An Introduction to listr

library(listr)

The idea behind the listr package is to make working with lists with in R a bit more convenient. There is nothing wrong with lists in R per se, but sometimes the tools around lists and the syntax can be a bit confusing and complicated. With the tools provided by listr common tasks with lists and especially lists containing data frames can hopefully be simplified by providing a consistent and easy to read syntax that is also suited for use with pipes.

For our examples below, assume we split the mtcars data by the cyl variable.

by_cyl <- split(mtcars, mtcars$cyl)

Basic operations

by_cyl <- by_cyl |> 
  list_rename("cyl4" = `4`, "cyl6" = `6`, "cyl8" = `8`)
by_cyl |> list_select(cyl6)
#> $cyl6
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Valiant        18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 280       19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C      17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6

There is both list_extract and list_select that can appear a bit similar in some cases. However, there are some important distinctions between both:

In contrast

Thus, list_select is equivalent to selecting from a list with a single square bracket, while list_extract is equivalent to using double square brackets.

by_cyl |> list_select(1, 2)
#> $cyl4
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> 
#> $cyl6
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Valiant        18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 280       19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C      17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
cyl4 <- by_cyl |> list_extract(cyl4)
cyl4
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

The list_remove function is straightforward.

by_cyl <- by_cyl |> list_remove(cyl4)
by_cyl
#> $cyl6
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Valiant        18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 280       19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C      17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> 
#> $cyl8
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8

The opposite can be achieved with list_insert and its more specialised versions list_append and list_prepend.

by_cyl <- by_cyl |> list_prepend(cyl4, name = "cyl4")
by_cyl
#> $cyl4
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> 
#> $cyl6
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Valiant        18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 280       19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C      17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> 
#> $cyl8
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8

Operations with data frames

There is a certain focus on operations with data frames in this package.

The function list_name_to_df adds a column to each data frame in the list containing the name of the list item. This is particularly useful if you have a list where each item is data from an experimental group or something similar.

by_cyl |> 
  list_name_to_df() |> 
  list_select(1)
#> $cyl4
#>                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb .group
#> Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1   cyl4
#> Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2   cyl4
#> Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2   cyl4
#> Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1   cyl4
#> Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2   cyl4
#> Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1   cyl4
#> Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1   cyl4
#> Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1   cyl4
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2   cyl4
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2   cyl4
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2   cyl4

Using list_bind you can bind together data frame elements of a list. This is roughly similar to calling do.call(rbind, list) or the same with cbind, but there is a bit more flexibility.

by_cyl |> 
  list_bind(cyl4, cyl6, what = "rows", name = "cyl4_and_6")
#> $cyl4_and_6
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> cyl4.Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> cyl4.Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> cyl4.Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> cyl4.Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> cyl4.Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> cyl4.Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> cyl4.Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> cyl4.Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> cyl4.Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> cyl4.Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> cyl4.Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> cyl6.Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> cyl6.Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> cyl6.Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> cyl6.Valiant        18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> cyl6.Merc 280       19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> cyl6.Merc 280C      17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> cyl6.Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> 
#> $cyl8
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8

As the list_bind function wraps calls to rbind and cbind it will have the same effect on names as calling those two functions directly.

Finally, there is also list_join_df allowing to form a single element out of many by joining data on an index.

Flattening

Finally, there is list_flatten which takes in a list with nested list and flattens it. The depth of the flattening process can be specified, by default all items are moved to one level.

foo <- list(
  1,
  list(1, 2, 3, 
       list(4, 5, 6),
       list(7, 8, 9, 
            list(10, 11, 
                 list(12))),
       13, 14),
  15
)

foo |> list_flatten()
#> $X1
#> [1] 1
#> 
#> $X2_1
#> [1] 1
#> 
#> $X2_2
#> [1] 2
#> 
#> $X2_3
#> [1] 3
#> 
#> $X2_4_1
#> [1] 4
#> 
#> $X2_4_2
#> [1] 5
#> 
#> $X2_4_3
#> [1] 6
#> 
#> $X2_5_1
#> [1] 7
#> 
#> $X2_5_2
#> [1] 8
#> 
#> $X2_5_3
#> [1] 9
#> 
#> $X2_5_4_1
#> [1] 10
#> 
#> $X2_5_4_2
#> [1] 11
#> 
#> $X2_5_4_3_1
#> [1] 12
#> 
#> $X2_6
#> [1] 13
#> 
#> $X2_7
#> [1] 14
#> 
#> $X3
#> [1] 15
foo |> list_flatten(max_depth = 1)
#> $X1
#> [1] 1
#> 
#> $X2_1
#> [1] 1
#> 
#> $X2_2
#> [1] 2
#> 
#> $X2_3
#> [1] 3
#> 
#> $X2_4
#> $X2_4[[1]]
#> [1] 4
#> 
#> $X2_4[[2]]
#> [1] 5
#> 
#> $X2_4[[3]]
#> [1] 6
#> 
#> 
#> $X2_5
#> $X2_5[[1]]
#> [1] 7
#> 
#> $X2_5[[2]]
#> [1] 8
#> 
#> $X2_5[[3]]
#> [1] 9
#> 
#> $X2_5[[4]]
#> $X2_5[[4]][[1]]
#> [1] 10
#> 
#> $X2_5[[4]][[2]]
#> [1] 11
#> 
#> $X2_5[[4]][[3]]
#> $X2_5[[4]][[3]][[1]]
#> [1] 12
#> 
#> 
#> 
#> 
#> $X2_6
#> [1] 13
#> 
#> $X2_7
#> [1] 14
#> 
#> $X3
#> [1] 15