Package 'kerSeg'

June 13, 2022

TypePackageTitleNew Kernel-Based Change-Point Detection

Version 1.0

Author Hoseung Song [aut, cre], Hao Chen [aut]

Maintainer Hoseung Song <hosong@ucdavis.edu>

Description New kernel-based test and fast tests for detecting change-points or changedintervals where the distributions abruptly change. They work well particularly for highdimensional data. Song, H. and Chen, H. (2022) <arXiv:2206.01853>.

License GPL (>= 2)

Imports Rcpp (>= 1.0.7)

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-06-13 06:40:05 UTC

R topics documented:

gaussiankernel	2
kerSeg	2
kerseg1	4
kerseg2	6
skew	7
statint	8
	9

Index

gaussiankernel

Description

This function provides the Gaussian kernel matrix computed with the median heuristic bandwidth.

Usage

gaussiankernel(X)

Arguments

Х

The samples in the sequence.

Value

Returns a numeric matrix, the Gaussian kernel matrix computed with the specified bandwidth.

See Also

kerSeg,kerseg1,kerseg2

Examples

```
## Sequence : change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 50
n = 100
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
```

kerSeg	

New kernel-based change-point detection

Description

This package can be used to detect change-points where the distributions abruptly change. The Gaussian kernel with the median heuristic, which is the median of all pairwise distances among observations, is used.

kerSeg

Details

To compute the Gaussian kernel matrix with the median heuristic bandwidth, the function gaussiankernel should be used. The main functions are kerseg1 for the single change-point alternative and kerseg2 for the changed-interval alternative.

Author(s)

Hoseung Song and Hao Chen

Maintainer: Hoseung Song (hosong@ucdavis.edu)

References

Song, H. and Chen, H. (2022). New kernel-based change-point detection. arXiv:2206.01853

See Also

kerseg1, kerseg2, gaussiankernel

Examples

```
## Sequence 1: change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 15
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
# output results based on the permutation and the asymptotic results.
# the scan statistics can be found in a$scanZ.
# the approximated p-values can be found in a$appr.
# the permutation p-values can be found in a$perm.
## Sequence 2: change in both the mean and variance away from the middle of the sequence.
d = 50
mu = 2
sigma = 0.7
tau = 35
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d),sigma), n-tau))
K = gaussiankernel(y)
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
## Sequence 3: change in both the mean and variance happens on an interval.
d = 50
mu = 2
sigma = 0.5
tau1 = 25
tau2 = 35
```

kerseg1

```
n = 50
set.seed(1)
y1 = matrix(rnorm(d*tau1),tau1)
y2 = matrix(rnorm(d*(tau2-tau1),mu/sqrt(d),sigma), tau2-tau1)
y3 = matrix(rnorm(d*(n-tau2)), n-tau2)
y = rbind(y1, y2, y3)
K = gaussiankernel(y)
a = kerseg2(n, K, pval.perm=TRUE, B=1000)
```

kerseg1	Kernel-based change-point detection for single change-point alterna-
	tives

Description

This function finds a break point in the sequence where the underlying distribution changes.

Usage

Arguments

n	The number of observations in the sequence.
К	The kernel matrix of observations in the sequence.
r1	The constant in the test statistics $Z_{W,r1}(t)$.
r2	The constant in the test statistics $Z_{W,r2}(t)$.
n0	The starting index to be considered as a candidate for the change-point.
n1	The ending index to be considered as a candidate for the change-point.
pval.appr	If it is TRUE, the function outputs the p-value approximation based on asymptotic properties.
skew.corr	This argument is useful only when pval.appr=TRUE. If skew.corr is TRUE, the p-value approximation would incorporate skewness correction.
pval.perm	If it is TRUE, the function outputs the p-value from doing B permutations, where B is another argument that you can specify. Doing permutation could be time consuming, so use this argument with caution as it may take a long time to finish the permutation.
В	This argument is useful only when pval.perm=TRUE. The default value for B is 100.

4

kerseg1

Value

Returns a list stat containing the each scan statistic, tauhat containing the estimated location of change-point, appr containing the approximated p-values of the fast tests when argument 'pval.appr' is TRUE, and perm containing the permutation p-values of the fast tests and GKCP when argument 'pval.perm' is TRUE. See below for more details.

seq	A vector of each scan statistic (standardized counts).
Zmax	The test statistics (maximum of the scan statistics).
tauhat	An estimate of the location of the change-point.
fGKCP1_bon	The p-value of $fGKCP_1$ obtained by the Bonferroni procedure.
fGKCP1_sim	The p-value of fGKCP ₁ obtained by the Simes procedure.
fGKCP2_bon	The p-value of $fGKCP_2$ obtained by the Bonferroni procedure.
fGKCP2_sim	The p-value of fGKCP ₂ obtained by the Simes procedure.
GKCP	The p-value of GKCP obtained by the random permutation.

See Also

kerSeg, kerseg1, gaussiankernel, kerseg2

Examples

```
## Sequence 1: change in the mean in the middle of the sequence.
d = 50
mu = 2
tau = 25
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau))
K = gaussiankernel(y) # Gaussian kernel matrix
a = kerseg1(n, K, pval.perm=TRUE, B=1000)
# output results based on the permutation and the asymptotic results.
# the scan statistics can be found in a$scanZ.
# the approximated p-values can be found in a$appr.
# the permutation p-values can be found in a$perm.
## Sequence 2: change in both the mean and variance away from the middle of the sequence.
d = 50
mu = 2
sigma = 0.7
tau = 35
n = 50
set.seed(1)
y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d),sigma), n-tau))
K = gaussiankernel(y)
```

kerseg2

Description

This function finds an interval in the sequence where their underlying distribution differs from the rest of the sequence.

Usage

Arguments

n	The number of observations in the sequence.
К	The kernel matrix of observations in the sequence.
r1	The constant in the test statistics $Z_{W,r1}(t_1, t_2)$.
r2	The constant in the test statistics $Z_{W,r2}(t_1, t_2)$.
10	The minimum length of the interval to be considered as a changed interval.
11	The maximum length of the interval to be considered as a changed interval.
pval.appr	If it is TRUE, the function outputs the p-value approximation based on asymptotic properties.
skew.corr	This argument is useful only when pval.appr=TRUE. If skew.corr is TRUE, the p-value approximation would incorporate skewness correction.
pval.perm	If it is TRUE, the function outputs the p-value from doing B permutations, where B is another argument that you can specify. Doing permutation could be time consuming, so use this argument with caution as it may take a long time to finish the permutation.
В	This argument is useful only when pval.perm=TRUE. The default value for B is 100.

Value

Returns a list stat containing the each scan statistic, tauhat containing the estimated changedinterval, appr containing the approximated p-values of the fast tests when argument 'pval.appr' is TRUE, and perm containing the permutation p-values of the fast tests and GKCP when argument 'pval.perm' is TRUE. See below for more details.

seq	A matrix of each scan statistic (standardized counts).
Zmax	The test statistics (maximum of the scan statistics).
tauhat	An estimate of the two ends of the changed-interval.
fGKCP1_bon	The p-value of $fGKCP_1$ obtained by the Bonferroni procedure.

fGKCP1_sim	The p-value of fGKCP ₁ obtained by the Simes procedure.
fGKCP2_bon	The p-value of fGKCP ₂ obtained by the Bonferroni procedure.
fGKCP2_sim	The p-value of fGKCP ₂ obtained by the Simes procedure.
GKCP	The p-value of GKCP obtained by the random permutation.

See Also

kerSeg, kerseg2, gaussiankernel, kerseg1

Examples

```
## Sequence 3: change in both the mean and variance happens on an interval.
d = 50
mu = 2
sigma = 0.5
tau1 = 25
tau2 = 35
n = 50
set.seed(1)
y1 = matrix(rnorm(d*tau1),tau1)
y2 = matrix(rnorm(d*(tau2-tau1),mu/sqrt(d),sigma), tau2-tau1)
y3 = matrix(rnorm(d*(n-tau2)), n-tau2)
y = rbind(y1, y2, y3)
K = gaussiankernel(y)
a = kerseg2(n, K, pval.perm=TRUE, B=1000)
```

skew

Compute some components utilized in the third moment fomulas.

Description

This function provides some components used in the third moment fomulas.

Usage

skew(K, Rtemp, Rtemp2, R0, R2)

Arguments

К	A kernel matrix of observations in the sequence.
Rtemp	A numeric vector of k_i , the sum of kernel values for each row i.
Rtemp2	A numeric vector, the sum of squared kernel values for each row i.
RØ	The term R_0 , defined in the paper.
R2	The term R_2 , defined in the paper.

Value

Returns a list of components used in the third moment fomulas.

statint

Description

This function provides the test statistics, $D(t_1, t_2)$, $W(t_1, t_2)$, and the weighted $W(t_1, t_2)$ for the changed-interval alternatives.

Usage

statint(K, Rtemp, R0, r1, r2)

Arguments

К	A kernel matrix of observations in the sequence.
Rtemp	A numeric vector of k_i , the sum of kernel values for each row i.
R0	The term R_0 , defined in the paper.
r1	The constant in the test statistics $Z_{W,r1}(t_1, t_2)$.
r2	The constant in the test statistics $Z_{W,r2}(t_1, t_2)$.

Value

Returns a list of test statistics, $D(t_1, t_2)$, $W(t_1, t_2)$, $W_{r1}(t_1, t_2)$, and $W_{r2}(t_1, t_2)$.

Examples

Sequence : change in the mean in the middle of the sequence. d = 50 mu = 2 tau = 50 n = 100 set.seed(1) y = rbind(matrix(rnorm(d*tau),tau), matrix(rnorm(d*(n-tau),mu/sqrt(d)), n-tau)) K = gaussiankernel(y) # Gaussian kernel matrix R_temp = rowSums(K) R0 = sum(K) a = statint(K, R_temp, R0, r1=1.2, r2=0.8)

Index

gaussiankernel, 2, *3*, *5*, *7*

kerSeg, 2, 2, 5, 7 kerseg1, 2, 3, 4, 5, 7 kerseg2, 2, 3, 5, 6, 7

skew,7 statint,8