Package ‘kernelPSI’

December 8, 2019

Title Post-Selection Inference for Nonlinear Variable Selection
Version 1.1.1
Date 2019-12-07

Description Different post-selection inference strategies for kernel
selection, as described in "~ kernelPSI: a Post-Selection Inference Framework
for Nonlinear Variable Selection", Slim et al., Proceedings of Machine
Learning Research, 2019, <http://proceedings.mlr.press/v97/slim19a/slim19a.pdf>. The strate-
gies rest upon quadratic kernel
association scores to measure the association between a given kernel and an
outcome of interest. The inference step tests for the joint effect of the
selected kernels on the outcome. A fast constrained sampling algorithm is
proposed to derive empirical p-values for the test statistics.

URL http://proceedings.mlr.press/v97/slim19a.html

Depends R (>=3.5.0)

License GPL (>=2)

Imports Rcpp (>= 1.0.1), CompQuadForm, pracma, kernlab, Imtest

Suggests bindata, knitr, rmarkdown, MASS, testthat

Encoding UTF-8

LinkingTo Rcpp, ReppArmadillo

VignetteBuilder knitr

RoxygenNote 7.0.2

NeedsCompilation yes

Author Lotfi Slim [aut, cre],
Clément Chatelain [ctb],
Chloé-Agathe Azencott [ctb],
Jean-Philippe Vert [ctb]

Maintainer Lotfi Slim <lotfi.slim@mines-paristech.fr>
Repository CRAN
Date/Publication 2019-12-07 23:00:02 UTC

http://proceedings.mlr.press/v97/slim19a.html

2 adaFOHSIC

R topics documented:

adaFOHSIC 2
adaQ e e e 3
anovaLRo 4
FOHSIC 5
forwardQ 6
HSIC . . 6
kernelPSI 7
maxLRo 9
pcalR . . . e 10
quadHSIC e e 11
ridgeLR L 11
sampleH 13
SKAT . . 14

Index 16

adaFOHSIC adaptively selects a subset of kernels in a forward fashion.
Description

This function is similar to the FOHSIC function. The only difference lies in the adaptive selection of
the number of causal kernels. First, similarly to FOHSIC, the order of selection of the n kernels in K
is determined, and then, the size of the subset of ordered kernels is chosen. The size is chosen as to
maximize the overall association with the kernel L.

Usage

adaFOHSIC(K, L)

Arguments

K list of kernel similarity matrices

L kernel similarity matrix for the outcome
Value

a list where the the first item selection is the order of selection of all kernels in the list K and the
second item is the number of selected kernels.

adaQ 3

Examples

n <- 50

p <- 20

K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)

L <- matrix(rnorm(n*p), nrow = n, ncol = p)

K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)

L <= L %% t(L) / p

adaS <- adaFOHSIC(K, L)

print(names(adaS) == c("selection”, "n"))

adaQ models the forward selection of the kernels for the adaptive variant

Description

Similarly to the fixed variant, the adaptive selection of the kernels in a forward fashion can also be
modeled with a set of quadratic constraints. The constraints for adaptive selection can be split into
two subsets. The first subset encodes the order of selection of the kernels, while the second subset
encodes the selection of the number of the kernels. The two subsets are equally sized (1ength(K)
-1) and are sequentially included in the output list.

Usage

adaQ(K, select, n)

Arguments
K list kernel similarity matrices
select integer vector containing the order of selection of the kernels in K. Typically, the
selection field of the output of FOHSIC.
n number of selected kernels. Typically, the n field of the output of adaFOHSIC.
Value

list of matrices modeling the quadratic constraints of the adaptive selection event

References

Loftus, J. R., & Taylor, J. E. (2015). Selective inference in regression models with groups of
variables.

4 anovalLR

Examples
n <- 50
p <- 20
K <- replicate(8, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %x% t(X) / dim(X)[2]), simplify = FALSE)
L <- matrix(rnorm(n*p), nrow = n, ncol = p)
L <= L %% t(L) / p

adaS <- adaFOHSIC(K, L)
listQ <- adaQ(K, select = adaS[["selection”]], n = adaS[["n"1])

anovalR implements a scaled variant of the maximum likelihood ratio test

Description

Compared to maxLR, the residual sum of squares (RSS) is scaled by the degrees of freedom of the
model df = n — k, where n is the number of samples and k is the number of covariates. In maxLR,
the RSS is instead averaged over n. Both estimators are asymptotically equivalent, with minor
differences for finite samples. Further details in this link.

Usage

anovalLR(X, Y)

Arguments
X covariate matrix
Y response vector
Value

p-value of the test

See Also
Other LR test: maxLR()

Examples
n <- 50
p <- 20

X <= matrix(rnorm(n*p), nrow = n, ncol = p)
Y <- rnorm(n)
stat.anova <- anovalLR(X, Y)

https://stats.stackexchange.com/a/155614

FOHSIC 5

FOHSIC selects a fixed number of kernels which are most associated with the
outcome kernel.

Description

This function implements a forward algorithm for kernel selection. In the first step, the kernel which
maximizes the HSIC measure with the outcome kernel L is selected. In the subsequent iterations,
the kernel which, combined with the selected kernels maximizes the HSIC measure is selected.
For the sum kernel combination rule, the forward algorithm can be simplified. The kernels which
maximize the HSIC measure with the kernel L are selected in a descending order.

Usage

FOHSIC(K, L, mKernels = 1L)

Arguments
K list of kernel similarity matrices
L kernel similarity matrix for the outcome
mKernels number of kernels to be selected
Details

FOHSIC implements the forward algorithm with a predetermined number of kernels mKernels. If the
exact number of causal kernels is unavailable, the adaptive version adaFOHSIC should be preferred.

Value

an integer vector containing the indices of the selected kernels

Examples
n <- 50
p <- 20
K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
L <= matrix(rnorm(n*p), nrow = n, ncol = p)
K <= sapply(K, function(X) return(X %x% t(X) / dim(X)[2]), simplify = FALSE)
L <= L %%t(L) /p

selection <- FOHSIC(K, L, 2)

6 HSIC

forwardQ models the forward selection event of a fixed number of kernels as a
succession of quadratic constraints

Description

The selection of the kernels with the forward algorithm implemented in FOHSIC can be represented
as a set of quadratic constraints. This is owed to the quadratic form of the HSIC criterion. In this
function, we determine the matrices of the corresponding constraints. The output is a list of matrices
where the order is identical to the order of selection of the kernels. The matrices are computed such
the associated constraint is nonnegative. For a length n of the list K, the total number of constraints
isn—1.

Usage
forwardQ(K, select)

Arguments

K list kernel similarity matrices

select integer vector containing the indices of the selected kernels
Value

list of matrices modeling the quadratic constraints of the selection event

Examples
n <- 50
p <- 20

K <- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
listQ <- forwardQ(K, select = c(4, 1))

HSIC Computes the HSIC criterion for two given kernels

Description

The Hilbert-Schmidt Independence Criterion (HSIC) is a measure of independence between two
random variables. If characteristic kernels are used for both variables, the HSIC is zero iff the
variables are independent. In this function, we implement an unbiased estimator for the HSIC
measure. Specifically, for two positive-definite kernels K and L and a sample size n, the unbiased
HSIC estimator is:

1TK11TL1 2

t KL - 1TKL
race(KL) + n=1)n—-2) n-—2

HSIC(K, L) = ﬁ

kernelPSI 7

Usage
HSIC(K, L)

Arguments

K first kernel similarity matrix

L second kernel similarity matrix

Value

an unbiased estimate of the HSIC measure.

References

Song, L., Smola, A., Gretton, A., Borgwardt, K., & Bedo, J. (2007). Supervised Feature Selection
via Dependence Estimation. https://doi.org/10.1145/1273496.1273600

Examples

n <- 50

p <- 20

X <= matrix(rnorm(n*p), nrow = n, ncol = p)
Y <- matrix(rnorm(n*p), nrow = n, ncol = p)
K <= X %% t(X) / p

L <= Y %%t /p

uHSIC <- HSIC(K, L)

kernelPSI computes a valid significance value for the effect of the selected ker-

nels on the outcome

Description

In this function, we compute an empirical p-value for the effect of a subset of kernels on the out-
come. A number of statistics are supported in this function : ridge regression, kernel PCA and the
HSIC criterion. The p-values are determined by comparing the statistic of the original response
vector to those of the replicates. We use the sampleH function to sample replicates of the response
in the acceptance region of the selection event.

Usage

kernelPSI(
Y,
K_select,
constraints,
method = "all",
mu = 0,

8 kernelPSI
sigma = 1,
lambda = 1,
n_replicates = 5000,
burn_in = 1000
)
Arguments
Y the response vector
K_select list of selected kernel
constraints list of quadratic matrices modeling the selection of the kernels in K_select
method test statistic. Must be one of the following: ridge for log-likelihood ratio for
ridge regression, pca for log-likelihood for kernel PCA, hsic for HSIC mea-
sures, or all to obtain significance values for all three former methods.
mu mean of the response
sigma standard deviation of the response
lambda regularization parameter for ridge regression.

n_replicates

burn_in

Details

number of replicates for the hit-and-run sampler in sampleH

number of burn_in iteration in sampleH

For valid inference on hundreds of samples, we recommend setting the number of replicates to
50000 and the number of burn-in iterations to 10000. These ranges are to be increased for higher

sample sizes.

Value

p-values for the chosen methods

Examples

<- 30
<- 20

<- replicate(5, matrix(rnorm(n*p), nrow = n, ncol = p), simplify = FALSE)
<- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
<= rnorm(n)

<Y %*% t(Y)

selectK <- FOHSIC(K, L, mKernels = 2)

constraintFO <- forwardQ(K, selectK)

kernelPSI(Y, K[selectK], constraintFO, method = "ridge")

r <X XT >

maxLR 9

maxLR implements the maximum likelihood ratio test

Description

The maximum likelihood ratio test is a classical goodness-of-fit test for linear models. Mathe-
matically speaking, the average residual sum of squares for an ordinary least squares (OLS) is
approximated as a chi-square distribution to generate a p-value.

Usage

maxLR(X, Y)

Arguments

X covariate matrix

Y response vector

Details

The test is valid when the number of samples is larger than the number of covariates.

Value

p-value of the test

See Also

Other LR test: anovalR()

Examples
n <- 50
p <- 20

X <= matrix(rnorm(n*p), nrow = n, ncol = p)
Y <= rnorm(n)
stat.likelihood <- maxLR(X, Y)

10 pcalR

pcalR generates a closure for the computation of the likelihood ratio statistic
for the kernel PCA prototype.

Description

This function implements the same prototype statistics in the ridgeLR function, but for kernel
principal component regression (see reference). In our simulations, we observed that this method
underperforms the ridge prototype. The main benefit of this approach is the possibility of exact
post-selection without the need for replicates sampling.

Usage

pcalR(K, mu = @, sigma = 1)

Arguments
K a single or a list of selected kernel similarity matrices.
mu marginal mean of the response Y
sigma standard deviation of the response

Value

a closure for the calculation of the LR statistic for the kernel PCA prototype

References

Rosipal, R., Girolami, M., Trejo, L. J., & Cichocki, A. (2001). Kernel PCA for feature extraction
and de-noising in nonlinear regression. Neural Computing and Applications, 10(3), 231-243.

See Also

Other prototype: ridgelLR()

Examples
n <- 30
p <- 20

K <- replicate(5, matrix(rnorm(nxp), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
print(typeof(pcalLR(K, mu = @, sigma = 1)) == "closure")

quadHSIC 11

quadHSIC Determines the quadratic form of the HSIC unbiased estimator

Description

For a linear kernel of the outcome L = Y 'Y, the unbiased HSIC estimator implemented in HSIC
can be expressed as a quadratic form of the outcome Y i.e. HSIC(K,L) =Y TQ(K)Y . Here, the
matrix () only depends on the kernel similarity matrix .

Usage

quadHSIC(K)

Arguments

K kernel similarity matrix

Value

the matrix of the HSIC estimator quadratic form

Examples

<- 50

<- 20

<- matrix(rnorm(n*p), nrow = n, ncol = p)
<- X %% t(X) / p

<- quadHSIC(K)

O X X T S

ridgelLR generates a closure for the computation of the likelihood ratio statistic
for the ridge prototype.

Description

The main inspiration for the kernel ridge prototype is the prototype concept developed in Reid
(2018, see references). A prototype is a synthetic scalar variable that aggregates the effect of a set
of variables in the outcome. Here, we extend this concept to kernels, where the prototype is the
prediction of ridge regression with the selected kernels. In this function, we implement a likelihood
ratio (LR) statistic to test for the effect of the the prototype on the outcome Y.

Usage

ridgeLR(K, mu = @, sigma = 1, lambda = 1, tol = 1e-06, n_iter = 10000)

12 ridgeLR

Arguments
K a single or a list of selected kernel similarity matrices.
mu mean of the response Y
sigma standard deviation of the response
lambda regularization parameter for the ridge prototype
tol convergence tolerance used a stopping criterion for the Newton- Raphson algo-
rithm
n_iter maximum number of iterations for the Newton-Raphson algorithm
Details

To maximize the likelihood objective function, we implement in the output closure a Newton-
Raphson algorithm that determines the maximum for each input vector Y.

For our post-selection inference framework, The output closure is used to compute the test statistics
for both the replicates and the original outcome in order to derive empirical p-values.

Value

a closure for the calculation of the LR statistic for the ridge prototype

References

Reid, S., Taylor, J., & Tibshirani, R. (2018). A General Framework for Estimation and Inference
From Clusters of Features. Journal of the American Statistical Association, 113(521), 280-293.

See Also

pcalR

Other prototype: pcalLR()

Examples
n <- 30
p <- 20

K <- replicate(5, matrix(rnorm(nxp), nrow = n, ncol = p), simplify = FALSE)
K <- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
print(typeof(ridgeLR(K, mu = @, sigma = 1, lambda = .1)) == "closure”)

sampleH 13

sampleH samples within the acceptance region defined by the kernel selection
event

Description

To approximate the distribution of the test statistics, we iteratively sample replicates of the response
in order to generate replicates of the test statistics. The response replicates are iteratively sampled
within the acceptance region of the selection event. The goal of the constrained sampling is to
obtain a valid post-selection distribution of the test statistic. To perform the constrained sampling,
we develop a hit-and-run sampler based on the hypersphere directions algorithm (see references).

Usage

sampleH(
A,
initial,
n_replicates,
mu = 0,
sigma = 1,
n_iter = 1e+05,
burn_in = 1000

)

Arguments
A list of matrices modeling the quadratic constraints of the selection event
initial initialization sample. This sample must belong to the acceptance region given

by A. In practice, this parameter is set to the outcome of the original dataset.

n_replicates total number of replicates to be generated

mu mean of the outcome
sigma standard deviation of the outcome
n_iter maximum number of rejections for the parameter A in a single iteration
burn_in number of burn-in iterations
Details

Given the iterative nature of the sampler, a large number of n_replicates and burn_in iterations
is needed to correctly approximate the test statistics distributions.

For high-dimensional responses, and depending on the initialization, the sampler may not scale well
to generate tens of thousands of replicates because of an intermediate rejection sampling step.
Value

a matrix with n_replicates columns where each column contains a sample within the acceptance
region

14 SKAT

References

Berbee, H. C. P, Boender, C. G. E., Rinnooy Ran, A. H. G., Scheffer, C. L., Smith, R. L., &
Telgen, J. (1987). Hit-and-run algorithms for the identification of non-redundant linear inequalities.
Mathematical Programming, 37(2), 184-207.

Belisle, C. J. P, Romeijn, H. E., & Smith, R. L. (2016). HIT-AND-RUN ALGORITHMS FOR
GENERATING MULTIVARIATE DISTRIBUTIONS, 18(2), 255-266.

Examples

<- 30

<- 20

<- replicate(5, matrix(rnorm(nxp), nrow = n, ncol = p), simplify = FALSE)
<- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
<- rnorm(n)

<= Y %x% t(Y)

selection <- FOHSIC(K, L, 2)

constraintQ <- forwardQ(K, select = selection)

samples <- sampleH(A = constraintQ, initial =Y,

n_replicates = 50, burn_in = 20)

r<XXT S5

SKAT implements the sequence kernel association test for GWAS data

Description

The SKAT test is a quadratic test of association between a phenotype of interest and a genomic
region. One of the main benefits of the SKAT test is the incorporation of nonlinear effects through
the use of a kernel similarity matrix in the quadratic form. For instance, the identical-by-state (IBS)
kernel which computes the number of identical alleles between two samples can be used.

Usage

SKAT(Y, K, sigma = 1)

Arguments
Y response vector
K list of kernel similarity matrices. The sum kernel is used in the quadratic form.
sigma standard deviation of the response Y

Details

The null hypothesis in the SKAT test is the absence of effects of the SNPs within the region of
interest and the outcome. Under the null, the distribution of the test statistic is a weighted sum of
chi-square distributions whose quantiles are computed using the davies formula.

SKAT 15

Value

p-value of the SKAT test

References

Wu, M. C,, Lee, S., Cai, T, Li, Y., Boehnke, M., & Lin, X. (2011). Rare-variant association
testing for sequencing data with the sequence kernel association test. American Journal of Human
Genetics, 89(1), 82-93.

Examples

<- 30

<- 20

<- replicate(5, matrix(rnorm(nxp), nrow = n, ncol = p), simplify = FALSE)
<- sapply(K, function(X) return(X %*% t(X) / dim(X)[2]), simplify = FALSE)
<- rnorm(n)

SKAT(Y, K)

< X XT o

Index

adaFOHSIC, 2, 3, 5
adaQ, 3
anovalR, 4, 9

FOHSIC, 2, 3, 5,5,6
forwardQ, 6

HSIC, 6, 11
kernelPSI, 7
maxLR, 4, 9
pcalR, 10, 12
quadHSIC, 11
ridgelR, 10, 11

sampleH, 7, 8, 13
SKAT, 14

16

	adaFOHSIC
	adaQ
	anovaLR
	FOHSIC
	forwardQ
	HSIC
	kernelPSI
	maxLR
	pcaLR
	quadHSIC
	ridgeLR
	sampleH
	SKAT
	Index

