BumpRiverStage, 19

call, 32

character, 54
checkPolygonsHoles, 37
chull, 37

col2rgb, 32
compactPDF, /8
contour, 44, 52
coordinates, 37
CreateWebMap, 16, 20
crs, 9

DecodeChromosome, 25

INDEX

dichromat, 29

eval, 32
ExportRasterStack, 21
ExtractAlongTransect, 22, 45

findInterval, 12
FindOptimalSubset, 24
formatC, 12
FormatPval, 27

gaisl, 26

gBuffer, 37
gDifference, 72
GetColors, 28, 69
GetDaysInMonth, 35
GetInsetlLocation, 5,7, 9, 12, 14, 35, 45, 52
getOption, 53
GetRegionOfInterest, 37
getwd, 65
glntersection, 72
Grid2Polygons, 38, 53
gSimplify, 53

hillShade, 51, 52
install_phantomjs, 42
leaflet, 16, 20

MakeWordCloud, 41
md5sum, 66

options, 48

par, 8, 48

pdf_document, 76
PlotCrossSection, 4, 14, 23,42
PlotGraph, 46
PlotMap, 4, 5,7, 10, 12, 14, 50
plotmath, 75
points, 8, 11,48

polygon, 48

polypath, 39

POSIXct, 54, 55
POSIXct2Character, 54
print.xtable, 60
PrintFigure, 56
PrintPackageHelp, 58
PrintTable, 59

79

range, 69
raster::extent, 16
rasterize, 19
RasterLayer, 21
rasterToPolygons, 39
ReadCodeChunks, 62
ReadModflowBinary, 63, 74
RecreatelLibrary, 64
render, 76
ReplaceInTemplate, 67
rmarkdown: : render, 58
RmSmallCellChunks, 68

SavePackageDetails (RecreatelLibrary), 64
seq.Date, 48

SetHinge, 32, 69

SetPolygons, 72

Spatiallines, 52

SpatialPolygons, 52

spplot, 39

SummariseBudget, 64, 68, 73

system. time, 26

ToScientific, 5, 28, 75
usgs_article, 76

wordcloud?2, 42
working directory, 17

Xy.coords, 11,37

	AddColorKey
	AddGradientLegend
	AddInsetMap
	AddIntervals
	AddNorthArrow
	AddPoints
	AddScaleBar
	AddWebMapElements
	BuildVignettes
	BumpDisconnectCells
	BumpRiverStage
	CreateWebMap
	ExportRasterStack
	ExtractAlongTransect
	FindOptimalSubset
	FormatPval
	GetColors
	GetDaysInMonth
	GetInsetLocation
	GetRegionOfInterest
	Grid2Polygons
	MakeWordCloud
	PlotCrossSection
	PlotGraph
	PlotMap
	POSIXct2Character
	PrintFigure
	PrintPackageHelp
	PrintTable
	ReadCodeChunks
	ReadModflowBinary
	RecreateLibrary
	ReplaceInTemplate
	RmSmallCellChunks
	SetHinge
	SetPolygons
	SummariseBudget
	ToScientific
	usgs_article
	Index

