
Package ‘ivs’
April 5, 2022

Title Interval Vectors

Version 0.1.0

Description Provides a library for generic interval manipulations using a
new interval vector class. Capabilities include: locating various
kinds of relationships between two interval vectors, merging overlaps
within a single interval vector, splitting an interval vector on its
overlapping endpoints, and applying set theoretical operations on
interval vectors. Many of the operations in this package were inspired
by James Allen's interval algebra, Allen (1983)
<doi:10.1145/182.358434>.

License MIT + file LICENSE

URL https://github.com/DavisVaughan/ivs,

https://davisvaughan.github.io/ivs/

BugReports https://github.com/DavisVaughan/ivs/issues

Depends R (>= 3.4)

Imports glue (>= 1.6.2), rlang (>= 1.0.2), vctrs (>= 0.4.0)

Suggests bit64 (>= 4.0.5), clock (>= 0.6.0), covr, dplyr (>= 1.0.7),
knitr, rmarkdown, testthat (>= 3.0.0), tidyr (>= 1.1.4)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Davis Vaughan [aut, cre],
RStudio [cph, fnd]

Maintainer Davis Vaughan <davis@rstudio.com>

Repository CRAN

Date/Publication 2022-04-05 10:02:29 UTC

1

https://doi.org/10.1145/182.358434
https://github.com/DavisVaughan/ivs
https://davisvaughan.github.io/ivs/
https://github.com/DavisVaughan/ivs/issues

2 allen-relation-count

R topics documented:
allen-relation-count . 2
allen-relation-detect . 6
allen-relation-detect-pairwise . 9
allen-relation-locate . 12
is_iv . 17
iv . 17
iv-accessors . 19
iv-genericity . 20
iv-groups . 21
iv-set-pairwise . 24
iv-sets . 26
iv-splits . 29
iv_align . 31
iv_between . 32
iv_count_between . 34
iv_format . 36
iv_locate_between . 37
iv_pairwise_between . 39
new_iv . 40
relation-count . 41
relation-detect . 44
relation-detect-pairwise . 47
relation-locate . 48

Index 53

allen-relation-count Count relations from Allen’s Interval Algebra

Description

iv_count_relates() is similar to iv_count_overlaps(), but it counts a specific set of relations
developed by James Allen in the paper: Maintaining Knowledge about Temporal Intervals.

Usage

iv_count_relates(
needles,
haystack,
...,
type,
missing = "equals",
no_match = 0L

)

http://cse.unl.edu/~choueiry/Documents/Allen-CACM1983.pdf

allen-relation-count 3

Arguments

needles [iv]
Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.
haystack [iv]

Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.

... These dots are for future extensions and must be empty.
type [character(1)]

The type of relationship to find. See the Allen’s Interval Algebra section for a
complete description of each type. One of:

• "precedes"

• "preceded-by"

• "meets"

• "met-by"

• "overlaps"

• "overlapped-by"

• "starts"

• "started-by"

• "during"

• "contains"

• "finishes"

• "finished-by"

• "equals"

missing [integer(1) / "equals" / "error"]
Handling of missing intervals in needles.

• "equals" considers missing intervals in needles as exactly equal to miss-
ing intervals in haystack when determining if there is a matching relation-
ship between them.

• "error" throws an error if any intervals in needles are missing.
• If a single integer value is provided, this represents the count returned for

a missing interval in needles. Use 0L to force missing intervals to never
match.

no_match [integer(1) / "error"]
Handling of needles without a match.

• "error" throws an error if any needles have zero matches.
• If a single integer is provided, this represents the count returned for a needle

with zero matches. The default value gives unmatched needles a count of
0L.

4 allen-relation-count

Value

An integer vector the same size as needles.

Allen’s Interval Algebra

The interval algebra developed by James Allen serves as a basis and inspiration for iv_locate_overlaps(),
iv_locate_precedes(), and iv_locate_follows(). The original algebra is composed of 13 re-
lations which have the following properties:

• Distinct: No pair of intervals can be related by more than one type.

• Exhaustive: All pairs of intervals are described by one of the types.

• Qualitative: No numeric intervals are considered. The relationships are computed by purely
qualitative means.

Take the notation that x and y represent two intervals. Now assume that x can be represented as
[x_s, x_e), where x_s is the start of the interval and x_e is the end of it. Additionally, assume that
x_s < x_e. With this notation, the 13 relations are as follows:

• Precedes:
x_e < y_s

• Preceded-by:
x_s > y_e

• Meets:
x_e == y_s

• Met-by:
x_s == y_e

• Overlaps:
(x_s < y_s) & (x_e > y_s) & (x_e < y_e)

• Overlapped-by:
(x_e > y_e) & (x_s < y_e) & (x_s > y_s)

• Starts:
(x_s == y_s) & (x_e < y_e)

• Started-by:
(x_s == y_s) & (x_e > y_e)

• Finishes:
(x_s > y_s) & (x_e == y_e)

• Finished-by:
(x_s < y_s) & (x_e == y_e)

• During:
(x_s > y_s) & (x_e < y_e)

• Contains:
(x_s < y_s) & (x_e > y_e)

allen-relation-count 5

• Equals:
(x_s == y_s) & (x_e == y_e)

Note that when missing = "equals", missing intervals will only match the type = "equals" rela-
tion. This ensures that the distinct property of the algebra is maintained.

Connection to other functions:
Note that some of the above relations are fairly restrictive. For example, "overlaps" only detects
cases where x straddles y_s. It does not consider the case where x and y are equal to be an
overlap (as this is "equals") nor does it consider when x straddles y_e to be an overlap (as this
is "overlapped-by"). This makes the relations extremely useful from a theoretical perspective,
because they can be combined without fear of duplicating relations, but they don’t match our
typical expectations for what an "overlap" is.
iv_locate_overlaps(), iv_locate_precedes(), and iv_locate_follows() use more intu-
itive types that aren’t distinct, but typically match your expectations better. They can each be
expressed in terms of Allen’s relations:

• iv_locate_overlaps():
– "any":
overlaps | overlapped-by | starts | started-by | finishes | finished-by | during
| contains | equals

– "contains":
contains | started-by | finished-by | equals

– "within":
during | starts | finishes | equals

– "starts":
starts | started-by | equals

– "ends":
finishes | finished-by | equals

– "equals":
equals

• iv_locate_precedes():
precedes | meets

• iv_locate_follows():
preceded-by | met-by

See Also

Locating relations from Allen’s Interval Algebra

Examples

x <- iv(1, 3)
y <- iv(3, 4)

`"precedes"` is strict, and doesn't let the endpoints match
iv_count_relates(x, y, type = "precedes")

Since that is what `"meets"` represents

6 allen-relation-detect

iv_count_relates(x, y, type = "meets")

`"overlaps"` is a very specific type of overlap where an interval in
`needles` straddles the start of an interval in `haystack`
x <- iv_pairs(c(1, 4), c(1, 3), c(0, 3), c(2, 5))
y <- iv(1, 4)

It doesn't match equality, or when the starts match, or when the end
of the interval in `haystack` is straddled instead
iv_count_relates(x, y, type = "overlaps")

allen-relation-detect Detect relations from Allen’s Interval Algebra

Description

iv_relates() is similar to iv_overlaps(), but it detects a specific set of relations developed by
James Allen in the paper: Maintaining Knowledge about Temporal Intervals.

Usage

iv_relates(needles, haystack, ..., type, missing = "equals")

Arguments

needles [iv]
Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.
haystack [iv]

Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.

... These dots are for future extensions and must be empty.
type [character(1)]

The type of relationship to find. See the Allen’s Interval Algebra section for a
complete description of each type. One of:

• "precedes"

• "preceded-by"

• "meets"

• "met-by"

• "overlaps"

http://cse.unl.edu/~choueiry/Documents/Allen-CACM1983.pdf

allen-relation-detect 7

• "overlapped-by"

• "starts"

• "started-by"

• "during"

• "contains"

• "finishes"

• "finished-by"

• "equals"

missing [logical(1) / "equals" / "error"]
Handling of missing intervals in needles.

• "equals" considers missing intervals in needles as exactly equal to miss-
ing intervals in haystack when determining if there is a matching relation-
ship between them. Matched missing intervals in needles result in a TRUE
value in the result, and unmatched missing intervals result in a FALSE value.

• "error" throws an error if any intervals in needles are missing.
• If a single logical value is provided, this represents the value returned in

the result for intervals in needles that are missing. You can force missing
intervals to be unmatched by setting this to FALSE, and you can force them
to be propagated by setting this to NA.

Value

A logical vector the same size as needles.

Allen’s Interval Algebra

The interval algebra developed by James Allen serves as a basis and inspiration for iv_locate_overlaps(),
iv_locate_precedes(), and iv_locate_follows(). The original algebra is composed of 13 re-
lations which have the following properties:

• Distinct: No pair of intervals can be related by more than one type.

• Exhaustive: All pairs of intervals are described by one of the types.

• Qualitative: No numeric intervals are considered. The relationships are computed by purely
qualitative means.

Take the notation that x and y represent two intervals. Now assume that x can be represented as
[x_s, x_e), where x_s is the start of the interval and x_e is the end of it. Additionally, assume that
x_s < x_e. With this notation, the 13 relations are as follows:

• Precedes:
x_e < y_s

• Preceded-by:
x_s > y_e

• Meets:
x_e == y_s

8 allen-relation-detect

• Met-by:
x_s == y_e

• Overlaps:
(x_s < y_s) & (x_e > y_s) & (x_e < y_e)

• Overlapped-by:
(x_e > y_e) & (x_s < y_e) & (x_s > y_s)

• Starts:
(x_s == y_s) & (x_e < y_e)

• Started-by:
(x_s == y_s) & (x_e > y_e)

• Finishes:
(x_s > y_s) & (x_e == y_e)

• Finished-by:
(x_s < y_s) & (x_e == y_e)

• During:
(x_s > y_s) & (x_e < y_e)

• Contains:
(x_s < y_s) & (x_e > y_e)

• Equals:
(x_s == y_s) & (x_e == y_e)

Note that when missing = "equals", missing intervals will only match the type = "equals" rela-
tion. This ensures that the distinct property of the algebra is maintained.

Connection to other functions:
Note that some of the above relations are fairly restrictive. For example, "overlaps" only detects
cases where x straddles y_s. It does not consider the case where x and y are equal to be an
overlap (as this is "equals") nor does it consider when x straddles y_e to be an overlap (as this
is "overlapped-by"). This makes the relations extremely useful from a theoretical perspective,
because they can be combined without fear of duplicating relations, but they don’t match our
typical expectations for what an "overlap" is.
iv_locate_overlaps(), iv_locate_precedes(), and iv_locate_follows() use more intu-
itive types that aren’t distinct, but typically match your expectations better. They can each be
expressed in terms of Allen’s relations:

• iv_locate_overlaps():
– "any":
overlaps | overlapped-by | starts | started-by | finishes | finished-by | during
| contains | equals

– "contains":
contains | started-by | finished-by | equals

– "within":
during | starts | finishes | equals

– "starts":
starts | started-by | equals

allen-relation-detect-pairwise 9

– "ends":
finishes | finished-by | equals

– "equals":
equals

• iv_locate_precedes():
precedes | meets

• iv_locate_follows():
preceded-by | met-by

See Also

Locating relationships

Locating relations from Allen’s Interval Algebra

Detecting relations from Allen’s Interval Algebra pairwise

Examples

x <- iv(1, 3)
y <- iv(3, 4)

`"precedes"` is strict, and doesn't let the endpoints match
iv_relates(x, y, type = "precedes")

Since that is what `"meets"` represents
iv_relates(x, y, type = "meets")

`"overlaps"` is a very specific type of overlap where an interval in
`needles` straddles the start of an interval in `haystack`
x <- iv_pairs(c(1, 4), c(1, 3), c(0, 3), c(2, 5))
y <- iv(1, 4)

It doesn't match equality, or when the starts match, or when the end
of the interval in `haystack` is straddled instead
iv_relates(x, y, type = "overlaps")

allen-relation-detect-pairwise

Pairwise detect relations from Allen’s Interval Algebra

Description

iv_pairwise_relates() is similar to iv_pairwise_overlaps(), but it detects a specific set of
relations developed by James Allen in the paper: Maintaining Knowledge about Temporal Intervals.

Usage

iv_pairwise_relates(x, y, ..., type)

http://cse.unl.edu/~choueiry/Documents/Allen-CACM1983.pdf

10 allen-relation-detect-pairwise

Arguments

x [iv]
A pair of interval vectors.
These will be recycled against each other and cast to the same type.

y [iv]
A pair of interval vectors.
These will be recycled against each other and cast to the same type.

... These dots are for future extensions and must be empty.
type [character(1)]

The type of relationship to find. See the Allen’s Interval Algebra section for a
complete description of each type. One of:

• "precedes"

• "preceded-by"

• "meets"

• "met-by"

• "overlaps"

• "overlapped-by"

• "starts"

• "started-by"

• "during"

• "contains"

• "finishes"

• "finished-by"

• "equals"

Value

A logical vector the same size as the common size of x and y.

Allen’s Interval Algebra

The interval algebra developed by James Allen serves as a basis and inspiration for iv_locate_overlaps(),
iv_locate_precedes(), and iv_locate_follows(). The original algebra is composed of 13 re-
lations which have the following properties:

• Distinct: No pair of intervals can be related by more than one type.

• Exhaustive: All pairs of intervals are described by one of the types.

• Qualitative: No numeric intervals are considered. The relationships are computed by purely
qualitative means.

Take the notation that x and y represent two intervals. Now assume that x can be represented as
[x_s, x_e), where x_s is the start of the interval and x_e is the end of it. Additionally, assume that
x_s < x_e. With this notation, the 13 relations are as follows:

• Precedes:
x_e < y_s

allen-relation-detect-pairwise 11

• Preceded-by:
x_s > y_e

• Meets:
x_e == y_s

• Met-by:
x_s == y_e

• Overlaps:
(x_s < y_s) & (x_e > y_s) & (x_e < y_e)

• Overlapped-by:
(x_e > y_e) & (x_s < y_e) & (x_s > y_s)

• Starts:
(x_s == y_s) & (x_e < y_e)

• Started-by:
(x_s == y_s) & (x_e > y_e)

• Finishes:
(x_s > y_s) & (x_e == y_e)

• Finished-by:
(x_s < y_s) & (x_e == y_e)

• During:
(x_s > y_s) & (x_e < y_e)

• Contains:
(x_s < y_s) & (x_e > y_e)

• Equals:
(x_s == y_s) & (x_e == y_e)

Note that when missing = "equals", missing intervals will only match the type = "equals" rela-
tion. This ensures that the distinct property of the algebra is maintained.

Connection to other functions:
Note that some of the above relations are fairly restrictive. For example, "overlaps" only detects
cases where x straddles y_s. It does not consider the case where x and y are equal to be an
overlap (as this is "equals") nor does it consider when x straddles y_e to be an overlap (as this
is "overlapped-by"). This makes the relations extremely useful from a theoretical perspective,
because they can be combined without fear of duplicating relations, but they don’t match our
typical expectations for what an "overlap" is.
iv_locate_overlaps(), iv_locate_precedes(), and iv_locate_follows() use more intu-
itive types that aren’t distinct, but typically match your expectations better. They can each be
expressed in terms of Allen’s relations:

• iv_locate_overlaps():
– "any":
overlaps | overlapped-by | starts | started-by | finishes | finished-by | during
| contains | equals

12 allen-relation-locate

– "contains":
contains | started-by | finished-by | equals

– "within":
during | starts | finishes | equals

– "starts":
starts | started-by | equals

– "ends":
finishes | finished-by | equals

– "equals":
equals

• iv_locate_precedes():
precedes | meets

• iv_locate_follows():
preceded-by | met-by

See Also

Locating relationships

Locating relations from Allen’s Interval Algebra

Detecting relations from Allen’s Interval Algebra

Examples

x <- iv_pairs(c(1, 3), c(3, 5))
y <- iv_pairs(c(3, 4), c(6, 7))

`"precedes"` is strict, and doesn't let the endpoints match
iv_pairwise_relates(x, y, type = "precedes")

Since that is what `"meets"` represents
iv_pairwise_relates(x, y, type = "meets")

`"during"` only matches when `x` is completely contained in `y`, and
doesn't allow any endpoints to match
x <- iv_pairs(c(1, 3), c(4, 5), c(8, 9))
y <- iv_pairs(c(1, 4), c(3, 8), c(8, 9))

iv_pairwise_relates(x, y, type = "during")

allen-relation-locate Locate relations from Allen’s Interval Algebra

Description

iv_locate_relates() is similar to iv_locate_overlaps(), but it locates a specific set of rela-
tions developed by James Allen in the paper: Maintaining Knowledge about Temporal Intervals.

http://cse.unl.edu/~choueiry/Documents/Allen-CACM1983.pdf

allen-relation-locate 13

Usage

iv_locate_relates(
needles,
haystack,
...,
type,
missing = "equals",
no_match = NA_integer_,
remaining = "drop",
multiple = "all"

)

Arguments

needles [iv]
Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.
haystack [iv]

Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.

... These dots are for future extensions and must be empty.
type [character(1)]

The type of relationship to find. See the Allen’s Interval Algebra section for a
complete description of each type. One of:

• "precedes"

• "preceded-by"

• "meets"

• "met-by"

• "overlaps"

• "overlapped-by"

• "starts"

• "started-by"

• "during"

• "contains"

• "finishes"

• "finished-by"

• "equals"

missing [integer(1) / "equals" / "drop" / "error"]
Handling of missing intervals in needles.

14 allen-relation-locate

• "equals" considers missing intervals in needles as exactly equal to miss-
ing intervals in haystack when determining if there is a matching relation-
ship between them.

• "drop" drops missing intervals in needles from the result.
• "error" throws an error if any intervals in needles are missing.
• If a single integer is provided, this represents the value returned in the
haystack column for intervals in needles that are missing.

no_match Handling of needles without a match.

• "drop" drops needles with zero matches from the result.
• "error" throws an error if any needles have zero matches.
• If a single integer is provided, this represents the value returned in the
haystack column for observations of needles that have zero matches. The
default represents an unmatched needle with NA.

remaining Handling of haystack values that needles never matched.

• "drop" drops remaining haystack values from the result. Typically, this is
the desired behavior if you only care when needles has a match.

• "error" throws an error if there are any remaining haystack values.
• If a single integer is provided (often NA), this represents the value returned

in the needles column for the remaining haystack values that needles
never matched. Remaining haystack values are always returned at the end
of the result.

multiple Handling of needles with multiple matches. For each needle:

• "all" returns all matches detected in haystack.
• "any" returns any match detected in haystack with no guarantees on which

match will be returned. It is often faster than "first" and "last" if you
just need to detect if there is at least one match.

• "first" returns the first match detected in haystack.
• "last" returns the last match detected in haystack.
• "warning" throws a warning if multiple matches are detected, but other-

wise falls back to "all".
• "error" throws an error if multiple matches are detected.

Value

A data frame containing two integer columns named needles and haystack.

Allen’s Interval Algebra

The interval algebra developed by James Allen serves as a basis and inspiration for iv_locate_overlaps(),
iv_locate_precedes(), and iv_locate_follows(). The original algebra is composed of 13 re-
lations which have the following properties:

• Distinct: No pair of intervals can be related by more than one type.

• Exhaustive: All pairs of intervals are described by one of the types.

allen-relation-locate 15

• Qualitative: No numeric intervals are considered. The relationships are computed by purely
qualitative means.

Take the notation that x and y represent two intervals. Now assume that x can be represented as
[x_s, x_e), where x_s is the start of the interval and x_e is the end of it. Additionally, assume that
x_s < x_e. With this notation, the 13 relations are as follows:

• Precedes:
x_e < y_s

• Preceded-by:
x_s > y_e

• Meets:
x_e == y_s

• Met-by:
x_s == y_e

• Overlaps:
(x_s < y_s) & (x_e > y_s) & (x_e < y_e)

• Overlapped-by:
(x_e > y_e) & (x_s < y_e) & (x_s > y_s)

• Starts:
(x_s == y_s) & (x_e < y_e)

• Started-by:
(x_s == y_s) & (x_e > y_e)

• Finishes:
(x_s > y_s) & (x_e == y_e)

• Finished-by:
(x_s < y_s) & (x_e == y_e)

• During:
(x_s > y_s) & (x_e < y_e)

• Contains:
(x_s < y_s) & (x_e > y_e)

• Equals:
(x_s == y_s) & (x_e == y_e)

Note that when missing = "equals", missing intervals will only match the type = "equals" rela-
tion. This ensures that the distinct property of the algebra is maintained.

Connection to other functions:
Note that some of the above relations are fairly restrictive. For example, "overlaps" only detects
cases where x straddles y_s. It does not consider the case where x and y are equal to be an
overlap (as this is "equals") nor does it consider when x straddles y_e to be an overlap (as this
is "overlapped-by"). This makes the relations extremely useful from a theoretical perspective,
because they can be combined without fear of duplicating relations, but they don’t match our
typical expectations for what an "overlap" is.

16 allen-relation-locate

iv_locate_overlaps(), iv_locate_precedes(), and iv_locate_follows() use more intu-
itive types that aren’t distinct, but typically match your expectations better. They can each be
expressed in terms of Allen’s relations:

• iv_locate_overlaps():
– "any":
overlaps | overlapped-by | starts | started-by | finishes | finished-by | during
| contains | equals

– "contains":
contains | started-by | finished-by | equals

– "within":
during | starts | finishes | equals

– "starts":
starts | started-by | equals

– "ends":
finishes | finished-by | equals

– "equals":
equals

• iv_locate_precedes():
precedes | meets

• iv_locate_follows():
preceded-by | met-by

References

Allen, James F. (26 November 1983). "Maintaining knowledge about temporal intervals". Commu-
nications of the ACM. 26 (11): 832–843.

See Also

Locating relationships

Detecting relations from Allen’s Interval Algebra

Detecting relations from Allen’s Interval Algebra pairwise

Examples

x <- iv(1, 3)
y <- iv(3, 4)

`"precedes"` is strict, and doesn't let the endpoints match
iv_locate_relates(x, y, type = "precedes")

Since that is what `"meets"` represents
iv_locate_relates(x, y, type = "meets")

`"overlaps"` is a very specific type of overlap where an interval in
`needles` straddles the start of an interval in `haystack`
x <- iv_pairs(c(1, 4), c(1, 3), c(0, 3), c(2, 5))
y <- iv(1, 4)

is_iv 17

It doesn't match equality, or when the starts match, or when the end
of the interval in `haystack` is straddled instead
iv_locate_relates(x, y, type = "overlaps")

is_iv Is x an iv?

Description

is_iv() tests if x is an iv object.

Usage

is_iv(x)

Arguments

x [object]
An object.

Value

A single TRUE or FALSE.

Examples

is_iv(1)
is_iv(new_iv(1, 2))

iv Create an interval vector

Description

• iv() creates an interval vector from start and end vectors. This is how you will typically
create interval vectors, and is often used with columns in a data frame.

• iv_pairs() creates an interval vector from pairs. This is often useful for interactive testing,
as it provides a more intuitive interface for creating small interval vectors. It should generally
not be used on a large scale because it can be slow.

Intervals:
Interval vectors are right-open, i.e. [start, end). This means that start < end is a requirement to
generate an interval vector. In particular, empty intervals with start == end are not allowed.
Right-open intervals tend to be the most practically useful. For example, [2019-01-01 00:00:00, 2019-
01-02 00:00:00) nicely encapsulates all times on 2019-01-01. With closed intervals, you’d have

18 iv

to attempt to specify this as 2019-01-01 23:59:59, which is inconvenient and inaccurate, as it
doesn’t capture fractional seconds.
Right-open intervals also have the extremely nice technical property that they create a closed alge-
bra. Concretely, the complement of a vector of right-open intervals and the union, intersection, or
difference of two vectors of right-open intervals will always result in another vector of right-open
intervals.

Missing intervals:
When creating interval vectors with iv(), if either bound is incomplete, then both bounds are set
to their missing value.

Usage

iv(start, end, ..., ptype = NULL, size = NULL)

iv_pairs(..., ptype = NULL)

Arguments

start, end [vector]
A pair of vectors to represent the bounds of the intervals.
To be a valid interval vector, start must be strictly less than end.
If either start or end are incomplete / missing, then both bounds will be coerced
to missing values.
start and end are recycled against each other and are cast to the same type.

... For iv_pairs():
[vector pairs]
Vectors of size 2 representing intervals to include in the result.
All inputs will be cast to the same type.
For iv():
These dots are for future extensions and must be empty.

ptype [vector(0) / NULL]
A prototype to force for the inner type of the resulting iv. If NULL, this defaults
to the common type of the inputs.

size [integer(1) / NULL]
A size to force for the resulting iv. If NULL, this defaults to the common size of
the inputs.

Value

An iv.

Examples

library(dplyr, warn.conflicts = FALSE)

set.seed(123)

iv-accessors 19

x <- tibble(
start = as.Date("2019-01-01") + 1:5,
end = start + sample(1:10, length(start), replace = TRUE)

)

Typically you'll use `iv()` with columns of a data frame
mutate(x, iv = iv(start, end), .keep = "unused")

`iv_pairs()` is useful for generating interval vectors interactively
iv_pairs(c(1, 5), c(2, 3), c(6, 10))

iv-accessors Access the start or end of an interval vector

Description

• iv_start() accesses the start of an interval vector.

• iv_end() accesses the end of an interval vector.

Usage

iv_start(x)

iv_end(x)

Arguments

x [iv]

An interval vector.

Value

The start or end of x.

Examples

x <- new_iv(1, 2)

iv_start(x)
iv_end(x)

20 iv-genericity

iv-genericity Proxy and restore

Description

• iv_proxy() is an S3 generic which allows you to write S3 methods for iv extension types to
ensure that they are treated like iv objects. The input will be your iv extension object, x, and
the return value should be an iv object.

• iv_restore() is an S3 generic that dispatches off to that allows you to restore a proxied iv
extension type back to its original type. The inputs will be a bare iv object, x, and your original
iv extension object, to, and the return value should correspond to x restored to the type of to,
if possible.

You typically don’t need to create an iv_proxy() method if your class directly extends iv through
the class argument of new_iv(). You only need to implement this if your class has a different
structure than a typical iv object. In particular, if vctrs::field(x,"start") and vctrs::field(x,"end")
don’t return the start and end of the interval vector respectively, then you probably need an
iv_proxy() method.

You typically do need an iv_restore() method for custom iv extensions. If your class is simple,
then you can generally just call your constructor, like new_my_iv(), to restore the class and any
additional attributes that might be required.

This system allows you to use any iv_*() function on your iv extension object without having to
define S3 methods for all of them.

Usage

iv_proxy(x, ...)

iv_restore(x, to, ...)

Arguments

x [vector]
A vector.

... These dots are for future extensions and must be empty.
to [vector]

The original vector to restore to.

Value

• iv_proxy() should return an iv object for further manipulation.

• iv_restore() should return an object of type to, if possible. In some cases, it may be
required to fall back to returning an iv object.

iv-groups 21

Examples

if (FALSE) {
Registering S3 methods outside of a package doesn't always work quite
right (like on the pkgdown site), so this code should only be run by a
user reading the manual. If that is you, fear not! It should run just fine
in your console.

library(vctrs)

new_nested_iv <- function(iv) {
fields <- list(iv = iv)
new_rcrd(fields, class = "nested_iv")

}

format.nested_iv <- function(x, ...) {
format(field(x, "iv"))

}

iv_proxy.nested_iv <- function(x, ...) {
field(x, "iv")

}

iv_restore.nested_iv <- function(x, to, ...) {
new_nested_iv(x)

}

iv <- new_iv(c(1, 5), c(2, 7))

x <- new_nested_iv(iv)
x

Proxies, then accesses the `start` field
iv_start(x)

Proxies, computes the complement to generate an iv,
then restores to the original type
iv_complement(x)

}

iv-groups Group overlapping intervals

Description

This family of functions revolves around grouping overlapping intervals within a single iv. When
multiple overlapping intervals are grouped together they result in a wider interval containing the
smallest iv_start() and the largest iv_end() of the overlaps.

22 iv-groups

• iv_groups() merges all overlapping intervals found within x. The resulting intervals are
known as the "groups" of x.

• iv_identify_group() identifies the group that the current interval of x falls in. This is
particularly useful alongside dplyr::group_by().

• iv_locate_groups() returns a two column data frame with a key column containing the
result of iv_groups() and a loc list-column containing integer vectors that map each interval
in x to the group that it falls in.

Optionally, you can choose not to group abutting intervals together with abutting = FALSE, which
can be useful if you’d like to retain those boundaries.

Minimal interval vectors:
iv_groups() is particularly useful because it can generate a minimal interval vector, which covers
the range of an interval vector in the most compact form possible. In particular, a minimal interval
vector:

• Has no overlapping intervals
• Has no abutting intervals
• Is ordered on both start and end

A minimal interval vector is allowed to have a single missing interval, which is located at the end
of the vector.

Usage

iv_groups(x, ..., abutting = TRUE)

iv_identify_group(x, ..., abutting = TRUE)

iv_locate_groups(x, ..., abutting = TRUE)

Arguments

x [iv]
An interval vector.

... These dots are for future extensions and must be empty.
abutting [TRUE / FALSE]

Should abutting intervals be grouped together?
If TRUE, [a, b) and [b, c) will merge as [a, c). If FALSE, they will be kept separate.
To be a minimal interval vector, all abutting intervals must be grouped together.

Value

• For iv_groups(), an iv with the same type as x.

• For iv_identify_group(), an iv with the same type and size as x.

• For iv_locate_groups(), a two column data frame with a key column containing the result
of iv_groups() and a loc list-column containing integer vectors.

iv-groups 23

Graphical Representation

Graphically, generating groups looks like:

With abutting = FALSE, intervals that touch aren’t grouped:

Examples

library(dplyr, warn.conflicts = FALSE)

x <- iv_pairs(
c(1, 5),
c(2, 3),
c(NA, NA),
c(5, 6),
c(NA, NA),
c(9, 12),
c(11, 14)

)
x

Grouping removes all redundancy while still covering the full range
of values that were originally represented. If any missing intervals
are present, a single one is retained.
iv_groups(x)

24 iv-set-pairwise

Abutting intervals are typically grouped together, but you can choose not
to group them if you want to retain those boundaries
iv_groups(x, abutting = FALSE)

`iv_identify_group()` is useful alongside `group_by()` and `summarize()`
df <- tibble(x = x)
df <- mutate(df, u = iv_identify_group(x))
df

df %>%
group_by(u) %>%
summarize(n = n())

The real workhorse here is `iv_locate_groups()`, which returns
the groups and information on which observations in `x` fall in which
group
iv_locate_groups(x)

iv-set-pairwise Pairwise set operations

Description

This family of functions performs pairwise set operations on two ivs. Pairwise refers to the fact that
the i-th interval of x is going to be compared against the i-th interval of y. This is in contrast to their
set-like counterparts (like iv_union()), which operate on the whole sets of x and y at once.

The descriptions of these operations are the same as their set-like counterparts, but the ones here
also have a number of restrictions due to the fact that each must return an output that is the same
size as its inputs:

• For iv_pairwise_complement(), x[i] and y[i] can’t overlap or abut, as this would generate
an empty complement.

• For iv_pairwise_union(), x[i] and y[i] can’t be separated by a gap. Use iv_pairwise_span()
if you want to force gaps to be filled anyways.

• For iv_pairwise_intersect(), x[i] and y[i] must overlap, otherwise an empty interval
would be generated.

• For iv_pairwise_difference(), x[i] can’t be completely contained within y[i], as that
would generate an empty interval. Additionally, y[i] can’t be completely contained within
x[i], as that would result in two distinct intervals for a single observation.

• For iv_pairwise_symmetric_difference(), x[i] and y[i] must share exactly one end-
point, otherwise an empty interval or two distinct intervals would be generated.

Usage

iv_pairwise_complement(x, y)

iv_pairwise_union(x, y)

iv-set-pairwise 25

iv_pairwise_span(x, y)

iv_pairwise_intersect(x, y)

iv_pairwise_difference(x, y)

iv_pairwise_symmetric_difference(x, y)

Arguments

x, y [iv]
A pair of interval vectors.
These will be cast to the same type, and recycled against each other.

Value

An iv the same size and type as x and y.

See Also

The set-like versions of these functions, such as iv_union().

Examples

x <- iv_pairs(c(1, 3), c(6, 8))
y <- iv_pairs(c(5, 7), c(2, 3))

iv_pairwise_complement(x, y)

z <- iv_pairs(c(2, 5), c(4, 7))

iv_pairwise_union(x, z)

Can't take the union when there are gaps
try(iv_pairwise_union(x, y))

But you can force a union across gaps with `iv_pairwise_span()`
iv_pairwise_span(x, y)

iv_pairwise_intersect(x, z)

Can't take an intersection of non-overlapping intervals
try(iv_pairwise_intersect(x, y))

iv_pairwise_difference(x, z)

The pairwise symmetric difference function is fairly strict,
and is only well defined when exactly one of the interval endpoints match
w <- iv_pairs(c(1, 6), c(7, 8))
iv_pairwise_symmetric_difference(x, w)

26 iv-sets

iv-sets Set operations

Description

This family of functions treats ivs as sets. They always compute the minimal iv of each input and
return a minimal iv.

• iv_complement() takes the complement of the intervals in an iv. By default, the minimum
and maximum of the inputs define the bounds to take the complement over, but this can be
adjusted with lower and upper. Missing intervals are always dropped in the complement.

• iv_union() answers the question, "Which intervals are in x or y?" It is equivalent to combin-
ing the two vectors together and then calling iv_groups().

• iv_intersect() answers the question, "Which intervals are in x and y?"

• iv_difference() answers the question, "Which intervals are in x but not y?" Note that this
is an asymmetrical difference.

• iv_symmetric_difference() answers the question, "Which intervals are in x or y but not
both?"

Usage

iv_complement(x, ..., lower = NULL, upper = NULL)

iv_union(x, y)

iv_intersect(x, y)

iv_difference(x, y)

iv_symmetric_difference(x, y)

Arguments

x [iv]
An interval vector.

... These dots are for future extensions and must be empty.
lower, upper [vector(1) / NULL]

Bounds for the universe over which to compute the complement. These should
have the same type as the element type of the interval vector. It is often useful
to expand the universe to, say, -Inf to Inf.

y [iv]
An interval vector.

iv-sets 27

Value

• For iv_complement(), a vector of the same type as x containing the complement.

• For all other set operations, a vector of the same type as the common type of x and y containing
the result.

Graphical Representation

Graphically, generating the complement looks like:

If you were to set upper = 20 with these intervals, then you’d get one more interval in the comple-
ment.

Generating the intersection between two ivs looks like:

28 iv-sets

See Also

The pairwise versions of these functions, such as iv_pairwise_union().

Examples

x <- iv_pairs(
c(10, 12),
c(0, 5),
c(NA, NA),
c(3, 6),
c(-5, -2),
c(NA, NA)

)
x

y <- iv_pairs(
c(2, 7),
c(NA, NA),
c(-3, -1),
c(14, 15)

)
y

Complement contains any values from `[-5, 12)` that aren't represented
in these intervals. Missing intervals are dropped.
iv_complement(x)

Expand out the "universe" of possible values
iv_complement(x, lower = -Inf)
iv_complement(x, lower = -Inf, upper = Inf)

Which intervals are in x or y?
iv_union(x, y)

Which intervals are in x and y?
iv_intersect(x, y)

iv-splits 29

Which intervals are in x but not y?
iv_difference(x, y)

Which intervals are in y but not x?
iv_difference(y, x)

Missing intervals in x are kept if there aren't missing intervals in y
iv_difference(x, iv(1, 2))

Which intervals are in x or y but not both?
iv_symmetric_difference(x, y)

Missing intervals will be kept if they only appear on one side
iv_symmetric_difference(x, iv(1, 2))
iv_symmetric_difference(iv(1, 2), x)

iv-splits Splits

Description

This family of functions revolves around splitting an iv on its endpoints, which results in a new iv
that is entirely disjoint (i.e. non-overlapping). The intervals in the resulting iv are known as "splits".

• iv_splits() computes the disjoint splits for x.

• iv_identify_splits() identifies the splits that correspond to each interval in x. It replaces
x with a list of the same size where each element of the list contains the splits that the corre-
sponding interval in x overlaps. This is particularly useful alongside tidyr::unnest().

• iv_locate_splits() returns a two column data frame with a key column containing the
result of iv_splits() and a loc list-column containing integer vectors that map each interval
in x to the splits that it overlaps.

Usage

iv_splits(x, ..., on = NULL)

iv_identify_splits(x, ..., on = NULL)

iv_locate_splits(x, ..., on = NULL)

Arguments

x [iv]
An interval vector.

... These dots are for future extensions and must be empty.
on [vector / NULL]

An optional vector of additional values to split on.
This should have the same type as iv_start(x).

30 iv-splits

Value

• For iv_splits(), an iv with the same type as x.

• For iv_identify_splits(), a list-of containing ivs with the same size as x.

• For iv_locate_splits(), a two column data frame with a key column of the same type as x
and loc list-column containing integer vectors.

Graphical Representation

Graphically, generating splits looks like:

Examples

library(tidyr)
library(dplyr)

Guests to a party and their arrival/departure times
guests <- tibble(

arrive = as.POSIXct(
c("2008-05-20 19:30:00", "2008-05-20 20:10:00", "2008-05-20 22:15:00"),
tz = "UTC"

),
depart = as.POSIXct(

c("2008-05-20 23:00:00", "2008-05-21 00:00:00", "2008-05-21 00:30:00"),
tz = "UTC"

),
name = list(

c("Mary", "Harry"),
c("Diana", "Susan"),
"Peter"

)
)

guests <- unnest(guests, name) %>%
mutate(iv = iv(arrive, depart), .keep = "unused")

guests

iv_align 31

You can determine the disjoint intervals at which people
arrived/departed with `iv_splits()`
iv_splits(guests$iv)

Say you'd like to determine who was at the party at any given time
throughout the night
guests <- mutate(guests, splits = iv_identify_splits(iv))
guests

Unnest the splits to generate disjoint intervals for each guest
guests <- guests %>%

unnest(splits) %>%
select(name, splits)

guests

Tabulate who was there at any given time
guests %>%

group_by(splits) %>%
summarise(n = n(), who = list(name))

x <- iv_pairs(c(1, 5), c(4, 9), c(12, 15))
x

You can provide additional singular values to split on with `on`
iv_splits(x, on = c(2, 13))

iv_align Align after locating relationships

Description

iv_align() will align/join needles and haystack together using a data frame of locations.
These locations are intended to be the output of one of: iv_locate_overlaps(), iv_locate_precedes(),
iv_locate_follows(), iv_locate_relates(), or iv_locate_between().

This is mainly a convenience function that slices both needles and haystack according to those
locations, and then stores the result in a new two column data frame.

Usage

iv_align(needles, haystack, ..., locations)

Arguments
needles, haystack

[vector]
Two vectors to align.

32 iv_between

... These dots are for future extensions and must be empty.
locations [two-column data frame]

The data frame of locations returned from one of iv_locate_overlaps(), iv_locate_precedes(),
iv_locate_follows(), iv_locate_relates(), or iv_locate_between().

Value

A two column data frame with a $needles column containing the sliced version of needles and a
$haystack column containing the sliced version of haystack.

Examples

needles <- iv_pairs(c(1, 5), c(3, 7), c(10, 12))
haystack <- iv_pairs(c(0, 2), c(4, 6))

locations <- iv_locate_overlaps(needles, haystack)
iv_align(needles, haystack, locations = locations)

locations <- iv_locate_overlaps(needles, haystack, no_match = "drop")
iv_align(needles, haystack, locations = locations)

needles <- c(1, 15, 4, 11)
haystack <- iv_pairs(c(1, 5), c(3, 7), c(10, 12))

locations <- iv_locate_between(needles, haystack)
iv_align(needles, haystack, locations = locations)

iv_between Detect when a vector falls between an iv

Description

iv_between() detects when needles, a vector, falls between the bounds of haystack, an iv. It
works similar to base::%in%, where needles[i] checks for a match in all of haystack.

This function returns a logical vector the same size as needles containing TRUE if the value in
needles is between any interval in haystack and FALSE otherwise.

Usage

iv_between(needles, haystack, ..., missing = "equals")

Arguments

needles [vector, iv]
needles should be a vector and haystack should be an iv. needles should have
the same type as the start/end components of haystack.

• Each element of needles represents the value to search for.
• haystack represents the intervals to search in.

iv_between 33

haystack [vector, iv]
needles should be a vector and haystack should be an iv. needles should have
the same type as the start/end components of haystack.

• Each element of needles represents the value to search for.
• haystack represents the intervals to search in.

... These dots are for future extensions and must be empty.
missing [logical(1) / "equals" / "error"]

Handling of missing values in needles.

• "equals" considers missing values in needles as exactly equal to missing
intervals in haystack when determining if there is a matching relationship
between them. Matched missing values in needles result in a TRUE value
in the result, and unmatched missing values result in a FALSE value.

• "error" throws an error if any values in needles are missing.
• If a single logical value is provided, this represents the value returned in

the result for values in needles that are missing. You can force missing
values to be unmatched by setting this to FALSE, and you can force them to
be propagated by setting this to NA.

Value

A logical vector the same size as needles.

See Also

Locating relationships

Locating where a vector falls between an iv

Pairwise detect when a vector falls between an iv

Examples

x <- as.Date(c("2019-01-05", "2019-01-10", "2019-01-07", "2019-01-20"))

y <- iv_pairs(
as.Date(c("2019-01-01", "2019-01-03")),
as.Date(c("2019-01-04", "2019-01-08")),
as.Date(c("2019-01-07", "2019-01-09")),
as.Date(c("2019-01-10", "2019-01-20")),
as.Date(c("2019-01-15", "2019-01-20"))

)

x
y

Detect if any location where `x` is between the intervals in `y`
iv_between(x, y)

34 iv_count_between

a <- c(1, NA)
b <- iv(c(NA, NA), c(NA, NA))

By default, missing values in `needles` are treated as being exactly
equal to missing intervals in `haystack`, so the missing value in `a` is
considered between the missing interval in `b`.
iv_between(a, b)

If you'd like to propagate missing values, set `missing = NA`
iv_between(a, b, missing = NA)

If you'd like missing values to be treated as unmatched, set
`missing = FALSE`
iv_between(a, b, missing = FALSE)

iv_count_between Count when a vector falls between an iv

Description

iv_count_between() counts instances of when needles, a vector, falls between the bounds of
haystack, an iv. It works similar to base::match(), where needles[i] checks for a match in all
of haystack.

This function returns an integer vector the same size as needles containing a count of the times
where the i-th value of needles fell between any interval of haystack.

Usage

iv_count_between(needles, haystack, ..., missing = "equals", no_match = 0L)

Arguments

needles [vector, iv]
needles should be a vector and haystack should be an iv. needles should have
the same type as the start/end components of haystack.

• Each element of needles represents the value to search for.
• haystack represents the intervals to search in.

haystack [vector, iv]
needles should be a vector and haystack should be an iv. needles should have
the same type as the start/end components of haystack.

• Each element of needles represents the value to search for.
• haystack represents the intervals to search in.

... These dots are for future extensions and must be empty.
missing [integer(1) / "equals" / "error"]

Handling of missing values in needles.

iv_count_between 35

• "equals" considers missing values in needles as exactly equal to missing
intervals in haystack when determining if there is a matching relationship
between them.

• "error" throws an error if any values in needles are missing.
• If a single integer value is provided, this represents the count returned for a

missing value in needles. Use 0L to force missing values to never match.
no_match [integer(1) / "error"]

Handling of needles without a match.

• "error" throws an error if any needles have zero matches.
• If a single integer is provided, this represents the count returned for a needle

with zero matches. The default value gives unmatched needles a count of
0L.

Value

An integer vector the same size as needles.

See Also

Locating where a vector falls between an iv

Examples

x <- as.Date(c("2019-01-05", "2019-01-10", "2019-01-07", "2019-01-20"))

y <- iv_pairs(
as.Date(c("2019-01-01", "2019-01-03")),
as.Date(c("2019-01-04", "2019-01-08")),
as.Date(c("2019-01-07", "2019-01-09")),
as.Date(c("2019-01-10", "2019-01-20")),
as.Date(c("2019-01-15", "2019-01-20"))

)

x
y

Count the number of times `x` is between the intervals in `y`
iv_count_between(x, y)

a <- c(1, NA)
b <- iv(c(NA, NA), c(NA, NA))

By default, missing values in `needles` are treated as being exactly
equal to missing intervals in `haystack`, so the missing value in `a` is
considered between the missing interval in `b`.
iv_count_between(a, b)

If you'd like to propagate missing values, set `missing = NA`

36 iv_format

iv_count_between(a, b, missing = NA)

If you'd like missing values to be treated as unmatched, set
`missing = 0L`
iv_count_between(a, b, missing = 0L)

iv_format Formatting

Description

iv_format() is an S3 generic intended as a developer tool for making a custom class print nicely
when stored in an iv. The default method simply calls format(), and in many cases this is enough
for most classes. However, if your class automatically adds justification or padding when formatting
a single vector, you might need to implement an iv_format() method to avoid that padding, since
it often looks strange when nested in an interval vector.

Usage

iv_format(x)

Arguments

x [vector]

A vector to format. This will be called on the iv_start() and iv_end() vectors
of an iv.

Value

A character vector, likely generated through a call to format().

Examples

Numeric values get padding automatically through `format()`
x <- c(1, 100)
format(x)

This ends up looking strange in an iv, so an `iv_format()` method for
numeric values is implemented which turns off that padding
iv_format(x)

iv_locate_between 37

iv_locate_between Locate where a vector falls between an iv

Description

iv_locate_between() locates where needles, a vector, falls between the bounds of haystack, an
iv. It works similar to base::match(), where needles[i] checks for a match in all of haystack.
Unlike match(), all matches are returned, rather than just the first.

This function returns a two column data frame. The needles column is an integer vector pointing to
locations in needles. The haystack column is an integer vector pointing to locations in haystack
with a match.

Usage

iv_locate_between(
needles,
haystack,
...,
missing = "equals",
no_match = NA_integer_,
remaining = "drop",
multiple = "all"

)

Arguments
needles, haystack

[vector, iv]
needles should be a vector and haystack should be an iv. needles should have
the same type as the start/end components of haystack.

• Each element of needles represents the value to search for.
• haystack represents the intervals to search in.

... These dots are for future extensions and must be empty.
missing [integer(1) / "equals" / "drop" / "error"]

Handling of missing values in needles.

• "equals" considers missing values in needles as exactly equal to missing
intervals in haystack when determining if there is a matching relationship
between them.

• "drop" drops missing values in needles from the result.
• "error" throws an error if any values in needles are missing.
• If a single integer is provided, this represents the value returned in the
haystack column for values in needles that are missing.

no_match Handling of needles without a match.

• "drop" drops needles with zero matches from the result.

38 iv_locate_between

• "error" throws an error if any needles have zero matches.
• If a single integer is provided, this represents the value returned in the
haystack column for observations of needles that have zero matches. The
default represents an unmatched needle with NA.

remaining Handling of haystack values that needles never matched.

• "drop" drops remaining haystack values from the result. Typically, this is
the desired behavior if you only care when needles has a match.

• "error" throws an error if there are any remaining haystack values.
• If a single integer is provided (often NA), this represents the value returned

in the needles column for the remaining haystack values that needles
never matched. Remaining haystack values are always returned at the end
of the result.

multiple Handling of needles with multiple matches. For each needle:

• "all" returns all matches detected in haystack.
• "any" returns any match detected in haystack with no guarantees on which

match will be returned. It is often faster than "first" and "last" if you
just need to detect if there is at least one match.

• "first" returns the first match detected in haystack.
• "last" returns the last match detected in haystack.
• "warning" throws a warning if multiple matches are detected, but other-

wise falls back to "all".
• "error" throws an error if multiple matches are detected.

Value

A data frame containing two integer columns named needles and haystack.

See Also

Locating relationships

Detect when a vector falls between an iv

Pairwise detect when a vector falls between an iv

Examples

x <- as.Date(c("2019-01-05", "2019-01-10", "2019-01-07", "2019-01-20"))

y <- iv_pairs(
as.Date(c("2019-01-01", "2019-01-03")),
as.Date(c("2019-01-04", "2019-01-08")),
as.Date(c("2019-01-07", "2019-01-09")),
as.Date(c("2019-01-10", "2019-01-20")),
as.Date(c("2019-01-15", "2019-01-20"))

)

x
y

iv_pairwise_between 39

Find any location where `x` is between the intervals in `y`
loc <- iv_locate_between(x, y)
loc

iv_align(x, y, locations = loc)

Drop values in `x` without a match
loc <- iv_locate_between(x, y, no_match = "drop")
loc

iv_align(x, y, locations = loc)

a <- c(1, NA)
b <- iv(c(NA, NA), c(NA, NA))

By default, missing values in `needles` are treated as being exactly
equal to missing intervals in `haystack`, so the missing value in `a` is
considered between the missing interval in `b`.
iv_locate_between(a, b)

If you'd like missing values in `needles` to always be considered
unmatched, set `missing = NA`
iv_locate_between(a, b, missing = NA)

iv_pairwise_between Pairwise detect when a vector falls between an iv

Description

iv_pairwise_between() detects when x, a vector, falls between the bounds of y, an iv, pairwise,
where pairwise means that the i-th value of x is compared against the i-th interval of y. This is in
contrast to iv_between(), which works more like base::%in%.

These functions return a logical vector the same size as the common size of x and y.

Usage

iv_pairwise_between(x, y)

Arguments

x, y [vector, iv]
x should be a vector and y should be an iv. x should have the same type as the
start/end components of y.
These will be recycled against each other.

40 new_iv

Value

A logical vector the same size as the common size of x and y.

See Also

Locating relationships

Locating where a vector falls between an iv

Detecting when a vector falls between an iv

Examples

x <- as.Date(c("2019-01-01", "2019-01-08", "2019-01-21"))

y <- iv_pairs(
as.Date(c("2019-01-01", "2019-01-03")),
as.Date(c("2019-01-07", "2019-01-09")),
as.Date(c("2019-01-18", "2019-01-21"))

)

x
y

Does the i-th value of `x` fall between the i-th interval of `y`?
iv_pairwise_between(x, y)

a <- c(1, NA, NA)
b <- iv_pairs(c(NA, NA), c(3, 4), c(NA, NA))

Missing intervals always propagate
iv_pairwise_between(a, b)

new_iv Construct a new iv

Description

new_iv() is a developer focused function for creating a new interval vector. It does minimal checks
on the inputs, for performance.

Usage

new_iv(start, end, ..., class = character())

relation-count 41

Arguments

start, end [vector]
A pair of vectors to represent the bounds of the intervals.
To be a valid interval vector, start must be strictly less than end, or both start
and end must be a missing value.

... [name-value pairs]
Additional named attributes to attach to the result.

class [character]
The name of the subclass to create.

Value

A new iv object.

Examples

new_iv(1, 2)

relation-count Count relationships between two ivs

Description

This family of functions counts different types of relationships between two ivs. It works similar to
base::match(), where needles[i] checks for a relationship in all of haystack.

• iv_count_overlaps() counts instances of a specific type of overlap between the two ivs.

• iv_count_precedes() counts instances when needles[i] precedes (i.e. comes before) any
interval in haystack.

• iv_count_follows() counts instances when needles[i] follows (i.e. comes after) any in-
terval in haystack.

These functions return an integer vector the same size as needles containing a count of the times a
particular relationship between the i-th interval of needles and any interval of haystack occurred.

Usage

iv_count_overlaps(
needles,
haystack,
...,
type = "any",
missing = "equals",
no_match = 0L

)

42 relation-count

iv_count_precedes(
needles,
haystack,
...,
closest = FALSE,
missing = "equals",
no_match = 0L

)

iv_count_follows(
needles,
haystack,
...,
closest = FALSE,
missing = "equals",
no_match = 0L

)

Arguments

needles [iv]
Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.
haystack [iv]

Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.

... These dots are for future extensions and must be empty.
type [character(1)]

The type of relationship to find. One of:

• "any": Finds any overlap whatsoever between an interval in needles and
an interval in haystack.

• "within": Finds when an interval in needles is completely within (or
equal to) an interval in haystack.

• "contains": Finds when an interval in needles completely contains (or
equals) an interval in haystack.

• "equals": Finds when an interval in needles is exactly equal to an interval
in haystack.

• "starts": Finds when the start of an interval in needles matches the start
of an interval in haystack.

• "ends": Finds when the end of an interval in needles matches the end of
an interval in haystack.

relation-count 43

missing [integer(1) / "equals" / "error"]
Handling of missing intervals in needles.

• "equals" considers missing intervals in needles as exactly equal to miss-
ing intervals in haystack when determining if there is a matching relation-
ship between them.

• "error" throws an error if any intervals in needles are missing.
• If a single integer value is provided, this represents the count returned for

a missing interval in needles. Use 0L to force missing intervals to never
match.

no_match [integer(1) / "error"]
Handling of needles without a match.

• "error" throws an error if any needles have zero matches.
• If a single integer is provided, this represents the count returned for a needle

with zero matches. The default value gives unmatched needles a count of
0L.

closest [TRUE / FALSE]
Should only the closest relationship be returned?
If TRUE, will only return the closest interval(s) in haystack that the current value
of needles either precedes or follows. Note that multiple intervals can still be
returned if there are ties, which can be resolved using multiple.

Value

An integer vector the same size as needles.

See Also

Locating relationships

Examples

library(vctrs)

x <- iv_pairs(
as.Date(c("2019-01-05", "2019-01-10")),
as.Date(c("2019-01-07", "2019-01-15")),
as.Date(c("2019-01-20", "2019-01-31"))

)

y <- iv_pairs(
as.Date(c("2019-01-01", "2019-01-03")),
as.Date(c("2019-01-04", "2019-01-08")),
as.Date(c("2019-01-07", "2019-01-09")),
as.Date(c("2019-01-10", "2019-01-20")),
as.Date(c("2019-01-15", "2019-01-20"))

)

x
y

44 relation-detect

Count the number of times `x` overlaps `y` at all
iv_count_overlaps(x, y)

Count the number of times `y` is within an interval in `x`
iv_count_overlaps(y, x, type = "within")

Count the number of times `x` precedes `y`
iv_count_precedes(x, y)

a <- iv(c(1, NA), c(2, NA))
b <- iv(c(NA, NA), c(NA, NA))

Missing intervals are seen as exactly equal by default, so they are
considered to overlap
iv_count_overlaps(a, b)

If you'd like missing intervals to be treated as unmatched, set
`missing = 0L`
iv_count_overlaps(a, b, missing = 0L)

If you'd like to propagate missing intervals, set `missing = NA`
iv_count_overlaps(a, b, missing = NA)

relation-detect Detect a relationship between two ivs

Description

This family of functions detects different types of relationships between two ivs. It works similar
to base::%in%, where needles[i] checks for a relationship in all of haystack.

• iv_overlaps() detects a specific type of overlap between the two ivs.

• iv_precedes() detects if needles[i] precedes (i.e. comes before) any interval in haystack.

• iv_follows() detects if needles[i] follows (i.e. comes after) any interval in haystack.

These functions return a logical vector the same size as needles containing TRUE if the interval in
needles has a matching relationship in haystack and FALSE otherwise.

Usage

iv_overlaps(needles, haystack, ..., type = "any", missing = "equals")

iv_precedes(needles, haystack, ..., missing = "equals")

iv_follows(needles, haystack, ..., missing = "equals")

relation-detect 45

Arguments

needles [iv]
Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.
haystack [iv]

Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.

... These dots are for future extensions and must be empty.
type [character(1)]

The type of relationship to find. One of:

• "any": Finds any overlap whatsoever between an interval in needles and
an interval in haystack.

• "within": Finds when an interval in needles is completely within (or
equal to) an interval in haystack.

• "contains": Finds when an interval in needles completely contains (or
equals) an interval in haystack.

• "equals": Finds when an interval in needles is exactly equal to an interval
in haystack.

• "starts": Finds when the start of an interval in needles matches the start
of an interval in haystack.

• "ends": Finds when the end of an interval in needles matches the end of
an interval in haystack.

missing [logical(1) / "equals" / "error"]
Handling of missing intervals in needles.

• "equals" considers missing intervals in needles as exactly equal to miss-
ing intervals in haystack when determining if there is a matching relation-
ship between them. Matched missing intervals in needles result in a TRUE
value in the result, and unmatched missing intervals result in a FALSE value.

• "error" throws an error if any intervals in needles are missing.
• If a single logical value is provided, this represents the value returned in

the result for intervals in needles that are missing. You can force missing
intervals to be unmatched by setting this to FALSE, and you can force them
to be propagated by setting this to NA.

Value

A logical vector the same size as needles.

46 relation-detect

See Also

Locating relationships

Detecting relationships pairwise

Locating relations from Allen’s Interval Algebra

Examples

library(vctrs)

x <- iv_pairs(
as.Date(c("2019-01-05", "2019-01-10")),
as.Date(c("2019-01-07", "2019-01-15")),
as.Date(c("2019-01-20", "2019-01-31"))

)

y <- iv_pairs(
as.Date(c("2019-01-01", "2019-01-03")),
as.Date(c("2019-01-04", "2019-01-08")),
as.Date(c("2019-01-07", "2019-01-09")),
as.Date(c("2019-01-10", "2019-01-20")),
as.Date(c("2019-01-15", "2019-01-20"))

)

x
y

Does each interval of `x` overlap `y` at all?
iv_overlaps(x, y)

Which intervals of `y` are within an interval in `x`?
iv_overlaps(y, x, type = "within")

a <- iv(c(1, NA), c(2, NA))
b <- iv(c(NA, NA), c(NA, NA))

Missing intervals are seen as exactly equal by default, so they are
considered to overlap
iv_overlaps(a, b)

If you'd like missing intervals to be treated as unmatched, set
`missing = FALSE`
iv_overlaps(a, b, missing = FALSE)

If you'd like to propagate missing intervals, set `missing = NA`
iv_overlaps(a, b, missing = NA)

relation-detect-pairwise 47

relation-detect-pairwise

Pairwise detect a relationship between two ivs

Description

This family of functions detects different types of relationships between two ivs pairwise, where
pairwise means that the i-th interval of x is compared against the i-th interval of y. This is in contrast
to iv_overlaps(), which works more like base::%in%.

• iv_pairwise_overlaps() detects a specific type of overlap between the i-th interval of x
and the i-th interval of y.

• iv_pairwise_precedes() detects if the i-th interval of x precedes (i.e. comes before) the
i-th interval of y.

• iv_pairwise_follows() detects if the i-th interval of x follows (i.e. comes after) the i-th
interval of y.

These functions return a logical vector the same size as the common size of x and y.

Usage

iv_pairwise_overlaps(x, y, ..., type = "any")

iv_pairwise_precedes(x, y)

iv_pairwise_follows(x, y)

Arguments

x, y [iv]
A pair of interval vectors.
These will be recycled against each other and cast to the same type.

... These dots are for future extensions and must be empty.
type [character(1)]

The type of relationship to find. One of:
• "any": Finds any overlap whatsoever between an interval in needles and

an interval in haystack.
• "within": Finds when an interval in needles is completely within (or

equal to) an interval in haystack.
• "contains": Finds when an interval in needles completely contains (or

equals) an interval in haystack.
• "equals": Finds when an interval in needles is exactly equal to an interval

in haystack.
• "starts": Finds when the start of an interval in needles matches the start

of an interval in haystack.
• "ends": Finds when the end of an interval in needles matches the end of

an interval in haystack.

48 relation-locate

Value

A logical vector the same size as the common size of x and y.

See Also

Locating relationships

Detecting relationships

Locating relations from Allen’s Interval Algebra

Examples

library(vctrs)

x <- iv_pairs(
as.Date(c("2019-01-05", "2019-01-10")),
as.Date(c("2019-01-07", "2019-01-15")),
as.Date(c("2019-01-20", "2019-01-31"))

)

y <- iv_pairs(
as.Date(c("2019-01-01", "2019-01-03")),
as.Date(c("2019-01-07", "2019-01-09")),
as.Date(c("2019-01-18", "2019-01-21"))

)

x
y

Does the i-th interval of `x` overlap the i-th interval of `y`?
iv_pairwise_overlaps(x, y)

Does the i-th interval of `x` contain the i-th interval of `y`?
iv_pairwise_overlaps(x, y, type = "contains")

Does the i-th interval of `x` follow the i-th interval of `y`?
iv_pairwise_follows(x, y)

a <- iv_pairs(c(1, 2), c(NA, NA), c(NA, NA))
b <- iv_pairs(c(NA, NA), c(3, 4), c(NA, NA))

Missing intervals always propagate
iv_pairwise_overlaps(a, b)

relation-locate Locate relationships between two ivs

relation-locate 49

Description

This family of functions locates different types of relationships between two ivs. It works similar to
base::match(), where needles[i] checks for a relationship in all of haystack. Unlike match(),
all matching relationships are returned, rather than just the first.

• iv_locate_overlaps() locates a specific type of overlap between the two ivs.
• iv_locate_precedes() locates where needles[i] precedes (i.e. comes before) any interval

in haystack.
• iv_locate_follows() locates where needles[i] follows (i.e. comes after) any interval in
haystack.

These functions return a two column data frame. The needles column is an integer vector point-
ing to locations in needles. The haystack column is an integer vector pointing to locations in
haystack with a matching relationship.

Usage

iv_locate_overlaps(
needles,
haystack,
...,
type = "any",
missing = "equals",
no_match = NA_integer_,
remaining = "drop",
multiple = "all"

)

iv_locate_precedes(
needles,
haystack,
...,
closest = FALSE,
missing = "equals",
no_match = NA_integer_,
remaining = "drop",
multiple = "all"

)

iv_locate_follows(
needles,
haystack,
...,
closest = FALSE,
missing = "equals",
no_match = NA_integer_,
remaining = "drop",
multiple = "all"

)

50 relation-locate

Arguments
needles, haystack

[iv]
Interval vectors used for relation matching.

• Each element of needles represents the interval to search for.
• haystack represents the intervals to search in.

Prior to comparison, needles and haystack are coerced to the same type.

... These dots are for future extensions and must be empty.
type [character(1)]

The type of relationship to find. One of:

• "any": Finds any overlap whatsoever between an interval in needles and
an interval in haystack.

• "within": Finds when an interval in needles is completely within (or
equal to) an interval in haystack.

• "contains": Finds when an interval in needles completely contains (or
equals) an interval in haystack.

• "equals": Finds when an interval in needles is exactly equal to an interval
in haystack.

• "starts": Finds when the start of an interval in needles matches the start
of an interval in haystack.

• "ends": Finds when the end of an interval in needles matches the end of
an interval in haystack.

missing [integer(1) / "equals" / "drop" / "error"]
Handling of missing intervals in needles.

• "equals" considers missing intervals in needles as exactly equal to miss-
ing intervals in haystack when determining if there is a matching relation-
ship between them.

• "drop" drops missing intervals in needles from the result.
• "error" throws an error if any intervals in needles are missing.
• If a single integer is provided, this represents the value returned in the
haystack column for intervals in needles that are missing.

no_match Handling of needles without a match.

• "drop" drops needles with zero matches from the result.
• "error" throws an error if any needles have zero matches.
• If a single integer is provided, this represents the value returned in the
haystack column for observations of needles that have zero matches. The
default represents an unmatched needle with NA.

remaining Handling of haystack values that needles never matched.

• "drop" drops remaining haystack values from the result. Typically, this is
the desired behavior if you only care when needles has a match.

• "error" throws an error if there are any remaining haystack values.

relation-locate 51

• If a single integer is provided (often NA), this represents the value returned
in the needles column for the remaining haystack values that needles
never matched. Remaining haystack values are always returned at the end
of the result.

multiple Handling of needles with multiple matches. For each needle:

• "all" returns all matches detected in haystack.
• "any" returns any match detected in haystack with no guarantees on which

match will be returned. It is often faster than "first" and "last" if you
just need to detect if there is at least one match.

• "first" returns the first match detected in haystack.
• "last" returns the last match detected in haystack.
• "warning" throws a warning if multiple matches are detected, but other-

wise falls back to "all".
• "error" throws an error if multiple matches are detected.

closest [TRUE / FALSE]
Should only the closest relationship be returned?
If TRUE, will only return the closest interval(s) in haystack that the current value
of needles either precedes or follows. Note that multiple intervals can still be
returned if there are ties, which can be resolved using multiple.

Value

A data frame containing two integer columns named needles and haystack.

See Also

Detecting relationships

Detecting relationships pairwise

Locating relations from Allen’s Interval Algebra

Examples

x <- iv_pairs(
as.Date(c("2019-01-05", "2019-01-10")),
as.Date(c("2019-01-07", "2019-01-15")),
as.Date(c("2019-01-20", "2019-01-31"))

)

y <- iv_pairs(
as.Date(c("2019-01-01", "2019-01-03")),
as.Date(c("2019-01-04", "2019-01-08")),
as.Date(c("2019-01-07", "2019-01-09")),
as.Date(c("2019-01-10", "2019-01-20")),
as.Date(c("2019-01-15", "2019-01-20"))

)

x
y

52 relation-locate

Find any overlap between `x` and `y`
loc <- iv_locate_overlaps(x, y)
loc

iv_align(x, y, locations = loc)

Find where `x` contains `y` and drop results when there isn't a match
loc <- iv_locate_overlaps(x, y, type = "contains", no_match = "drop")
loc

iv_align(x, y, locations = loc)

Find where `x` precedes `y`
loc <- iv_locate_precedes(x, y)
loc

iv_align(x, y, locations = loc)

Filter down to find only the closest interval in `y` of all the intervals
where `x` preceded it
loc <- iv_locate_precedes(x, y, closest = TRUE)

iv_align(x, y, locations = loc)

Note that `closest` can result in duplicates if there is a tie.
`2019-01-20` appears as an end date twice in `haystack`.
loc <- iv_locate_follows(x, y, closest = TRUE)
loc

iv_align(x, y, locations = loc)

Force just one of the ties to be returned by using `multiple`.
Here we just request any of the ties, with no guarantee on which one.
loc <- iv_locate_follows(x, y, closest = TRUE, multiple = "any")
loc

iv_align(x, y, locations = loc)

a <- iv(NA, NA)
b <- iv(c(NA, NA), c(NA, NA))

By default, missing intervals in `needles` are seen as exactly equal to
missing intervals in `haystack`, which means that they overlap
iv_locate_overlaps(a, b)

If you'd like missing intervals in `needles` to always be considered
unmatched, set `missing = NA`
iv_locate_overlaps(a, b, missing = NA)

Index

allen-relation-count, 2
allen-relation-detect, 6
allen-relation-detect-pairwise, 9
allen-relation-locate, 12

base::%in%, 32, 39, 44, 47
base::match(), 34, 37, 41, 49

Detect when a vector falls between an
iv, 38

Detecting relations from Allen’s
Interval Algebra, 12, 16

Detecting relations from Allen’s
Interval Algebra pairwise, 9, 16

Detecting relationships, 48, 51
Detecting relationships pairwise, 46, 51
Detecting when a vector falls between

an iv, 40
dplyr::group_by(), 22

format(), 36

incomplete, 18
is_iv, 17
iv, 17
iv-accessors, 19
iv-genericity, 20
iv-groups, 21
iv-set-pairwise, 24
iv-sets, 26
iv-splits, 29
iv_align, 31
iv_between, 32
iv_between(), 39
iv_complement (iv-sets), 26
iv_count_between, 34
iv_count_follows (relation-count), 41
iv_count_overlaps (relation-count), 41
iv_count_overlaps(), 2
iv_count_precedes (relation-count), 41

iv_count_relates
(allen-relation-count), 2

iv_difference (iv-sets), 26
iv_end (iv-accessors), 19
iv_end(), 21, 36
iv_follows (relation-detect), 44
iv_format, 36
iv_groups (iv-groups), 21
iv_identify_group (iv-groups), 21
iv_identify_splits (iv-splits), 29
iv_intersect (iv-sets), 26
iv_locate_between, 37
iv_locate_between(), 31, 32
iv_locate_follows (relation-locate), 48
iv_locate_follows(), 4, 5, 7, 8, 10, 11, 14,

16, 31, 32
iv_locate_groups (iv-groups), 21
iv_locate_overlaps (relation-locate), 48
iv_locate_overlaps(), 4, 5, 7, 8, 10–12, 14,

16, 31, 32
iv_locate_precedes (relation-locate), 48
iv_locate_precedes(), 4, 5, 7, 8, 10, 11, 14,

16, 31, 32
iv_locate_relates

(allen-relation-locate), 12
iv_locate_relates(), 31, 32
iv_locate_splits (iv-splits), 29
iv_overlaps (relation-detect), 44
iv_overlaps(), 6, 47
iv_pairs (iv), 17
iv_pairwise_between, 39
iv_pairwise_complement

(iv-set-pairwise), 24
iv_pairwise_difference

(iv-set-pairwise), 24
iv_pairwise_follows

(relation-detect-pairwise), 47
iv_pairwise_intersect

(iv-set-pairwise), 24

53

54 INDEX

iv_pairwise_overlaps
(relation-detect-pairwise), 47

iv_pairwise_overlaps(), 9
iv_pairwise_precedes

(relation-detect-pairwise), 47
iv_pairwise_relates

(allen-relation-detect-pairwise),
9

iv_pairwise_span (iv-set-pairwise), 24
iv_pairwise_symmetric_difference

(iv-set-pairwise), 24
iv_pairwise_union (iv-set-pairwise), 24
iv_pairwise_union(), 28
iv_precedes (relation-detect), 44
iv_proxy (iv-genericity), 20
iv_relates (allen-relation-detect), 6
iv_restore (iv-genericity), 20
iv_splits (iv-splits), 29
iv_start (iv-accessors), 19
iv_start(), 21, 36
iv_symmetric_difference (iv-sets), 26
iv_union (iv-sets), 26
iv_union(), 24, 25

Locating relations from Allen’s
Interval Algebra, 5, 9, 12, 46, 48,
51

Locating relationships, 9, 12, 16, 33, 38,
40, 43, 46, 48

Locating where a vector falls between
an iv, 33, 35, 40

minimal, 26

new_iv, 40
new_iv(), 20

Pairwise detect when a vector falls
between an iv, 33, 38

relation-count, 41
relation-detect, 44
relation-detect-pairwise, 47
relation-locate, 48

tidyr::unnest(), 29

	allen-relation-count
	allen-relation-detect
	allen-relation-detect-pairwise
	allen-relation-locate
	is_iv
	iv
	iv-accessors
	iv-genericity
	iv-groups
	iv-set-pairwise
	iv-sets
	iv-splits
	iv_align
	iv_between
	iv_count_between
	iv_format
	iv_locate_between
	iv_pairwise_between
	new_iv
	relation-count
	relation-detect
	relation-detect-pairwise
	relation-locate
	Index

