
Package ‘kmlShape’
March 5, 2016

Type Package

Title K-Means for Longitudinal Data using Shape-Respecting Distance

Version 0.9.5

Date 2016-03-08

Description
K-means for longitudinal data using shape-respecting distance and shape-respecting means.

License GPL (>= 2)

LazyData yes

Depends methods,class,longitudinalData,kml,lattice

URL http:www.r-project.org

Collate global.R plot.R clds.R reduceTraj.R distanceFrechet.R
meanFrechet.R parKmlShape.R kmlShape.R

Encoding latin1

KeepSource TRUE

NeedsCompilation yes

Author Christophe Genolini [cre, aut],
Elie Guichard [ctb]

Maintainer Christophe Genolini <christophe.genolini@u-paris10.fr>

Repository CRAN

Date/Publication 2016-03-05 00:22:43

R topics documented:
kmlShape-package . 2
Clds-class . 3
cldsLong . 4
cldsWide . 5
distFrechet . 6
DouglasPeucker . 8
ictusShort . 10

1

2 kmlShape-package

kmlShape . 11
matplotLong . 13
meanFrechet . 15
meanFrechet2 . 16
parKmlShape . 18
ParKmlShape-class . 19
pathFrechet . 19
plot . 21
plotSenators . 22
plotTraj . 23
reduceNbId . 24
reduceNbTimes . 25
reduceTraj . 26

Index 28

kmlShape-package ~ Package: kmlShape ~

Description

KmlShape is a package design to cluster longitudinal data according to their shape.

Details

Package: KmlShape
Type: Package
Version: 0.9.5
Date: 2016-03-04
License: GPL >2.0

kmlShape cluster longitudinal data according to their shape: instead of merging individual whose
trajectories are closed in term of euclidienne distance, it groups the individual that are closed ac-
cording Frechet’s distance.

Since k-means using Frechet has a complexity in O(n^2t^2), KmlShape also provide some function
to reduce the size of the data without changing the result:

• reduceNbId reduce the number of individual, by merging them using a classical k-means on
many centers.

• reduceNbTimes reduce the number of measurement, by (optionaly) smoothing the curve then
by applying the Douglas-Peuker algorithms.

Author(s)

Christophe Genolini <christophe.genolini@u-paris10.fr>

Clds-class 3

Examples

#########
Real example, on ictus data

Preparing the data
set.seed(1)
data(ictusShort)
myClds <- cldsWide(ictusShort)

Reducing the data size
reduceTraj(myClds,nbSenators=64,nbTimes=5)

Clustering using shape
kmlShape(myClds,4)

plotMeans(myClds)

Clds-class ~ Class "Clds" ~

Description

Clds (or ClusterLongDataShape) is a class used to prepared the trajectories that will be cluster by
the function kmlShape and to store the result of the clustering. According to the data simplification
that the user may perform, it may containt the trajectories in wide format, in long format, the sim-
plified trajectories (called ’senators’), the partition found and the mean’s trajectories of the cluster
find by kmlShape.

Objects from the Class

Objects can be created by calls of the form new("Clds", ...) or using the constructor cldsWide
and cldsLong.

Slots

steps: [vector(logical)] summarizes what data are available and the transformation that the
data had already undergone. The first value is TRUE if the data has been generated from a
data.frame in a wide format. The second is TRUE if the data are available in wide format.
The third is TRUE if the data in long format are available. The fourth is TRUE if the function
reduceNbId has been used. The fitfh is TRUE if the function reduceNbTimes has been used.
The sixth is TRUE if kmlShape has been used.

id: [vector(factor)] Unique identifier, one for each trajectories.

nbId: [integer] Number of trajectories.

nbCol: [integer] Number of times measurement (if the trajectories are in wide format).

4 cldsLong

trajWide: [matrix] Trajectories in wide format. Each line is an individual, each column is a
specific time.

times: [vector(numeric)] Times at which measures are made.

trajLong: [data.frame] Trajectories in long format. The first column hold the identifiers ; in the
second are the times ; the third coutain the values.

senators: [data.frame] The ’senatorsMeans’ are the trajectories get by reducing the number
of individual (using reduceNbId). The ’senatorShort’ are the population after reduction of
the number of time (using reduceNbTimes). ’senatorsMeansShort’ are the trajectories get
by using both. The field ’senators’ hold either the ’senatorMeans’, the ’senatorShort’ or the
’senatorMeansShort’, according to the reduction that has been used.

mySenator: [data.frame] In the fisrt column are all the individual indentifier. The second hold
the identifier of the senators that represent the individual

senatorsWeight: [integer] If the procedure reduceNbId has been used, each senators is the
mean of a clusters. His senatorsWeight is the number of individual that are in his clusters. If
reduceNbId has not been used (and thus, only reduceNbTimes has been used), each senators
has weight 1.

clustersSenators: [factor] Clusters of each senators after the used of kmlShape.

clusters: [factor] Clusters of each individual after the used of kmlShape. The clusters of an
individual is the cluters of its senators.

trajMeans: [data.frame] Means’ trajectories of each clusters after the use of kmlShape.

Methods

[: Get the value of the field asked. Possible values are ’step’, ’wideAvailable’, ’longAvail-
able’, ’senatorsAvailable’, ’reduceId’, ’reduceTimes’, ’kmlShape’, ’nbClusters’, ’id’, ’nbId’,
’nbCol’, ’trajWide’, ’times’, ’trajLong’, ’senators’, ’mySenator’, ’senatorsWeight’, ’clustersSe-
nators’, ’clusters’, ’trajMeans’

[<- : Set the selected field to value.

show : Display the object. Since many fields can be empty, it display only the field that ar not
empty.

Examples

data(ictusShort)
cldsWide(ictusShort)

cldsLong ~ Function: cldsLong ~

Description

Turn trajectories in long format into an object of class Clds.

cldsWide 5

Usage

cldsLong(trajLong)

Arguments

trajLong [data.frame]: the trajectories, in long format. The trajectories have to have
(no choice) th following format: the first column is the identifier; the second is
the time measurement ; the third is the values.

Details

Turn trajectories in long format into an object of class Clds-class.

Value

Object of class Clds.

Examples

Some artificial data
g <- function(x)dnorm(0:100,runif(1,25,75),10)*rnorm(1,5,1)
dn <- data.frame(id=rep(1:200,each=101),

times=rep((0:100)/10,times=20),
traj=as.numeric(sapply(1:200,g))

)

clds format
myClds <- cldsLong(dn)
plotTraj(myClds)

cldsWide ~ Function: cldsWide ~

Description

Turn trajectories in wide format into an object of class Clds.

Usage

cldsWide(trajWide, times, id)

6 distFrechet

Arguments

trajWide [data.frame] or [matrix]: the trajectories, in wide format (each line is an
individual, each column is a specific time measurement).

times [vector(numeric)] Times at which measures are made.

id [vector(factor)] Vector of unique identifiers, one for each trajectories. If id
is missing, the first column of the trajWide is turn into a factor and is used as
id.

Details

Turn trajectories in wide format into an object of class Clds. If id is missing, the first column of the
trajWide is turn into a factor and is used as id. Column 2:ncol(trajWide) are the trajectories. If
id is not missing, column 1:ncol(trajWide) are the trajectories.

Value

Object of class Clds-class.

Examples

data(ictusShort)
myClds <- cldsWide(ictusShort)
myClds
plotTraj(myClds)

distFrechet ~ Function: Frechet distance ~

Description

Compute Frechet distance between two trajectories.

Usage

distFrechet(Px,Py,Qx, Qy, timeScale=0.1, FrechetSumOrMax = "sum")
distFrechetR(Px,Py,Qx, Qy, timeScale=0.1, FrechetSumOrMax = "sum")
distFrechetRec(Px,Py,Qx, Qy, timeScale=0.1, FrechetSumOrMax = "sum")

Arguments

Px [vector(numeric)] Times (abscisse) of the first trajectories.

Py [vector(numeric)] Values of the first trajectories.

Qx [vector(numeric)] Times of the second trajectories.

Qy [vector(numeric)] Values of the second trajectories.

distFrechet 7

timeScale [numeric]: allow to modify the time scale, increasing or decreasing the cost of
the horizontal shift. If timeScale is very big, then the Frechet’s distance is equal
to the euclidienne distance. If timeScale is very small, then it is equal to the
Dynamic Time Warping.

FrechetSumOrMax

[character]: The Frechet’s distance can be define using the ’sum’ function or
the ’max’ function. This option let the user to chose one or the other.

Details

Given two curve P and Q, Frechet distance between P and Q is define as inf_{a,b} max_{t} d(P(a(t)),Q(b(t))).
It’s computation is a NP-complex problem. When P and Q are trajectories (discrete curve), the prob-
lem is polynomial.

The Frechet distance can also be define using a sum instead of a max: inf_{a,b} sum_{t} d(P(a(t)),Q(b(t)))

The function distFrechet is C compiled, the function distFrechetR is in R, the function distFrechetRec
is in recursive (the slowest) in R.

Value

A numeric value.

Author

Christophe Genolini
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSM, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre /
France

References

[1] Thomas Eiter & Heikki Mannila:
"Computing Discrete Fr´echet Distance"

[2] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010

[3] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121, 2011

See Also

distTraj

8 DouglasPeucker

Examples

Px <- 1:20
Py <- dnorm(1:20,12,2)
Qx <- 1:20
Qy <- dnorm(1:20,8,2)

Function from Eiter and Mannila compiled in C
system.time(cat("\n",distFrechet(Px,Py,Qx,Qy)))

Same thing in R
system.time(cat("\n",distFrechetR(Px,Py,Qx,Qy)))

Frechet using sum instead of max.
distFrechet(Px,Py,Qx,Qy,FrechetSumOrMax="sum")

DouglasPeucker ~ Function: DouglasPeucker ~

Description

The Ramer-Douglas-Peucker algorithm (RDP) is an algorithm for reducing the number of points in
a trajectory.

Usage

DouglasPeuckerEpsilon(trajx, trajy, epsilon, spar=NA)
DouglasPeuckerNbPoints(trajx, trajy, nbPoints, spar=NA)

Arguments

trajx [vector(numeric)]: abscissa of the trajectory.

trajy [vector(numeric)]: ordinate of the trajectory.

epsilon [numeric]: see details

nbPoints [numeric]: see details

spar [numeric]: smoothing parameter.

Details

[extract from Wikipedia -begin-]

*** Idea ***

The purpose of the algorithm is, given a curve (trajectory) composed of line segments, to find a
similar curve with fewer points. The algorithm defines ’dissimilar’ based on the maximum distance
between the original curve and the simplified curve. The simplified trajectory consists of a subset
of the points that defined the original trajectory.

*** Algorithm with epsilon (function DouglasPeackerEpsilon) ***

DouglasPeucker 9

The starting curve is an ordered set of points or lines. Let epsilon > 0 be the distance dimension.

The algorithm recursively divides the line. Initially it is given all the points between the first and last
point. It automatically marks the first and last point to be kept. It then finds the point that is furthest
from the line segment with the first and last points as end points (this point is obviously furthest on
the curve from the approximating line segment between the end points). If the point is closer than
epsilon to the line segment then any points not currently marked to keep can be discarded without
the simplified curve being worse than epsilon.

If the point furthest from the line segment is greater than epsilon from the approximation then that
point must be kept. The algorithm recursively calls itself with the first point and the worst point and
then with the worst point and the last point (which includes marking the worst point being marked
as kept).

When the recursion is completed a new output curve can be generated consisting of all (and only)
those points that have been marked as kept.

[extract from Wikipedia -end-]

*** Algorithm with a fixed number of point (function DouglasPeackerNbPoints) ***

The previous algorithm stops when the simplified curve and the real curve are at a distance less than
epsilon. It gives no control over the number of points which are in the simplified curve.

It is possible to change that by modifying the stopping condition: instead of adding points ’until
the curves are close enough to each other’, one can choose to add the farest points until a a pre-
determined number of points is reach. This is what the function DouglasPeackerNbPoints does.

Note that DouglasPeackerNbPoints controls the number of points of the simplified curve, but does
not bound the distance between the originale curve and the simplified curve.

*** smoothing the curve ***

On unsmooth curves with a lot of small variations, the Douglas-Peucker algorithm gives "strange"
results (see example 3). It is therefor preferable to smoothing the curved before simplifying it. The
spar parameter allows define the degree of smoothing that will be used. If set to NA, the curve is
not smoothed. Otherwise, it is smoothed using the function smooth.spline with parameter spar.

*** missings values *** They are removed from the trajectory.

Value

A data.frame with the new trajectory. The first (x) hold the abcsissa, the second (y) the ordinate.

Examples

Px <- (1:100)/10
Py <- dnorm(Px,3,1)+dnorm(Px,7,1)+Px/10

Example 1
Simplification using epsilon

par(mfrow=c(2,2))
plot(Px,Py,type="l")
plot(DouglasPeuckerEpsilon(Px,Py,0.01),type="b",col=4)
plot(DouglasPeuckerEpsilon(Px,Py,0.04),type="b",col=3)

10 ictusShort

plot(DouglasPeuckerEpsilon(Px,Py,0.1),type="b",col=2)

Example 2
Simplification using nbPoints

par(mfrow=c(2,2))
plot(Px,Py,type="l")
plot(DouglasPeuckerNbPoints(Px,Py,20),type="b",col=4)
plot(DouglasPeuckerNbPoints(Px,Py,10),type="b",col=3)
plot(DouglasPeuckerNbPoints(Px,Py,5),type="b",col=2)

Example 3
Simplification with and without smoothing

Py <- dnorm(Px,3,1)+dnorm(Px,7,1)+Px/10+rnorm(100,,0.1)

par(mfrow=c(2,2))
plot(Px,Py,type="l")
plot(DouglasPeuckerNbPoints(Px,Py,20),type="b",col=4)
plot(DouglasPeuckerNbPoints(Px,Py,20,spar=0.5),type="b",col=3)
plot(DouglasPeuckerNbPoints(Px,Py,10,spar=0.5),type="b",col=2)

ictusShort ~ Data: ictusShort ~

Description

A subset of the longitudinal study ICTUS

Usage

data("ictusShort")

Format

A data frame with 1374 observations on the following 16 variables.

id Unique identifier

‘MMS-1’ Mini Mental Score at time 1

‘MMS-2’ Mini Mental Score at time 2

‘MMS-3’ Mini Mental Score at time 3

‘MMS-4’ Mini Mental Score at time 4

‘MMS-5’ Mini Mental Score at time 5

‘MMS-6’ Mini Mental Score at time 6

‘MMS-7’ Mini Mental Score at time 7

‘MMS-8’ Mini Mental Score at time 8

kmlShape 11

‘MMS-9’ Mini Mental Score at time 9

‘MMS-10’ Mini Mental Score at time 10

‘MMS-11’ Mini Mental Score at time 11

‘MMS-12’ Mini Mental Score at time 12

‘MMS-13’ Mini Mental Score at time 13

‘MMS-14’ Mini Mental Score at time 14

‘MMS-15’ Mini Mental Score at time 15

Details

Ictus [1, 2] is a cohort of 1380 patients with Alzheimer disease followed-up in 12 European coun-
tries. These patients were included between February 2003 and July 2005 in 29 centres specialized
in neurology, geriatrics, psychiatry, or psycho-geriatrics with a recognized experience in the di-
agnosis and management of Alzheimer disease. Most of these patients were seen during memory
consultations and included consecutively. These patients were examined at six-month intervals
over two years. Each examination included (though not exclusively) an Mini Mental Score (MMS)
assessment.

The dataset "ictusShort" is a subset of the cohort Ictus. Since the acces to Ictus is submited to
conditions, the original data have been transform before inclusion in the package, but the results of
the analysis using kmlShape are the same on the real Ictus and ictusShort.

References

[1] Reynish, E., Cortes, F., Andrieu, S., Cantet, C., Olde Rikkert, M., Melis, R., Froelich, L.,
Frisoni, G., Jonsson, L., Visser, P., et al., 2007. The ictus study: A prospective longitudinal
observational study of 1,380 ad patients in europe. Neuroepidemiology 29 (1-2), 29-38

[2] Vellas, B., Hausner, L., Frolich, L., Cantet, C., Gardette, V., Reynish, E., Gillette, S., Aguera-
Morales, E., Auriacombe, S., Boada, M., et al., 2012. Progression of alzheimer disease in
europe: Data from the european ictus study. Current Alzheimer Research 9 (8), 902-912.

Examples

data(ictusShort)
summary(ictusShort)
matplot(t(ictusShort),type="l")

kmlShape ~kmlShape ~

Description

This function run k-means for longitudinal data using some shape respecting distance and mean.

12 kmlShape

Usage

kmlShape(myClds, nbClusters = 3, timeScale = 0.1, FrechetSumOrMax =
"max", toPlot="both", parAlgo=parKmlShape())

Arguments

myClds [Clds]: Object that hold the trajectories, the ’senators’ resulting from a simpli-
fication of the trajectories and, after the use of kmlShape, the clusters.

nbClusters [numeric] or [vector(numeric)]: either the number of clusters, or a vector of
initial (distinct) cluster centers. If a number, a random set of (distinct) trajecto-
ries is chosen as the initial centres.

timeScale [numeric]: allow to modify the time scale, increasing or decreasing the cost of
the horizontal shift. If timeScale is very big, then the Frechet mean tends to the
euclidienne distance. If timeScale is very small, then it tends to the Dynamic
Time Warping.

FrechetSumOrMax

[character]: kmlShape uses Frechet’s distance and Frechet path. Since both of
them can be define using the ’sum’ function or the ’max’ function, this option
let the user to chose one or the other.

toPlot [character]: use ’traj’ for graphical display during computation, or ’none’ for
a faster but quiet run.

parAlgo [ParKmlShape]: parameters used to run the algorithm. They can be change using
the function parKmlShape. Option are mainly ’aggregationMethod’, ’shuffle’,
’sampleSize’, ’methodHclust’ and ’maxIter’. See ParKmlShape for details.

Details

This function run k-means for longitudinal data using a shape respecting distance (distFrechet)
and a shape respecting mean (meanFrechet). See [1] for details.

Value

An object of class Clds in which the field ’clustersSenators’, ’clusters’ and ’trajMeans’ are now
filled.

Examples

###########
Example

Generating artificial data
nbLignes <- 20
trajG <- matrix(0,nbLignes,10)
for(i in 1:(nbLignes/2)){

trajG[i,] <- dnorm(1:10,runif(1,3,8),1)*rnorm(1,10,0.1)
}
for(i in (nbLignes/2+1):nbLignes){

trajG[i,] <- dnorm(1:10,runif(1,3,8),1)*rnorm(1,5,0.1)

matplotLong 13

}

myClds <- cldsWide(data.frame(1:20,trajG))
plot(myClds)

kmlshape
par(ask=FALSE)
kmlShape(myClds,2)
par(ask=TRUE)
plot(myClds)

###########
Example 2

Generating artificial data
nbLignes <- 12
trajH <- matrix(0,nbLignes,10)

for(i in 1:(nbLignes/3)){
trajH[i,] <- pnorm(1:10,runif(1,3,8),1)*rnorm(1,10,1)

}
for(i in (nbLignes/3+1):(2*nbLignes/3)){

trajH[i,] <- dnorm(1:10,runif(1,3,8),1)*rnorm(1,13,1)
}

for(i in (2*nbLignes/3+1):nbLignes){
trajH[i,] <- pnorm(1:10,runif(1,3,8),1)*rnorm(1,5,0.1)

}

myClds2 <- cldsWide(data.frame(1:60,trajH))
plot(myClds2)

kmlshape
par(ask=FALSE)
kmlShape(myClds2,3)
par(ask=TRUE)
plot(myClds2)

matplotLong ~ Function: matplotLong ~

Description

Plot some longitudinal data in long format.

14 matplotLong

Usage

matplotLong(trajLong, col = 1:6, lty = 1:5, lwd=1, add = FALSE,
main="", xlab="Times",ylab="",pourcent=NA)

Arguments

trajLong [data.frame]: trajectories in long format. The data.frame has to be (no
choice!) in the following format: the first column should be the individual in-
dentifiant. The second should be the times at which the measurement are made.
The third one should be the measurement.

col [vector(numeric)] or [vector(character)]: vector that define the trajecto-
ries’ colors. If the length of the vector is one, col is duplicated.

lty [numeric]: lines type.

lwd [numeric]: lines width.

add [logical]: shall the function start a new graph (add=FALSE) or add the lines
to the current graph (add=TRUE) ?

main [character]: main title.

xlab [character]: x label.

ylab [character]: y label.

pourcent [numeric]: if pourcent is not NA, then a legend is added on the top of the graph.
The legend takes the values given by the vecteur pourcent.

Details

Plot some longitudinal data in long format. Only the color and the lines width can be modifid by
the user.

Value

A graph.

Examples

Preparing data
g <- function(x)dnorm(x,3)+dnorm(x,7)+x/10
dn <- data.frame(id=rep(1:20,each=101),

times=rep((0:100)/10,times=20),
traj=rep(g((0:100)/10),20)+rep(runif(20),each=101)+rnorm(20*101,,0.1))

matplotLong
matplotLong(dn)

matplotLong with a legend
matplotLong(dn,col=2:3,pourcent=c(0.50,0.50))

meanFrechet 15

meanFrechet ~ Function: meanFrechet ~

Description

Compute the Frechet mean

Usage

meanFrechet(trajLong, timeScale = 0.1, FrechetSumOrMax = "sum",
aggregationMethod = "all", shuffle = TRUE, sampleSize = NA, methodHclust = "average")

Arguments

trajLong [data.frame]: trajectories in long format. The data.frame has to be (no choice!)
in the following format: the first column should be the individual indentifiant.
The second should be the times at which the measurement are made. The third
one should be the measurements.

timeScale [numeric]: allow to modify the time scale, increasing or decreasing the cost of
the horizontal shift. If timeScale is very big, then the Frechet mean tends to the
euclidienne distance. If timeScale is very small, then it tends to the Dynamic
Time Warping.

FrechetSumOrMax

[character]: Like Frechet’s distance, the Frechet Mean can be define using the
’sum’ function or the ’max’ function. This option let the user to chose one or
the other.

aggregationMethod

[character]: define the agglomerative method used to compute the mean. Three
methods are curently available: "all", "sample" and "hierarchical". See detail.

shuffle [logical]: shall the order of the agglomeration should be randomly chosen?
(only for methods "all" and "sample")

sampleSize [integer]: define the size of the sample (for method ’sample’ only).

methodHclust [character]: define the distance between two clusters used by the hierarchical
clustering. The methods available are the one usable by the function hclust

Details

Compute the Frechet mean, as define in [1]. The main idea of the algorithm is the following:

The Frechet mean of two trajectories can be easely define as the middle of the leash that joint the
two trajectories (see meanFrechet2). Then the mean of n individual can be obtain by merging the
individual trajectories two by two, then merging the resulting trajectories and so on until there is
only one trajectory left. This last trajectory is the Frechet mean. Theoriticaly, the final result depend
of the order of agglomeration. In practice, on large sample, this order has little impact on the final
result (see [1] for detail).

So far, three agglomeration methods are availables:

16 meanFrechet2

• all: the n individuals are scattered (randomly if shuffle=TRUE) on the leaves of a complete
binary tree (all the knots have zero or two leaves) having depth h with 2^h <= n <2^h+1. The
value of each non-terminal leaf is the Frechet mean for two trajectories of the two children
leaves. Frechet mean is thus the value of the tree root. (Informally, this structure is close to
that of a tennis tournament). The complexity of this method is O(nt^2).

• sample: This method is the method all applied only to a sample of sampleSize trajectories.
The complexity of the method is $O(n^0t^2)$, n^0 being the size of the random sample.

• hierarchical: the combination order between individuals is fixed in a deterministic way
through an ascending hierarchical classification; the closest individuals being combined first.
The complexity of this method is $O(n^2t^2)$.

Value

A data.frame holding a trajectory.

See Also

meanFrechet2, pathFrechet

Examples

require(lattice)

Define artificial data
g <- function(x)dnorm(0:20,runif(1,5,15),2)*rnorm(1,5,1)
dn <- data.frame(id=rep(1:20,each=21),

times=rep((0:20),times=20),
traj=as.numeric(sapply(1:20,g)),
weight=1

)

xyplot(traj ~ times, data=dn, groups=id,type="l",ylim=c(0,1.4))
plot(meanFrechet(dn),ylim=c(0,1.4))
plot(meanFrechet(dn,0.001),ylim=c(0,1.4))
plot(meanFrechet(dn,10),ylim=c(0,1.4))

meanFrechet2 ~ Function: meanFrechet2 ~

Description

Compute the Frechet mean between two curves.

Usage

meanFrechet2(Px, Py, Qx, Qy, timeScale = 0.1, FrechetSumOrMax = "sum", weightPQ = c(1,1))

meanFrechet2 17

Arguments

Px [vector(numeric)] Times (abscisse) of the first trajectories.
Py [vector(numeric)] Values of the first trajectories.
Qx [vector(numeric)] Times of the second trajectories.
Qy [vector(numeric)] Values of the second trajectories.
timeScale [numeric]: allow to modify the time scale, increasing or decreasing the cost of

the horizontal shift. If timeScale is very big, then the Frechet’s mean is equal
to the euclidienne distance. If timeScale is very slow, then it is equal to the
Dynamic Time Warping.

FrechetSumOrMax

[character]: Like Frechet’s distance, Frechet’s mean can be define using the
’sum’ function or the ’max’ function. This option let the user to chose one or
the other.

weightPQ [couple(numeric)]: respective weight of the two trajectories (for a weighted
mean).

Details

Given two curve P and Q

• The Frechet distance between P and Q is define as distFrechet(P,Q)=inf_{a,b} max_{t} d(P(a(t)),Q(b(t))).
• The Frechet path is the couple of function (a(t),b(t)) that realize the equality of the Frechet

distance: distFrechet(P,Q)=max_{t} d(P(a(t)),Q(b(t)))

• Frechet mean is the curve define by the sequence of all the center of the segments define by
the Frechet path [a(t),b(t)]. If P and Q have respectively weight p and q, the center is the
weighted mean of the segments : $c(t)=(p.a(t)+q.b(t))/(p+q)$.

The Frechet distance, path and means can also be define using a sum instead of a max.

Value

A numeric value.

Examples

traj <- matrix(0,4,5)
traj[1,2] <- 10
traj[2,3] <- 11
traj[3,4] <- 10
traj[4,2] <- 8

matplot(x=1:5,y=t(traj),type="l",col=2:5,lty=1)
m12 <- meanFrechet2(Px=1:5,Py=traj[1,],Qx=1:5,Qy=traj[2,])
m34 <- meanFrechet2(Px=1:5,Py=traj[3,],Qx=1:5,Qy=traj[4,])
lines(m12,col=2,lwd=3)
lines(m34,col=2,lwd=3)

m1234 <- meanFrechet2(Px=m12$times,Py=m12$traj,Qx=m34$times,Qy=m34$traj)
lines(m1234,col=1,lwd=5)

18 parKmlShape

parKmlShape ~ Function: parKmlShape ~

Description

parKmlShape is a constructor for the object ParKml.

Usage

parKmlShape(aggregationMethod="all", shuffle=TRUE, sampleSize=128,
methodHclust="average", maxIter=100)

Arguments

aggregationMethod

[character]: define the aglomerative method used to compute the mean. Three
methods are curently available: "all", "sample" and "hierarchical". See meanFrechet
and [1] for details.

shuffle [logical]: if the agglomerationMethod is "all" or "sample", this variable is use
to decide if the trajectories will be agglomerate in a random order (shuffle=TRUE)
or not. If not, the lexical order based on the individual identifiant is used.

sampleSize [integer]: Define the number of trajectories that will be use to compute the
meanFrechet when the aggregationMethod is "sample".

methodHclust [character]: define the distance between two clusters used by the hierarchical
clustering when the aggregationMethod is "hierarchical". The methods available
are the one for hclust

maxIter [numeric]: the maximum number of iteration allowed.

Details

parKmlShape is the constructor of object ParKml.

Value

An object ParKmlShape.

Examples

parKmlShape()
parKmlShape(aggregationMethod="hierarchical",methodHclust="single")

ParKmlShape-class 19

ParKmlShape-class ~ Class: "ParKmlShape" ~

Description

ParKmlShape is an object containing some parameter used by kmlShape.

Slots

aggregationMethod [character]: define the aglomerative method used to compute the mean.
Three methods are curently available: "all", "sample" and "hierarchical". See meanFrechet
and [1] for details.

shuffle [logical]: if the agglomerationMethod is "all" or "sample", this variable is use to decide
if the trajectories will be agglomerate in a random order (shuffle=TRUE) or not. If not, the
lexical order based on the individual identifiant is used.

sampleSize [integer]: Define the number of trajectories that will be use to compute the meanFrechet
when the aggregationMethod is "sample".

methodHclust [character]: define the distance between two clusters used by the hierarchical
clustering when the aggregationMethod is "hierarchical". The methods available are the one
for hclust

maxIter [numeric]: the maximum number of iteration allowed.

Methods

object[’xxx’] Get the value of the field xxx.

Examples

parAlgo <- parKmlShape()
parAlgo["aggregationMethod"]
parAlgo["aggregationMethod"] <- "hierarchical"

pathFrechet ~ Function: Frechet distance ~

Description

Compute Frechet distance and Frechet path between two trajectories.

Usage

pathFrechet(Px,Py,Qx,Qy,timeScale=0.1,FrechetSumOrMax = "sum")

20 pathFrechet

Arguments

Px [vector(numeric)] Times (abscisse) of the first trajectories.

Py [vector(numeric)] Values of the first trajectories.

Qx [vector(numeric)] Times of the second trajectories.

Qy [vector(numeric)] Values of the second trajectories.

timeScale [numeric]: allow to modify the time scale, increasing or decreasing the cost of
the horizontal shift. If timeScale is very big, then the Frechet path is only a set
of vertical segment. If timeScale is very small, then it is equal to the path find
by Dynamic Time Warping.

FrechetSumOrMax

[character]: Like Frechet’s distance, the Frechet’s path can be define using the
’sum’ function or the ’max’ function. This option let the user to chose one or
the other.

Details

Given two curve P and Q, Frechet distance between P and Q is define as distFrechet(P,Q)=inf_{a,b} max_{t} d(P(a(t)),Q(b(t))).

The Frechet path is the couple of function (a(t),b(t)) that realize the previous equality : distFrechet(P,Q)=max_{t} d(P(a(t)),Q(b(t)))

It’s computation is a NP-complex problem. When P and Q are trajectories (discrete curve), the
problem is polynomial.

The Frechet path can also be define using a sum instead of a max: inf_{a,b} sum_{t} d(P(a(t)),Q(b(t)))

The function pathFrechet is C compiled whereas the function pathFrechetR is in R.

Value

A numeric value and the Frechet path in a matrix.

Author

Christophe Genolini \& Elie Guichard
1. UMR U1027, INSERM, Université Paul Sabatier / Toulouse III / France
2. CeRSME, EA 2931, UFR STAPS, Université de Paris Ouest-Nanterre-La Défense / Nanterre /
France

References

Thomas Eiter & Heikki Mannila: "Computing Discrete Fr´echet Distance"

[1] C. Genolini and B. Falissard
"KmL: k-means for longitudinal data"
Computational Statistics, vol 25(2), pp 317-328, 2010

[2] C. Genolini and B. Falissard
"KmL: A package to cluster longitudinal data"
Computer Methods and Programs in Biomedicine, 104, pp e112-121, 2011

plot 21

See Also

distFrechet

Examples

Px <- 1:20
Py <- dnorm(1:20,12,2)
Qx <- 1:20
Qy <- dnorm(1:20,8,2)

Function from Eiter and Mannila compiled in C
system.time(pathFrechet(Px,Py,Qx,Qy))

Same thing in R
system.time(pathFrechet(Px,Py,Qx,Qy))

Frechet using sum instead of max.
pathFrechet(Px,Py,Qx,Qy,FrechetSumOrMax="sum")

plot ~ Function: plot for Clds ~

Description

plot plot both the trajectories the the clusters’ means of an object Clds.

Usage

S4 method for signature 'Clds,missing'
plot(x,y,col="darkgrey",lty=1,legend=TRUE,...)

Arguments

x [Clds]: Object containing the trajectories to plot.
y Useless. For compatibility only.
col [character], [integer] or [vector(integer)]: color use for the trajectories.

If the special value "clusters" is used, the trajectories will be colored according
to their clusters.

lty [integer] or [vector(integer)]: line type of the trajectories
legend [logical]: shall the pourcent of individual in each cluster be printed as a legend

?
... Arguments to be passed to methods. These arguments need to be compatible

with plotTraj.

Details

plot plot both the trajectories the the clusters’ means of an object Clds. If the option col="clusters"
is used, the trajectories will be colored according to their clusters.

22 plotSenators

Examples

Generating artificial data
nbLignes <- 12
trajH <- matrix(0,nbLignes,10)

for(i in 1:(nbLignes/3)){
trajH[i,] <- pnorm(1:10,runif(1,3,8),1)*rnorm(1,10,1)

}
for(i in (nbLignes/3+1):(2*nbLignes/3)){

trajH[i,] <- dnorm(1:10,runif(1,3,8),1)*rnorm(1,13,1)
}

for(i in (2*nbLignes/3+1):nbLignes){
trajH[i,] <- pnorm(1:10,runif(1,3,8),1)*rnorm(1,5,0.1)

}

myClds <- cldsWide(data.frame(1:60,trajH))

par(mfrow=c(1,2))
plotTraj(myClds)
kmlShape(myClds,toPlot="none")
plotTraj(myClds)

plotSenators ~ Function: plotSenators ~

Description

Plot the senators hold a an linkS4class{Clds} object.

Usage

plotSenators(x, col = 2:7, lty = 1:5, lwd=1, add = FALSE,main="", xlab="Times",ylab="")

Arguments

x [Clds] Object holding the senators.
col [vector(numeric)] or [vector(character)]: vector that define the trajecto-

ries’ colors. If the length of the vector is one, then its value is duplicated.
lty [numeric]: lines type.
lwd [numeric]: lines width.
add [logical]: shall the function start a new graph (add=FALSE) or add the lines

to the current graph (add=TRUE) ?
main [character]: main title of the graphical display.
xlab [character]: x label of the graphical display.
ylab [character]: y label of the graphical display.

plotTraj 23

Details

Plot the senators hold a an linkS4class{Clds} object.

Value

A graph.

Examples

data(ictusShort)
myClds <- cldsWide(ictusShort)
reduceTraj(myClds,nbSenators=4)
plotSenators(myClds)
reduceTraj(myClds,nbSenators=32)
plotSenators(myClds)

plotTraj ~ Function: plotTraj for Clds ~

Description

plotTraj plot the trajectories of an object Clds.

Usage

S4 method for signature 'Clds,missing'
plotTraj(x, y, col="clusters", pourcent=NA, ...)

Arguments

x [Clds]: Object containing the trajectories to plot.

y Useless. For compatibility only.

col [character], [integer] or [vector(integer)]: color use for the trajectories.
If the special value "clusters" is used, the trajectories will be colored according
to their clusters.

pourcent [vector(numeric)]: if pourcent is not NA, then the vector pourcent is used as
value for the legend. If pourcent is NA, the legend is not printed.

... Arguments to be passed to methods. These arguments need to be compatible
with matplot.

Details

plotTraj the trajectories of an object Clds. If the option col="clusters" is used, the trajectories
will be colored according to their clusters.

24 reduceNbId

Examples

data(ictusShort)
myClds <- cldsWide(ictusShort)
plot(myClds)

reduceNbId ~ Function: reduceNbId ~

Description

This function ’summerize’ a (big) population in a smaller groups of individual. Hopefully, the
smaller groups will have the same properties than the whole population. The trajectories of the
smaller groups are called the ’senator’ (since they are representing the whole population). The
’election’ is done using the classical k-means algorithm. The trajectories should be in ’wide’ format.

Usage

reduceNbId(id, trajWide, nbSenators = 64, imputationMethod = "linearInterpol")

Arguments

id [vector(factor)]: unique identifier for each trajectories.

trajWide [data.frame]: data.frame that hold the trajectories (in wide format).

nbSenators [integer] number of trajectories that will be use to represent the population
(i.e., number of clusters used by k-means).

imputationMethod

[character]: Method that will be used to impute the missing values.

Details

This function ’summerize’ a (big) population in a smaller groups of individual. Hopefully, the
smaller groups will have the same properties than the whole population. The trajectories of the
smaller groups are called the ’senator’ (since they are representing the whole population). The
’election’ is done using the classical k-means algorithm. The trajectories should be in ’wide’ format.

Value

A list with three fields:

• mySenator: [data.frame] whose first column is the individual identifier and whose second
column is the ’senator’ that represent the individual of the first column.

• senatorsWide [matrix] containing the trajectories of the senators, in wide format. The first
column is an unique identifier for each senators.

• senatorsWeight[vector(numeric)] Number of individual that a senator is representing (i.e.
number of individual that are in the cluster whose senator is the mean.)

reduceNbTimes 25

Examples

par(mfrow=c(1,3))
Some artificial data
myTraj <- t(sapply(1:1000,function(x)dnorm(1:200,runif(1,50,150),20)*rnorm(1,10,2)))
matplot(t(myTraj),type="l",ylim=c(0,0.33))

Election of 64 senator
All individual is closed to one senators. Senators are representatives.
election64 <- reduceNbId(id=1:1000,myTraj,nbSenators=64)
matplot(t(election64$senatorsWide[,-1]),type="l",ylim=c(0,0.33))

Election of 4 senators. They are not representatives.
election4 <- reduceNbId(id=1:1000,myTraj,nbSenators=4)
matplot(t(election4$senatorsWide[,-1]),type="l",ylim=c(0,0.33))

reduceNbTimes ~ Function: reduceNbTimes ~

Description

reduceNbTimes simplify some trajectories (in long format) by reducing their number of points.

Usage

reduceNbTimes(trajLong, nbPoints, spar=NA)

Arguments

trajLong [data.frame]: data.frame that hold the trajectories in long format. The data.frame
has to be (no choice!) in the following format: the first column should be the in-
dividual indentifiant. The second should be the times at which the measurement
are made. The third one should be the measurement.

nbPoints [numeric]: fixe the number of that the simplified trajectories should have.

spar [numeric]: smoothing parameter that is used if the trajectories shall be smoothed
before being simplified.

Details

reduceNbTimes simplify some trajectories by reducing their number of points. The trajectories
should be in long format. If a value is given to spar (different from NA), trajectories are smoothed
using smooth.spline.

The reduction of the number of point is done using a variation of Douglas-Peucker algorithme based
on the number of points instead of an epsilon.

Value

A data.frame holding the simplified trajectories, in long format.

26 reduceTraj

Author(s)

Christophe Genolini

See Also

reduceNbTimes, DouglasPeuckerEpsilon, DouglasPeuckerNbPoints

Examples

require(lattice)

Some artificial data
g <- function(x)dnorm(x,3)+dnorm(x,7)+x/10
dn <- data.frame(id=rep(1:20,each=101),

times=rep((0:100)/10,times=20),
traj=rep(g((0:100)/10),20)+rep(runif(20),each=101)+rnorm(20*101,,0.1))

xyplot(traj ~ times, data=dn, groups=id,type="l")

Reduction to 50 points
dn2 <- reduceNbTimes(trajLong=dn,nbPoints=50)
xyplot(traj ~ times, data=dn2, groups=id,type="l")

Reduction to 20 points
dn3 <- reduceNbTimes(trajLong=dn,nbPoints=20)
xyplot(traj ~ times, data=dn3, groups=id,type="l")

Smoothing then reduction to 20 points
dn4 <- reduceNbTimes(trajLong=dn,nbPoints=20,spar=0.5)
xyplot(traj ~ times, data=dn4, groups=id,type="l")

reduceTraj ~ Function: reduceTraj ~

Description

This function ’summerize’ a (big) population in a smaller groups of individual, then simplify the
trajectories by reducing their number of points. It use reduceNbId and reduceNbTimes. Main
difference with these two function, its applies on a Clds object.

Usage

reduceTraj(myClds, nbSenators = NA, nbTimes = NA, spar = 0.5,
imputationMethod = "linearInterpol")

reduceTraj 27

Arguments

myClds [Clds]: object holding the trajectories that should be simplified.

nbSenators [integer] number of trajectories that will be use to represent the population
(i.e., number of clusters used by k-means).

nbTimes [numeric]: fixe the number of that the simplified trajectories should have.

spar [numeric]: smoothing parameter that is used if the trajectories shall be smoothed
before being simplified.

imputationMethod

[character]: Method that will be used to impute the missing values.

Details

This function ’summerize’ a (big) population in a smaller groups of individual, then simplify the tra-
jectories by reducing their number of points. If ’nbSenators’ is not NA, then reduceNbId is called.
If ’nbTimes’ is not NA, then reduceNbTimes is called. Note that ’nbSenators’ and ’nbTimes’ should
not be both missing.

If both are non-missing, reduceNbId is called first. The results is store in the field ’senators’ of the
Clds object.

Value

A Clds object in which the fields ’senators’, ’mySenators’ and ’senatorsWeight’ are now filled.

Examples

Generating artificial data
nbLignes <- 200
trajG <- matrix(0,nbLignes,51)
for(i in 1:(nbLignes/2)){

trajG[i,] <- dnorm(0:50,runif(1,15,35),5)*rnorm(1,10,0.1)
}
for(i in (nbLignes/2+1):nbLignes){

trajG[i,] <- dnorm(0:50,runif(1,15,35),5)*rnorm(1,5,0.1)
}
myClds <- cldsWide(data.frame(1:200,trajG))
plot(myClds)

Reducing the number of time measurement
reduceTraj(myClds,nbTimes=7)
plotSenators(myClds)

Reducing the number of individual
reduceTraj(myClds,nbSenators=32)
plotSenators(myClds)

Reducing both
reduceTraj(myClds,nbSenators=32,nbTimes=7)
plotSenators(myClds)

Index

∗Topic chron
plot, 21
plotTraj, 23

∗Topic classes
Clds-class, 3
ParKmlShape-class, 19

∗Topic classif
plot, 21
plotTraj, 23

∗Topic cluster
plot, 21
plotTraj, 23

∗Topic datasets
ictusShort, 10

∗Topic dplotTraj
plot, 21
plotTraj, 23

∗Topic iplotTraj
plot, 21
plotTraj, 23

∗Topic package
kmlShape-package, 2

∗Topic spatial
plot, 21
plotTraj, 23

∗Topic ts
plot, 21
plotTraj, 23

[,Clds-method (Clds-class), 3
[,ParKmlShape,ANY,ANY-method

(ParKmlShape-class), 19
[,ParKmlShape-method (parKmlShape), 18
[<-,Clds,ANY,ANY,ANY-method

(Clds-class), 3
[<-,ParKmlShape,ANY,ANY,ANY-method

(ParKmlShape-class), 19

Clds, 4–6, 12, 21–23, 26, 27
Clds-class, 3
cldsLong, 3, 4

cldsWide, 3, 5

distFrechet, 6, 12
distFrechetR (distFrechet), 6
distFrechetRec (distFrechet), 6
Douglas-Peucker, 25
DouglasPeucker, 8
DouglasPeuckerEpsilon, 26
DouglasPeuckerEpsilon (DouglasPeucker),

8
DouglasPeuckerNbPoints, 26
DouglasPeuckerNbPoints

(DouglasPeucker), 8

Frechet path, 12
Frechet’s distance, 12

hclust, 15, 18, 19

ictusShort, 10

kmlShape, 3, 4, 11, 19
kmlShape-package, 2

matplot, 23
matplotLong, 13
meanFrechet, 12, 15, 18, 19
meanFrechet2, 15, 16, 16

ParKml, 18
ParKmlShape, 12, 18
parKmlShape, 12, 18
ParKmlShape-class, 19
pathFrechet, 16, 19
pathFrechetR (pathFrechet), 19
plot, 21
plot,Clds,missing-method (plot), 21
plotSenators, 22
plotTraj, 21, 23
plotTraj,Clds,missing-method

(plotTraj), 23

28

INDEX 29

reduceNbId, 2–4, 24, 26, 27
reduceNbTimes, 2–4, 25, 26, 27
reduceTraj, 26

show,Clds-method (Clds-class), 3
smooth.spline, 9, 25

	kmlShape-package
	Clds-class
	cldsLong
	cldsWide
	distFrechet
	DouglasPeucker
	ictusShort
	kmlShape
	matplotLong
	meanFrechet
	meanFrechet2
	parKmlShape
	ParKmlShape-class
	pathFrechet
	plot
	plotSenators
	plotTraj
	reduceNbId
	reduceNbTimes
	reduceTraj
	Index

