
Package ‘lmvar’
May 16, 2019

Type Package

Title Linear Regression with Non-Constant Variances

Version 1.5.2

Author Posthuma Partners <info@posthuma-partners.nl>

Maintainer Marco Nijmeijer <nijmeijer@posthuma-partners.nl>

Description Runs a linear-like regression with in which both the expected value and the vari-
ance can vary per observation. The expected values mu follows the standard lin-
ear model mu = X_mu * beta_mu. The standard deviation sigma fol-
lows the model log(sigma) = X_sigma * beta_sigma. The package comes with two vignettes: 'In-
tro' gives an introduction, 'Math' gives mathematical details.

License GPL-3

LazyData TRUE

Imports Matrix (>= 1.2-4), matrixcalc (>= 1.0-3), maxLik (>= 1.3-4),
stats (>= 3.2.5), parallel (>= 3.3.0), graphics (>= 3.3.0),
grDevices (>= 3.3.0)

RoxygenNote 6.1.1

Suggests testthat, knitr, rmarkdown, R.rsp, MASS, plotly (>= 4.7.1)

VignetteBuilder knitr, R.rsp

ByteCompile true

NeedsCompilation no

Repository CRAN

Date/Publication 2019-05-16 10:10:10 UTC

R topics documented:
AIC.lmvar . 2
alias.lmvar_no_fit . 3
beta_sigma_names . 4
coef.lmvar . 5
convergence_precheck . 7
cv.lm . 8

1

2 AIC.lmvar

cv.lmvar . 11
dfree . 15
fisher . 17
fitted.lmvar . 18
fwbw . 21
fwbw.lm . 21
fwbw.lmvar_no_fit . 24
lmvar . 28
lmvar_no_fit . 32
logLik.lmvar . 34
nobs.lmvar_no_fit . 35
plot.lmvar . 36
plot_lm_loglik . 38
plot_qdis . 40
plot_qdis.lm . 40
plot_qdis.lmvar . 41
plot_qdis_lmlike . 43
plot_qq . 43
plot_qq.lm . 44
plot_qq.lmvar . 45
plot_qq_lmlike . 46
predict.lmvar . 47
print.cvlmvar . 50
print.summary_lmvar . 51
residuals.lmvar . 51
summary.lmvar . 52
vcov.lmvar . 54

Index 56

AIC.lmvar AIC for an object of class ’lmvar’

Description

AIC (Aikaike’s ’An Information Criterion’) for an object of class ’lmvar’

Usage

S3 method for class 'lmvar'
AIC(object, ..., k = 2)

Arguments

object Object of class ’lmvar’

... For compatibility with AIC generic

k Numeric, the penalty per parameter to be used. The default k = 2 is the classical
AIC.

alias.lmvar_no_fit 3

Value

the AIC of the object

Examples

Not run:

Let 'fit' be an object of class 'lmvar'. The classical AIC is
AIC(fit)

To calculate the AIC with penalty-parameter k = 3 run
AIC(fit, k = 3)

End(Not run)

alias.lmvar_no_fit Aliased coefficients in an ’lmvar’ object

Description

Returns the columns present in the user-specified model-matrices Xµ and Xσ that were removed
by lmvar to make the matrices full-rank.

Usage

S3 method for class 'lmvar_no_fit'
alias(object, mu = TRUE, sigma = TRUE, ...)

Arguments

object Object of class ’lmvar_no_fit’ (hence it can also be of class ’lmvar’)

mu Boolean, specifies whether the aliased columns from the model matrix Xµ must
be returned

sigma Boolean, specifies whether the aliased columns from the model matrix Xσ must
be returned

... Additional arguments, not used in the current implementation

Details

If mu = TRUE and sigma = TRUE, the function returns the aliased columns of both Xµ and Xσ . The
string "_s" is appended to the aliased column names from Xσ if at least one of those names also
appears in Xµ

If mu = TRUE and sigma = FALSE, the function returns the aliased columns of Xµ.

If mu = FALSE and sigma = TRUE, the function returns the aliased columns of Xσ .

4 beta_sigma_names

Value

A character vector containing the names of the aliased columns

Examples

Create matrix columns
my_intercept = rep(1, 20)
v1 = c(rep(1, 10), rep(0, 10))
v2 = c(rep(0, 10), rep(1, 10))

Create model matrices
X = cbind(my_intercept, v1, v2)
X_s = X

Rename the last column of the model matrix 'X_s' to make this example more clear.
colnames(X_s)[3] = "v3"

Create response vector
y = rnorm(20)

Perform fit
fit = lmvar(y, X, X_s)

The column 'my_intercept' is identical to '(Intercept)' added by 'lmvar'
to the model matrix 'X'. Column 'v2' is equal to '(Intercept)' minus 'v1'.
The same holds for the model matrix 'X_s'.
alias(fit)

The aliased columns are left out if you extract the coefficients from a summary
coef(summary(fit))

Only return the aliased colums in the model matrix for the expectation values
alias(fit, sigma = FALSE)

Only return the aliased colums in the model matrix for the standard deviations
alias(fit, mu = FALSE)

It also works on an object of class 'lmvar_no_fit'
no_fit = lmvar_no_fit(y, X, X_s)
alias(no_fit, mu = FALSE)

beta_sigma_names Unique names for beta_sigma

Description

Returns adapted names for the coefficients βσ to distinguish them from the names of the coefficients
βµ. This is a helper function which is used in situations where it is necessary or convenient for the
coefficient names of βσ to be different from βµ.

coef.lmvar 5

Usage

beta_sigma_names(beta_mu_names, beta_sigma_names, ...)

Arguments

beta_mu_names Character vector with the names of the coefficients βµ
beta_sigma_names

Character vector with the names of the coefficients βσ
... Additional arguments, not used in the current implementation

Details

When the name of at least one coefficient in βσ is equal to one of the names of the coefficients in
βµ, the string ’_s’ is appended to the names of all coefficients in βσ . Otherwise, the names of the
coefficients in βσ are left unchanged.

Value

Named character vector with the names of the coefficients βσ . The name of a vector element is the
original name of the coefficient. The value is the adapted name. The name and the value are equal
if no adaptation was needed.

Examples

If the names in beta_sigma are all different from all of the names in
beta_mu, the function returns the names of beta_sigma
mu_names = c("(Intercept)", "age", "gender")
sigma_names = c("(Intercept_s)", "smoker", "job_code")

beta_sigma_names(mu_names, sigma_names)

If at least one of the names in beta_sigma is equal to a name in
beta_mu, all the names in beta_sigma get the string '_s' appended,
except for '(intercept_s)'
sigma_names = c("(Intercept_s)", "age", "job_code")

beta_sigma_names(mu_names, sigma_names)

coef.lmvar Extracts coefficients from an ’lmvar’ object.

Description

Extracts maximum-likelihood estimators for βµ and βσ from an ’lmvar’ object.

Usage

S3 method for class 'lmvar'
coef(object, mu = TRUE, sigma = TRUE, ...)

6 coef.lmvar

Arguments

object Object of class ’lmvar’

mu Boolean, specifies whether or not to return the maximum-likelihood estimator
for βµ

sigma Boolean, specifies whether or not to return the maximum-likelihood estimator
for βσ

... For compatibility with coef generic

Details

When both mu = TRUE and sigma = TRUE, the names of the coefficients in βσ are adapted to
distinguish them from the names in βµ, if needed.

Value

When mu = TRUE and sigma = TRUE, a named numeric vector with the elements of βµ, followed
by the elements of βσ .

When mu = TRUE and sigma = FALSE, a named numeric vector with the elements of βµ.

When mu = FALSE and sigma = TRUE, a named numeric vector with the elements of βσ .

See Also

beta_sigma_names for the adaptation of the names of the coefficients in βσ .

confint for the calculation of confidence intervals of βµ and βσ .

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist, attenu$mag + attenu$dist)
colnames(X) = c("mag", "dist", "mag+dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
fit = lmvar(attenu$accel, X, X_s)

Extract all coefficients
coef(fit)

Extract only the coefficients corresponding to the (non-aliased)
columns in the model matrix for the expected values
coef(fit, sigma = FALSE)

convergence_precheck 7

Extract only the coefficients corresponding to the (non-aliased)
columns in the model matrix for standard deviations
coef(fit, mu = FALSE)

convergence_precheck Pre-check model matrices for convergence issues

Description

The model matrices Xµ and Xσ are checked to see if problems with the convergence of the fit can
be anticipated. If so, it is determined which columns must be removed from Xσ to attempt to avoid
convergence issues.

Usage

convergence_precheck(y, X_mu, X_sigma)

Arguments

y Numeric, response vector y

X_mu Model matrix for the expected values

X_sigma Model matrix for the standard deviations. This must be a full-rank matrix.

Details

A matrix can be of class ’matrix’, ’Matrix’ or ’numeric’ (in case it is a matrix of one column only).

An intercept term must be included in the model matrices if the model is such.

Value

A list with the following members:

• column_numbers The numbers of the columns of X_sigma that can be kept

• column_names The names of the columns of X_sigma that can be kept

Numbers and names refer to the same columns. They are supplied both for convenience.

8 cv.lm

cv.lm Cross-validation for an object of class ’lm’

Description

k-fold cross-validation for an object of class ’lm’

Usage

cv.lm(object, k = 10, ks_test = FALSE, fun = NULL, log = FALSE,
seed = NULL, max_cores = NULL, ...)

Arguments

object Object of class ’lm’

k Integer, number of folds

ks_test Boolean, if TRUE, a Kolmogorov-Smirnov test is carried out. See details.

fun User-specified function for which cross-validation results are to be obtained.
See details.

log Boolean, specifies whether object contains a fit to the response vector Y or its
logarithm log Y

seed Integer, seed for the random number generator. The seed is not set when seed
equals NULL.

max_cores Integer, maximum number of CPU-cores that can be used. For the default value
NULL, the number is set to the number of available cores minus one.

... Other parameters, not used in the current implementation.

Details

Cross-validations: The function cv.lm carries out a k-fold cross-validation for a linear model
(i.e. a ’lm’ model). For each fold, an ’lm’ model is fit to all observations that are not in the fold
(the ’training set’) and prediction errors are calculated for the observations in the fold (the ’test
set’). The prediction errors are the absolute error |y − µ| and its square (y − µ)2. The average
prediction errors over the observations in the fold are calculated, and the square root of the average
of the squared errors is taken. Optionally, one can calculate a user-specified function fun for the
test set and the ’lmvar’ model resulting from the training set. Optionally, one can also calculate
the Kolmogorov-Smirnov (KS) distance for the test set and its p-value.
The results for the k folds are averaged over the folds and standard deviations are calculated from
the k results.

Requirements on the ’lm’ object: object must contain the list-members x and y. I.e., it must
be created by running lm with the options x = TRUE and y = TRUE.

User defined function: The argument fun allows a user to specify a function for which cross-
validation results must be obtained. This function must meet the following requirements.

cv.lm 9

• Its arguments are:
– object_t an object of class ’lm’,
– y a numerical vector of response values and
– X the model matrix for the response vector y.

• It returns a single numerical value.

Carrying out a k-fold cross-validation, the function is called k times with object_t equal to the
fit to the training set, y equal to the response vector of the test set, and X_mu the design matrix of
the test set.
If the evaluation of fun gives an error, cv.lm will give a warning and exclude that evaluation
from the mean and the standard deviation of fun over the k folds. If the evaluation of fun gives a
warning, it will be ignored.
In the cross-validations, object_t contains the design matrix used in the fit to the training set as
object_t$x.

Kolmogorov-Smirnov test: When ks_test = TRUE, a Kolmogorov-Smirnov (KS) test is carried
out for each fold. The test checks whether the standardized residuals (y − µ)/σ in a fold are
distributed as a standard normal distribution. The KS-distance and the corresponding p-value
are calculated for each fold. The test uses the function ks.test. The expectation values µ and
standard deviation σ are calculated from the model matrices for the test set (the fold) and the ’lm’
fit to the training set.

Other: The number of available CPU cores is detected with detectCores.

Value

An object of class ’cvlmvar’, which is a list with the following items:

• MAE a list with two items

– mean the sample mean of the absolute prediction error over the k folds
– sd the sample standard deviation of the absolute prediction error over the k folds

• MSE a list with two items

– mean the sample mean of the mean squared prediction error over the k folds
– sd the sample standard deviation of the mean squared prediction error over the k folds

• MSE_sqrt a list with two items

– mean the sample mean of the root mean squared prediction error over the k folds
– sd the sample standard deviation of the root mean squared prediction error over the k

folds

• KS_distance a list with two items

– mean the sample mean of the Kolmogorov-Smirnov distance over the k folds
– sd the sample standard deviation of the Kolmogorov-Smirnov distance over the k folds

• KS_p.value a list with two items

– mean the sample mean of the p-value of Kolmogorov-Smirnov distance over the k folds
– sd the sample standard deviation of the p-value of the Kolmogorov-Smirnov distance

over the k folds

10 cv.lm

• fun a list with two items

– mean the sample mean of the user-specified function fun

– sd the sample standard deviation of the of the user-specified function over the k folds

The items KS_distance and KS_p.value are added only in case ks_test = TRUE. The item fun is
added only in case a function fun has been specified.

See Also

cv.lmvar is the equivalent function for an object of class ’lmvar’. It is supplied in case one wants
to compare an ’lmvar’ fit with an ’lm’ fit.

print.cvlmvar provides a print-method for an object of class ’cvlmvar’.

Examples

Create an object of class 'lm'. We use a model matrix obtained from the 'cats' dataframe,
an arbitrary parameter vector beta and a generated response vector y for the purpose of the
example.
library(MASS)

X = model.matrix(~ Sex + Bwt, cats)
beta_mu = c(-0.1, 0.3, 4)

mu = X %*% beta_mu

y = rnorm(nrow(X), mean = mu, sd = 0.5)

fit = lm(y ~ ., as.data.frame(X[,-1]), x = TRUE, y = TRUE)

Carry out a cross-validation
cv.lm(fit)

Carry out a cross-validation using a single CPU-core
cv.lm(fit, max_cores = 1)

Carry out a cross-validation including a Kolmogorov-Smirnov test, using at most two CPU-cores
cv.lm(fit, ks_test = TRUE, max_cores = 2)

Carry out a cross-validation with 5 folds and control the random numbers used
cv.lm(fit, k = 5, seed = 5483, max_cores = 1)

Calculate cross-validation results for the fourth moment of the residuals, using a
user-specified function
fourth = function(object, y, X){

mu = predict(object, as.data.frame(X))
residuals = y - mu
return(mean(residuals^4))

}
cv.lm(fit, fun = fourth)
rm(fourth)

cv.lmvar 11

Use option 'log = TRUE' if you fit the log of the response vector and require error estimates for
the response vector itself
fit = lm(log(y) ~ ., as.data.frame(X[,-1]), x = TRUE, y = TRUE)
cv = cv.lm(fit, log = TRUE)

Print 'cv' using the print-method print.cvlmvar
cv

Print 'cv' with a specified number of digits
print(cv, digits = 2)

cv.lmvar Cross-validation for an object of class ’lmvar’

Description

k-fold cross-validation for an object of class ’lmvar’

Usage

cv.lmvar(object, k = 10, ks_test = FALSE, fun = NULL, log = FALSE,
seed = NULL, sigma_min = NULL, exclude = NULL,
slvr_options = list(), max_cores = NULL, ...)

Arguments

object Object of class ’lmvar’
k Integer, number of folds
ks_test Boolean, if TRUE, a Kolmogorov-Smirnov test is carried out. See details.
fun User-specified function for which cross-validation results are to be obtained.

See details.
log Boolean, specifies whether object contains a fit to the response vector Y or its

logarithm log Y

seed Integer, seed for the random number generator. The seed is not set when seed
equals NULL.

sigma_min Minimum value for the standard deviations. Can be a single number which
applies to all observations, or a vector giving a minimum per observation. In
case of the the default value NULL, the value is the same as the value in object.

exclude Numeric vector with observations that must be excluded for error statistics. The
default NULL means no observations are excluded. See ’Details’ for more infor-
mation.

slvr_options List of options passed on to the function maxLik which carries out the fits for
the k folds. See ’Details’ for more information.

max_cores Integer, maximum number of CPU-cores that can be used. For the default value
NULL, the number is set to the number of available cores minus one.

... Other parameters, not used in the current implementation.

12 cv.lmvar

Details

Cross-validations: The function cv.lmvar carries out a k-fold cross-validation for an ’lmvar’
model. For each fold, an ’lmvar’ model is fit to all observations that are not in the fold (the
’training set’) and prediction errors are calculated for the observations in the fold (the ’test set’).
The prediction errors are the absolute error |y−µ| and its square (y−µ)2. The average prediction
errors over the observations in the fold are calculated, and the square root of the average of the
squared errors is taken. Optionally, one can calculate a user-specified function fun for the test
set and the ’lmvar’ model resulting from the training set. Optionally, one can also calculate the
Kolmogorov-Smirnov (KS) distance for the test set and its p-value.
The results for the k folds are averaged over the folds and standard deviations are calculated from
the k results.

User defined function: The argument fun allows a user to specify a function for which cross-
validation results must be obtained. This function must meet the following requirements.

• Its arguments are:
– object_t an object of class ’lmvar’,
– y a numerical vector of response values and
– X_mu the model matrix for the expected values of the response vector y.
– X_sigma the model matrix for the standard deviations of the response vector y.

• It returns a single numerical value.

Carrying out a k-fold cross-validation, the function is called k times with object_t equal to the
fit to the training set, y equal to the response vector of the test set, and X_mu and X_sigma the
design matrices of the test set.
If the evaluation of fun gives an error, cv.lmvar will give a warning and exclude that evaluation
from the mean and the standard deviation of fun over the k folds. If the evaluation of fun gives a
warning, it will be ignored.
In the cross-validations, object_t contains the design matrices of the training set as object_t$X_mu
and object_t$X_sigma. object_t$X_mu was formed by taking object$X_mu and removing the
fold-rows. In addition, columns may have been removed to make the matrix full-rank. Therefore,
object_t$X_mu may have fewer columns than object$X_mu. The same is true for object_t$X_sigma
compared to object$X_sigma.

Kolmogorov-Smirnov test: When ks_test = TRUE, a Kolmogorov-Smirnov (KS) test is carried
out for each fold. The test checks whether the standardized residuals (y − µ)/σ in a fold are
distributed as a standard normal distribution. The KS-distance and the corresponding p-value
are calculated for each fold. The test uses the function ks.test. The expectation values µ and
standard deviations σ are calculated from the model matrices for the test set (the fold) and the
’lmvar’ fit to the training set.

Excluding observations: The observations specified in the argument exclude are not used to
calculate the error statistics MAE (mean absolute error), MSE (mean squared error) and the square
root of MSE. They are also not used to calculate the statistics for the user-defined function fun.
This is useful when there are a few observations with such large residuals that they dominate the
error estimates. Note that the excluded observations are not excluded from the training sets. It is
only in the calculation of the statistics of the test sets that the observations are excluded. They are
not excluded from the KS-test: when observations have large residuals, they should have large
standard deviations as well, to give the standardized residuals normal values.

cv.lmvar 13

Minimum sigma: The argument sigma_min gives the option to enforce a minimum standard
deviation. This is useful when, in a cross-validation, a fit fails because the maximum likelihood
occurs when the standard deviation of one or more observations becomes zero. When a minimum
standard deviation is specified, all fits are carried out under the boundary condition that the stan-
dard deviation is larger than the minimum. If sigma_min = NULL the same value is used as was
used to create object.

Other: The fits are carried out with the options slvr_options stored in the ’lmvar’ object
object. However, these options can be overwritten with an explicit argument slvr_options in
the call of cv.lmvar. Some of the options are affected by a sigma_min larger than zero, see lmvar
for details.
The argument slvr_options is a list, members of which can be a list themselves. If members of
a sublist are overwritten, the other members of the sublist remain unchanged. E.g., the argument
slvr_options = list(control = list(iterlim = 600)) will set control$iterlim to 600
while leaving other members of the list control unchanged.
The number of available CPU cores is detected with detectCores.

Value

In case none of the fits in the cross-validations returns an error or a warning, a ’cvlmvar’ object is
returned. This is a list with the following items:

• MAE a list with two items

– mean the sample mean of the absolute prediction error over the k folds
– sd the sample standard deviation of the absolute prediction error over the k folds

• MSE a list with two items

– mean the sample mean of the mean squared prediction error over the k folds
– sd the sample standard deviation of the mean squared prediction error over the k folds

• MSE_sqrt a list with two items

– mean the sample mean of the root mean squared prediction error over the k folds
– sd the sample standard deviation of the root mean squared prediction error over the k

folds

• KS_distance a list with two items

– mean the sample mean of the Kolmogorov-Smirnov distance over the k folds
– sd the sample standard deviation of the Kolmogorov-Smirnov distance over the k folds

• KS_p.value a list with two items

– mean the sample mean of the p-value of Kolmogorov-Smirnov distance over the k folds
– sd the sample standard deviation of the p-value of the Kolmogorov-Smirnov distance

over the k folds

• fun a list with two items

– mean the sample mean of the user-specified function fun

– sd the sample standard deviation of the of the user-specified function over the k folds

14 cv.lmvar

The items KS_distance and KS_p.value are added only in case ks_test = TRUE.

In case a fit returns an error or a warning, the return value of cv.lmvar lists the arguments of the
first call to lmvar which failed. In addition, it lists the row number of the observations in object
that formed the training set for which the fit returned an error or warning. These items are returned
as a list:

• y the argument y of the failing call

• X_mu the argument X_mu of the failing call

• X_sigma the argument X_sigma of the failing call

• intercept_mu the argument intercept_mu of the failing call

• intercept_sigma the argument intercept_sigma of the failing call

• sigma_min the argument sigma_min of the failing call

• slvr_options the argument slvr_options of the failing call

• control the argument control of the failing call

• training_rows numeric vector containing the rows of the observations in object that were
used in the failing fit

See Also

See lmvar for the options slvr_options stored in an ’lmvar’ object.

cv.lm is the equivalent function for an object of class ’lm’. It is supplied in case one wants to
compare an ’lmvar’ fit with an ’lm’ fit.

print.cvlmvar provides a print-method for an object of class ’cvlmvar’.

Examples

Create an object of class 'lmvar'. We use a model matrix obtained from the 'cats' dataframe,
arbitrary parameter vectors beta and a generated response vector y for the purpose of the
example.

library(MASS)

X = model.matrix(~ Sex + Bwt, cats)
beta_mu = c(-0.1, 0.3, 4)
beta_sigma = c(-0.5, -0.1, 0.3)

mu = X %*% beta_mu
log_sigma = X %*% beta_sigma

y = rnorm(nrow(X), mean = mu, sd = exp(log_sigma))

fit = lmvar(y, X_mu = X[,-1], X_sigma = X[,-1])

Carry out a cross-validation
cv.lmvar(fit)

Carry out a cross-validation using a single CPU-core

dfree 15

cv.lmvar(fit, max_cores = 1)

Carry out a cross-validation including a Kolmogorov-Smirnov test, using at most two CPU-cores
cv.lmvar(fit, ks_test = TRUE, max_cores = 2)

Carry out a cross-validation with 5 folds and control the random numbers used
cv.lmvar(fit, k = 5, seed = 5483, max_cores = 1)

Carry out a cross-validation and exclude observations 5, 11 and 20 from the calculation of
the error statistics
cv.lmvar(fit, exclude = c(5, 11, 20), max_cores = 1)

Calculate cross-validation results for the fourth moment of the residuals, using a
user-specified function
fourth = function(object, y, X_mu, X_sigma){

mu = predict(object, X_mu[,-1], X_sigma[,-1], sigma = FALSE)
residuals = y - mu
return(mean(residuals^4))

}
cv.lmvar(fit, fun = fourth)
rm(fourth)

Carry out a cross-validation and specify the maximization routine and maximum number of iterations
cv.lmvar(fit, slvr_options = list(method = "NR", control = list(iterlim = 500)))

Use option 'log = TRUE' if you fit the log of the response vector and require error estimates for
the response vector itself
fit = lmvar(log(y), X_mu = X[,-1], X_sigma = X[,-1])
cv = cv.lmvar(fit, log = TRUE)

Print 'cv' using the print-method print.cvlmvar
cv

Print 'cv' with a specified number of digits
print(cv, digits = 2)

dfree Degrees of freedom for an object of class ’lmvar’

Description

Degrees of freedom for the model in an object of class ’lmvar’. The degrees of freedom are defined
as the rank of the model matrix Xµ for the expectation values, plus the rank of the model matrix
Xσ for the standard deviations.

Usage

dfree(object, mu = TRUE, sigma = TRUE, ...)

16 dfree

Arguments

object Object of class ’lmvar_no_fit’ (hence it can also be of class ’lmvar’)

mu Boolean, specifies whether the degrees of freedom for the model for the expec-
tation values must be included.

sigma Boolean, specifies whether the degrees of freedom for the model for the standard
deviations must be included.

... Additional arguments, not used in the current implementation

Details

If mu = TRUE and sigma = TRUE, the function returns the rank of the model-matrix Xµ plus the
rank of the model matrix Xσ .

If mu = TRUE and sigma = FALSE, the function returns the rank of the model-matrix Xµ.

If mu = FALSE and sigma = TRUE, the function returns the rank of the model-matrix Xσ .

Both model matrices contain a column corresponding to an intercept term. This column is added
by lmvar. See also the vignette ’Intro’.

Value

An integer containing the degrees of freedom for the model in object.

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
fit = lmvar(attenu$accel, X, X_s)

The degrees of freedom are
dfree(fit)

The degrees of freedom of the expected values are
dfree(fit, sigma = FALSE)

The degrees of freedom of the standard deviations are
dfree(fit, mu = FALSE)

Function also works on object of class 'lmvar_no_fit'
no_fit = lmvar_no_fit(attenu$accel, X, X_s)

fisher 17

dfree(no_fit)

fisher Fisher information matrix for an object of class ’lmvar’

Description

Fisher information matrix for an object of class ’lmvar’.

Usage

fisher(object, mu = TRUE, sigma = TRUE, ...)

Arguments

object Object of class ’lmvar’

mu Specifies whether or not the block-matrix for βµ is included in the returned
matrix

sigma Specifies whether or not the block-matrix for βσ is included in the returned
matrix

... Additional arguments, not used in the current implementation

Details

The Fisher information matrix is calculated as minus −E[H]/n with E[H] the expected value of
the Hessian matrix H of the log-likelihood and n the number of observations.

The matrix is calculated using the maximum-likelihood estimators of µ and σ.

If mu = TRUE and sigma = TRUE, the full Fisher information matrix is returned.

If mu = TRUE and sigma = FALSE, only the left-upper block-matrix is returned, corresponding to
the part of the Fisher information matrix pertaining to βµ.

If mu = FALSE and sigma = TRUE, only the right-lower block-matrix is returned, corresponding to
the part of the Fisher information matrix pertaining to βσ .

Value

An object of class ’matrix’ containing the Fisher information matrix of object.

See Also

vcov.lmvar calculates the covariance matrix for the maximum-likelihood estimators of βµ and βµ
nobs.lmvar_no_fit for the number of observations in an object of class ’lmvar’

coef.lmvar for the coefficients βµ and βσ
fitted.lmvar for the expectation values µ and standard deviations σ.

See the vignette "Math" (to be viewed with vignette("Math", "lmvar")) for details.

18 fitted.lmvar

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
fit = lmvar(attenu$accel, X, X_s)

The complete Fisher information matrix is
fisher(fit)

The left-upper block matrix relating to the expected values is
fisher(fit, sigma = FALSE)

The right-lower block matrix relating to the variances is
fisher(fit, mu = FALSE)

fitted.lmvar Fitted values for an ’lmvar’ object

Description

Estimators and confidence intervals for the expected values and standard deviations of the response
vector Y . Prediction intervals for Y . Alternatively, estimators and intervals can be for eY .

Usage

S3 method for class 'lmvar'
fitted(object, mu = TRUE, sigma = TRUE, log = FALSE,
interval = c("none", "confidence", "prediction"), level = 0.95, ...)

Arguments

object An ’lmvar’ object

mu Boolean, specifies whether or not to return estimators and intervals for the ex-
pected values

sigma Boolean, specifies whether or not to return estimators and intervals for the stan-
dard deviations

log Boolean, specifies whether estimators and intervals should be for Y (log = FALSE)
or for eY (log = TRUE).

fitted.lmvar 19

interval Character string, specifying the type of interval. Possible values are

• "none" No interval, this is the default
• "confidence" Confidence intervals for the estimators
• "prediction" Prediction intervals

level Numeric value between 0 and 1, specifying the confidence level

... For compatibility with fitted generic.

Details

If log = FALSE, fitted.lmvar returns estimators and intervals for the observations Y stored in
object.

If log = TRUE, fitted.lmvar returns estimators and intervals for eY .

Confidence intervals are calculated under the assumption of asymptotic normality. This assumption
holds when the number of observations is large. Intervals must be treated cautiously in case of
a small number of observations. Intervals can also be unreliable if object was created with a
constraint on the minimum values of the standard deviations sigma.

This function is identical to the function predict.lmvar in which the parameters X_mu and X_sigma
are left unspecified.

Value

In the case mu = FALSE and interval = "none": a numeric vector containing the estimators for
the standard deviation.

In the case sigma = FALSE and interval = "none": a numeric vector containing the estimators
for the expected values.

In all other cases: a matrix with one column for each requested feature and one row for each
observation. The column names are

• mu Estimators for the expected value µ

• sigma Estimators for the standard deviation σ

• mu_lwr Lower bound of the confidence interval for µ

• mu_upr Upper bound of the confidence interval for µ

• sigma_lwr Lower bound of the confidence interval for σ

• sigma_upr Upper bound of the confidence interval for σ

• lwr Lower bound of the prediction interval

• upr Upper bound of the prediction interval

See Also

predict.lmvar for expected values, standard deviations and intervals for model matrices different
from the ones present in object.

coef.lmvar and confint for maximum likelihood estimators and confidence intervals for βµ and
βσ .

20 fitted.lmvar

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
y = attenu$accel
fit = lmvar(y, X, X_s)

Calculate the expected value of each observation
fitted(fit, sigma = FALSE)

Calculate the standard deviation of each observation
fitted(fit, mu = FALSE)

Calculate the expected values and their 95% confidence intervals
fitted(fit, sigma = FALSE, interval = "confidence")

Calculate the standard deviations and their 80% confidence intervals
fitted(fit, mu = FALSE, interval = "confidence", level = 0.8)

Calculate both the expected values and the standard deviations
fitted(fit)

Calculate the expected values, the standard deviations and their 95% confidence intervals
fitted(fit, interval = "confidence")

Calculate the expected values and the 90% prediction intervals
fitted(fit, interval = "prediction", level = 0.9)

Fit the log of 'accel'
y = log(attenu$accel)
fit_log = lmvar(y, X, X_s)

Calculate both the expected values and the standard deviations of the log of 'accel'
fitted(fit_log)

Calculate the expected values and the standard deviations of 'accel'
fitted(fit_log, log = TRUE)

Calculate the expected values and the standard deviations of 'accel',
as well as their 90% confidence intervals
fitted(fit_log, log = TRUE, interval = "confidence", level = 0.9)

fwbw 21

fwbw Forward / backward-step model selection

Description

Model selection by a forward / backward-stepping algorithm. The algorithm reduces the degrees
of freedom of an existing object containing a model fit. It searches for the subset of degrees of
freedom that results in an optimal goodness-of-fit. This is the subset for which a user-specified
function reaches its minimum. The search is carried out by alternately attempting to remove and
insert degrees of freedom.

Usage

fwbw(object, fun, ...)

Arguments

object Object containing a fit to a specific model

fun User-specified function which measures the goodness-of-fit.

... Further arguments for specific methods

Value

A list with the following members.

• object An object which contains the model for which fun is minimized.

• fun the minimum value of the user-specified function fun.

See Also

fwbw.lm and fwbw.lmvar_no_fit

fwbw.lm Forward / backward-step model selection for an object of class ’lm’

Description

Model selection by a forward / backward-stepping algorithm. The algorithm reduces the degrees
of freedom of an existing ’lm’ object. It searches for the subset of degrees of freedom that results
in an optimal goodness-of-fit. The optimal subset is the subset for which a user-specified function
reaches its minimum.

22 fwbw.lm

Usage

S3 method for class 'lm'
fwbw(object, fun, fw = FALSE, counter = TRUE,
df_percentage = 0.05, control = list(), ...)

Arguments

object Object of class ’lm’

fun User-specified function which measures the goodness-of-fit. See ’Details’.

fw Boolean, if TRUE the search will start with a minimum degrees of freedom (’for-
ward search’). If FALSE the search will start with the full model (’backward
search’).

counter Boolean, if TRUE and fw = TRUE, the algorithm will carry out backward steps
(attempts to remove degrees of freedom) while searching for the optimal sub-
set. If FALSE and fw = TRUE, the algorithm will only carry out forward steps
(attempts to insert degrees if freedom). The effect of counter is opposite if
fw = FALSE.

df_percentage Percentage of degrees of freedom that the algorithm attempts to remove at a
backward-step, or insert at a forward_step. Must be a number between 0 and 1.

control List of control options. The following options can be set

• monitor Boolean, if TRUE information about the attempted removals and
insertions will be printed during the run. Default is FALSE.

• plot Boolean, if TRUE a plot will be shown at the end of the run. It shows
how the value of fun decreases during the run. Default is FALSE.

... for compatibility with fwbw generic

Details

Description of the algorithm: The function fwbw.lm selects the subset of all the degrees of
freedom present in object for which the user-specified function fun is minimized. This function
is supposed to be a measure for the foodness-of-fit. Typical examples would be fun=AIC or
fun=BIC. The function fun can also be a measure of the prediction error, determined by cross-
validation.
This function is intended for situations in which the degrees of freedom in object is so large that
it is not feasible to go through all possible subsets systematically to find the smallest value of fun.
Instead, the algorithm generates subsets by removing degrees of freedom from the current-best
subset (a ’backward’ step) and reinserting degrees of freedom that were previously removed (a
’forward’ step). Whenever a backward or forward step results in a subset for which fun is smaller
than for the current-best subset, the new subset becomes current-best.
The start set depends on the argument fw. If fw = TRUE, the algorithm starts with only one degree
of freedom for the expected values µ. This degree is the intercept term, if the model in object
contains an intercept term. If fw = FALSE (the default), the algorithm starts with all degrees of
freedom present in object.
At a backward step, the model removes df_percentage of the degrees of freedom of the current-
best subset (with a minimum of 1 degree of freedom). The degrees that are removed are the ones
with the largest p-value (p-values can be seen with the function summary.lm). If the removal

fwbw.lm 23

results in a larger value of fun, the algorithm will try again by halving the degrees of freedom it
removes.
At a forward step, inserts df_percentage of the degrees of freedom that are present in object
but left out in the current-best subset (with a minimum of 1 degree of freedom). It inserts those
degees of freedom which are estimated to increase the likelihood most. If the insertion results in
a larger value of fun, the algorithm will try again by halving the degrees of freedom it inserts.
If counter = FALSE, the algorithm is ’greedy’: it will only carry out forward-steps in case
fw = TRUE or backward-steps in case fw = FALSE.
The algorithm stops if neither the backward nor the forward step resulted in a lower value of fun.
It returns the current-best model and the minimum value of fun.

The user-defined function: The function fun must be a function which is a measure for the
goodness-of-fit. It must take one argument: an object of class ’lm’. Its return value must be a
single number. A smaller number (more negative) must represent a better fit. During the run, a
fit to the data is carried out for each new subset of degrees of freedom. The result of the fit is
an object of class ’lm’. This object is passed on to fun to evaluate the goodness-of-fit. Typical
examples for fun are AIC and BIC.

Monitor information: When the control-option monitor is equal to TRUE, information is
displayed about the progress of the run. The following information is displayed:

• Iteration A counter which first value is always 0, followed by 1. From then on, the counter
is increased whenever the addition or removal of degrees of freedom results in a smaller
function value than the smallest so far.

• attempted removals/insertions The number of degrees of freedoms that one attempts to
remove or insert

• function value The value of the user-specified function fun after the removal or insertion
of the degrees of freedom

• The last column shows the word insert when the attempt regards the insertion of degrees of
freedom. When nothing is shown, the algorithm attempted to remove degrees of freedom.

Other: If the model matrix present in object conatains a column with the name "(Intercept)",
the intercept term for the expected values µ will not be removed by fwbw.lm.
When a new subset of degrees of freedom is generated by either a backward or a forward step, the
response vector in object is fitted to the new model. The fit is carried out by lm.

Value

A list with the following members.

• object An object of class ’lm’ which contains the model for which fun is minimized.

• fun The minimum value of the user-specified function fun.

See Also

fwbw for the generic method

fwbw.lmvar_no_fit for the corresponding function for an ’lmvar_no_fit’ (or an ’lmvar’) object

24 fwbw.lmvar_no_fit

Examples

Generate model matrix
set.seed(1820)

n_rows = 1000
n_cols = 4

X = matrix(sample(-9:9, n_rows * n_cols, replace = TRUE), nrow = n_rows, ncol = n_cols)

column_names = sapply(1:n_cols, function(i_column){paste("column", i_column, sep = "_")})
colnames(X) = column_names

Generate betas
beta = sample(c(-1,-0.5, 0.5, 1), n_cols + 1, replace = TRUE)

Generate response vector
mu = X %*% beta[-1] + beta[1]
y = rnorm(n_rows, mean = mu, sd = 2.5)

Add columns for cross-terms to model matrix. They have no predictive power for the response y.
X = model.matrix(~ . + 0 + column_1 * ., data = as.data.frame(X))
colnames(X)

Create model in which cross-terms in X are unrelated to response vector y.
fit = lm(y ~ ., as.data.frame(X), x = TRUE, y = TRUE)

Check whether model selection with BIC as criterion manages
to remove cross-terms. Start with the full model. Monitor the iterations.
fwbw = fwbw(fit, BIC, control = list(monitor = TRUE))
names(coef(fwbw$object))

The same with AIC as criterion. Plot how the AIC develops.
fwbw = fwbw(fit, AIC, control = list(plot = TRUE))
names(coef(fwbw$object))

Model selection starting with an intercept term only.
fwbw = fwbw(fit, BIC, fw = TRUE)
names(coef(fwbw$object))

fwbw.lmvar_no_fit Forward / backward-step model selection for an ’lmvar’ object

Description

Model selection by a forward / backward-stepping algorithm. The algorithm reduces the degrees of
freedom of an existing ’lmvar’ object. It searches for the subset of degrees of freedom that results
in an optimal goodness-of-fit. This is the subset for which a user-specified function reaches its
minimum.

fwbw.lmvar_no_fit 25

Usage

S3 method for class 'lmvar_no_fit'
fwbw(object, fun, fw = FALSE, counter = TRUE,
df_percentage = 0.05, control = list(), ...)

Arguments

object Object of class ’lmvar_no_fit’ (hence it can also be of class ’lmvar’)

fun User-specified function which measures the goodness-of-fit. See ’Details’.

fw Boolean, if TRUE the search will start with a minimum degrees of freedom (’for-
ward search’). If FALSE the search will start with the full model (’backward
search’).

counter Boolean, if TRUE and fw = TRUE, the algorithm will carry out backward steps
(attempts to remove degrees of freedom) while searching for the optimal sub-
set. If FALSE and fw = TRUE, the algorithm will only carry out forward steps
(attempts to insert degrees if freedom). The effect of counter is opposite if
fw = FALSE.

df_percentage Percentage of degrees of freedom that the algorithm attempts to remove at a
backward-step, or insert at a forward-step. Must be a number between 0 and 1.

control List of control options. The following options can be set

• monitor Boolean, if TRUE information about the attempted removals and
insertions will be printed during the run. Default is FALSE.

• plot Boolean, if TRUE a plot will be shown at the end of the run. It shows
how the value of fun decreases during the run. Default is FALSE.

... for compatibility with fwbw generic

Details

Description of the algorithm: The function fwbw selects the subset of all the degrees of freedom
present in object for which the user-specified function fun is minimized. This function is sup-
posed to be a measure for the goodness-of-fit. Typical examples would be fun=AIC or fun=BIC.
Another example is where fun is a measure of the prediction error, determined by cross-validation
or otherwise.
The function fwbw is intended for situations in which the degrees of freedom in object is so
large that it is not feasible to go through all possible subsets systematically to find the smallest
value of fun. Instead, the algorithm generates subsets by removing degrees of freedom from the
current-best subset (a ’backward’ step) and reinserting degrees of freedom that were previously
removed (a ’forward’ step). Whenever a backward or forward step results in a subset for which
fun is smaller than for the current-best subset, the new subset becomes current-best.
The start set depends on the argument fw. If fw = TRUE, the algorithm starts with only two degrees
of freedom: one for the expected values µ and one for the standard deviations σ. These degrees
are the intercept terms, if the model in object contains them. If fw = FALSE (the default), the
algorithm starts with all degrees of freedom present in object.
At a backward step, the model removes degrees of freedom of the current-best subset. It removes
at least 1 degree of freeedom and at most df_percentage of the degrees in the current-best subset.
The degrees that are removed are the ones with the largest p-value (p-values can be seen with the

26 fwbw.lmvar_no_fit

function summary.lmvar). If the removal results in a larger value of fun, the algorithm will try
again by halving the degrees of freedom it removes.
At a forward step, the algorithm inserts degrees of freedom that are present in object but left
out in the current-best subset. It inserts at least 1 degree of freedom and at most df_percentage
of the current-best subset. It inserts those degees of freedom which are estimated to increase the
likelihood most. If the insertion results in a larger value of fun, the algorithm will try again by
halving the degrees of freedom it inserts.
If counter = FALSE, the algorithm is ’greedy’: it will only carry out forward-steps in case
fw = TRUE or backward-steps in case fw = FALSE.
The algorithm stops if neither the backward nor the forward step resulted in a lower value of fun.
It returns the current-best model and the minimum value of fun.

The user-defined function: The function fun must be a function which is a measure for the
goodness-of-fit. It must take one argument: an object of class ’lmvar’. Its return value must be a
single number. A smaller (more negative) number must represent a better fit. During the run, a
fit to the data is carried out for each new subset of degrees of freedom. The result of the fit is an
object of class ’lmvar’. This object is passed on to fun to evaluate the goodness-of-fit. Typical
examples for fun are AIC.lmvar and BIC.

Monitor information: When the control-option monitor is equal to TRUE, information is
displayed about the progress of the run. The following information is displayed:

• Iteration A counter which first value is always 0, followed by 1. From then on, the counter
is increased whenever the addition or removal of degrees of freedom results in a smaller
function value than the smallest so far.

• attempted removals/insertions The number of degrees of freedoms that one attempts to
remove or insert

• function value The value of the user-specified function fun after the removal or insertion
of the degrees of freedom

• The last column shows the word insert when the attempt regards the insertion of degrees of
freedom. When nothing is shown, the algorithm attempted to remove degrees of freedom.

Other: If object was created with intercept_mu = TRUE, the intercept term for the expected
values µ will not be removed by fwbw.lmvar. Likewise for intercept_sigma.
When a new subset of degrees of freedom is generated by either a backward or a forward step,
the response vector in object is fitted to the new model. The fit is carried out by lmvar. The
arguments used in the call to lmvar (other than X_mu and X_sigma) are the same as used to create
object, except that the control options mu_full_rank and sigma_full_rank are both set to
TRUE. Setting them to TRUE can be done safely because the model matrices object$X_mu and
object$X_sigma are guaranteed to be full-rank.

Value

A list with the following members.

• object An object of class ’lmvar’ which contains the model for which fun is minimized.

• fun the minimum value of the user-specified function fun.

fwbw.lmvar_no_fit 27

See Also

fwbw for the S3 generic method

fwbw.lm for the corresponding function for an ’lm’ object

lmvar for the constructor of a ’lmvar’ object

lmvar_no_fit for the constructor of a ’lmvar_no_fit’ object

The number of degrees of freedom is given by dfree.

Examples

Generate model matrices
set.seed(1820)

n_rows = 1000
n_cols = 4

X_mu = matrix(sample(-9:9, n_rows * n_cols, replace = TRUE), nrow = n_rows, ncol = n_cols)
X_sigma = matrix(sample(-9:9, n_rows * n_cols, replace = TRUE), nrow = n_rows, ncol = n_cols)

column_names = sapply(1:n_cols, function(i_column){paste("column", i_column, sep = "_")})
colnames(X_mu) = column_names
colnames(X_sigma) = paste(column_names, "_s", sep = "")

Generate betas
beta_mu = sample(c(-1,-0.5, 0.5, 1), n_cols + 1, replace = TRUE)
beta_sigma = sample(c(-1,-0.5, 0.5, 1), n_cols + 1, replace = TRUE)

Generate response vector
mu = X_mu %*% beta_mu[-1] + beta_mu[1]
log_sigma = X_sigma %*% beta_sigma[-1] + beta_sigma[1]
y = rnorm(n_rows, mean = mu, sd = exp(log_sigma))

Add columns for cross-terms to model matrices. They have no predictive power for the response y.
X_mu = model.matrix(~ . + 0 + column_1 * ., data = as.data.frame(X_mu))
X_sigma = model.matrix(~ . + 0 , data = as.data.frame(X_sigma))
c(colnames(X_mu), colnames(X_sigma))

Create lmvar object
fit = lmvar(y, X_mu, X_sigma)

Check whether backward- / forward step model selection with BIC as criterion manages
to remove cross-terms
fwbw = fwbw(fit, BIC, control = list(monitor = TRUE))
names(coef(fwbw$object))

The same with AIC as criterion
fwbw = fwbw(fit, AIC, control = list(monitor = TRUE))
names(coef(fwbw$object))

Model selection starting with an intercept term only.
fwbw = fwbw(fit, BIC, fw = TRUE)

28 lmvar

names(coef(fwbw$object))

It also works on an object of class 'lmvar_no_fit'
no_fit = lmvar_no_fit(y, X_mu, X_sigma)
fwbw(no_fit, AIC, control = list(monitor = TRUE))

lmvar Linear regression with non-constant variances

Description

Performs a Gaussian regression with non-constant variances and outputs an ’lmvar’ object.

Usage

lmvar(y, X_mu = NULL, X_sigma = NULL, intercept_mu = TRUE,
intercept_sigma = TRUE, sigma_min = 0, slvr_options = list(method =
"NR"), control = list(), ...)

Arguments

y Vector of observations

X_mu Model matrix for the expected values µ

X_sigma Model matrix for the logarithms of the standard deviations σ

intercept_mu Boolean, if TRUE a column with the name ’(Intercept)’ is added to the matrix
X_mu. This column represents the intercept term in the model for µ.

intercept_sigma

Boolean, if TRUE a column with the name ’(Intercept_s)’ is added to the matrix
X_sigma. This column represents the intercept term in the model for log σ.

sigma_min Numeric, the minimum value for the standard deviations sigma. Can be a sin-
gle number which applies to all observations or a vector containing a separate
minimum for each observation.

slvr_options A list with options to be passed on to the function maxLik which maximizes the
log-liklihood

control A list with further options. The following options can be set.

• check_hessian Boolean, if TRUE it is checked whether the Hessian is
negative-definite, i.e., whether the log-likelihood is at a maximum. The
default value is TRUE.

• slvr_log Boolean, if TRUE the output of maxLik is added to the ’lmvar’
object. The default value is FALSE.

• monitor Boolean, if TRUE diagnostic messages about errors that occur
will be printed during the run. The default value is FALSE.

lmvar 29

• remove_df_sigma_pre Warning: this is an experimental option which could
cause unexpected issues! Boolean, if TRUE the algorithm removes degrees
of freedom of the model for σ to avoid convergence problems. They are
removed before carrying out the fit. See ’Details’. The default value is
FALSE.

• remove_df_sigma_post Boolean, if TRUE the algorithm will remove de-
grees of freedom of the model for σ if this is necessary to achieve a satis-
factory fit. They are removed after a fit has been attempted and turned out
to fail. This option has no effect if sigma_min (or one of its elements) is
larger than zero. See ’Details’. The default value is FALSE.

• mu_full_rank Boolean, if TRUE it is assumed that X_mu (with the intercept
term added in case intercept_mu = TRUE) is full-rank. The default value
is FALSE.

• sigma_full_rank Boolean, if TRUE it is assumed that X_sigma (with the
intercept term added in case intercept_sigma = TRUE) is full-rank. The
default value is FALSE.

... Additional arguments, not used in the current implementation

Details

Response vector: The vector y must be a numeric vector. It can not contain special values like
NULL, NaN, etc.

Model matrices: If the matrix X_mu is not specified, the model for the expected values µ will
consist of an intercept term only. The argument intercept_mu is ignored in this case. Likewise,
the model for log σ will consist of an intercept term only if X_sigma is not specified. In the latter
case, the model reduces to a standard linear model.
Both model matrices must be numeric matrices. They can not contain special values like NULL,
NaN, etc.
The model matrices can be of class matrix or of a class from the package Matrix. They can also
be of class numeric in case they are matrices with one column only.
All columns in the matrix X_mu must either have a name, or no column has a name at all. It is not
allowed that some colums have a name while others don’t. The same is true for X_sigma.
If supplied, the column names must be unique within X_mu. The same is true for X_sigma. A
column name can be used in both X_mu and X_sigma though.
In case the matrix X_mu has no columns with a column name, lmvar gives the names v1, v2 etc. to
the columns. Likewise, if the matrix X_sigma has no columns with a column name, lmvar gives
the names v1_s, v2_s etc. to the columns.
Matrix X_mu can not have a column with the name ’(Intercept)’. Matrix X_sigma can not have a
column with the name ’(Intercept_s)’. Both names are reserved names.

Minimum sigma: The argument sigma_min allows one to run a regression under the constraint
of a minimum standard deviation for each observation. The argument can be a single number,
which applies to all observations, or a vector which contains a separate minimum for each obser-
vation. In the latter case, all vector elements must be zero (in which case no constraint is applied)
or all vector elements must be larger than zero.
The option of a minimum sigma is intended for situations in which an unconstrained regression
attempts to make sigma equal to zero for one or more observations. This will cause extreme values

30 lmvar

for the βσ and numerical instabilities.Such a situation can be remedied by bounding sigma from
below.
In case sigma_min has a value (or a vector of values) larger than zero and the solve-method is
"NR", the solve method is set to "BFGS". If the argument constraints is passed on to maxlik
(as a list member of slvr_options), it is ignored.
Error estimates and confidence intervals (e.g. such as given by summary.lmvar and predict.lmvar)
can be unreliable if minimum sigmas are specified.

Likelihood maximization: The function maxLik from the maxLik package, is used to maximize
the (profile) log-likelihood. maxLik returns a termination code which reports whether a maximum
was found, see maxLik. For the method "NR", a potential problem is reported by a maxLik return
code different from 1, 2 or 8. For other methods, a code different from 0 flags a potential problem.
In case the return code flags a potential problem, the message from maxLik is output as a warning.
All list elements in slvr_options are passed on as arguments to maxLik. The name of the list
element is the argument name, the value of the list element is the argument value. It is not allowed
to pass on the arguments fn, grad or hess. In case the list does not contain an element method, it
is set to "NR". In case the list does not contain an element start, an initial estimate for βσ is set
by lmvar.
In case one wants to supply an initial estimate for the coefficients, one has to supply an ini-
tial estimate for βσ . If beta_sigma_initial is the initial estimate, one passes on the argument
slvr_options = list(start = beta_sigma_initial). The inital estimate beta_sigma_initial
must be a numeric vector. Its length must be as follows.

• In case X_sigma is not specified or has the value NULL, the initial estimate must be a single
value.

• In case X_sigma is specified and intercept_sigma = TRUE: the length must be equal to the
number of columns of X_sigma plus one. The first element of the vector is the initial estimate
of the intercept term for log σ, the second element is the inital estimate corresponding to the
first column in X_sigma, the third element is the inital estimate corresponding to the second
column in X_sigma, etc.

• In case X_sigma is specified and intercept_sigma = FALSE: the length must be equal to
the number of columns of X_sigma. The first element of the vector is the initial estimate
corresponding to the first column in X_sigma, the second element is the inital estimate corre-
sponding to the second column in X_sigma, etc.

There is no need to supply an inital estimate for βµ, see the vignette ’Math’ for details.

Reducing the degrees of freedom to improve fit: When maxLik exits with return code 3 (and
corresponding warning ’Last step could not find a value above the current. Boundary of parameter
space?’), it somehow did not succeed to fit an ’lmvar’ model properly. The same is true if the the
Hessian if the log-likelihood is not negative-definite.
In this situation, a proper fit can sometimes be achieved if one drops a few extra columns (some-
times just one column) from X_sigma. See the vignette ’Math’ for details. The options control = list(remove_df_sigma_pre = TRUE, remove_df_sigma_post = TRUE))
do just that. They attempt to achieve a proper fit by dropping columns (i.e., reducing the degrees
of freedom of the model for σ) if necessary.
The option remove_df_sigma_pre inspects the model matrices and the response vector before
carrying out the fit, and drops columns from X_sigma if necessary. Warning: this is an experi-
mental option which could cause unexpected issues!
The option remove_df_sigma_post = TRUE attempts to achieve a proper fit in the following two
cases.

lmvar 31

• maxLik uses the solve-method "NR" (the default method) or "BFGSR" and exits with return
code 3. Note that this not the case when sigma_min (or one of its elements) has been set to a
value larger than zero because then the method "BFGS" is used.

• The option check_hessian is TRUE and the Hessian of the log-likelihood is not negative-
definite.

I.e., this option drops columns from X_sigma based on the results of a failed fit.

Other: When check_hessian = TRUE, it is checked whether the fitted log-likelihood is at a
maximum. A warning will be issued if that is not the case.

The control options mu_full_rank and sigma_full_rank are for efficiency purposes. If set to
TRUE, the corresponding model matrices will not be made full-rank because it is assumed they
are full-rank already. However, setting one of these to TRUE while the corresponding model
matrix is not full-rank will cause unpredictable and possibly unnoticed errors. These options
should therefore only be changed from their default value with the utmost care.

See the vignettes that come with the lmvar package for more info. Run vignette(package="lmvar")
to list the available vignettes.

Value

An object of class ’lmvar’, which is a list. Users are discouraged to access list-members directly. In-
stead, list-members are to be accessed with the various accessor and utility functions in the package.
Exceptions are the following list members for which no accessor functions exist:

• y the vector of observations

• X_mu the model matrix for µ. In general, it differs from the user-supplied X_mu because lmvar
adds an intercept-column (unless intercept_mu is FALSE) and makes the matrix full-rank.

• X_sigma the model matrix for log σ. In general, it differs from the user-supplied X_sigma
because lmvar adds an intercept-column (unless intercept_sigma is FALSE) and makes the
matrix full-rank.

• intercept_mu boolean which tells whether or not an intercept column (Intercept) has been
added to the model matrix Xµ

• intercept_sigma boolean which tells whether or not an intercept column (Intercept_s)
has been added to the model matrix Xσ

• sigma_min the value of the argument sigma_min in the call of lmvar

• slvr_options the value of the argument slvr_options in the call of lmvar

• control the value of the argument control in the call of lmvar

• slvr_log the output of maxLik (the solver routine used to maximize the likelihood). Included
only if the argument slvr_log has the value TRUE. See maxLik for details about this output.

See Also

lmvar_no_fit to create an object which is like an ’lmvar’ object without carrying out a model fit.

32 lmvar_no_fit

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

For more info on the data, study the dataset
help("attenu")

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations. The standard deviation
is large for small distances and small for large distances. The use of 'dist'
as explanatory variable makes the beta for the intercept term blow up.
Therefore we use '1 / dist' as explanatory variable
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
fit = lmvar(attenu$accel, X, X_s)

Inspect the results
summary(fit)

Carry out the fit with an inital estimate for beta and ask for
a report of the solver-routine
beta_sigma_start = c(-4, 0, 0)
fit = lmvar(attenu$accel, X, X_s,

slvr_options = list(start = beta_sigma_start),
control = list(slvr_log = TRUE))

fit$slvr_log

lmvar_no_fit Create an ’lmvar’-like object without a model fit

Description

Creates an ’lmvar’-like object without carrying out a model fit. This object is a ’lmvar’ object from
which all members have been left out that are the result of the fit. Such an object can be used in
functions which typically use an ’lmvar’ object as input but do not need the fit results. Since no fit is
performed, lmvar_no_fit is convenient when the fit is time-consuming or, e.g., does not converge.

Usage

lmvar_no_fit(y, X_mu = NULL, X_sigma = NULL, intercept_mu = TRUE,
intercept_sigma = TRUE, sigma_min = 0, slvr_options = list(method =
"NR"), control = list(), ...)

lmvar_no_fit 33

Arguments

y Vector of observations

X_mu Model matrix for the expected values µ

X_sigma Model matrix for the logarithms of the standard deviations σ

intercept_mu see the function lmvar

intercept_sigma

see the function lmvar.

sigma_min see the function lmvar.

slvr_options see the function lmvar

control see the function lmvar.

... Additional arguments, not used in the current implementation

Details

See lmvar for the requirements and a further explanation of all the arguments.

The class ’lmvar’ is an extension of the class ’lmvar_no_fit’. This means that each object which is
of class ’lmvar’, is of class ’lmvar_no_fit’ as well. Wherever an object of class ’lmvar_no_fit’ is
required, an object of class ’lmvar’ can be used as well.

Accessor and utility functions for a ’lmvar_no_fit’ object are: nobs.lmvar_no_fit, alias.lmvar_no_fit
and dfree

The function lmvar_no_fit is especially useful in combination with fwbw.lmvar_no_fit. In case
a model with many degrees of freedom does not converge with lmvar, one can create an ’lm-
var_no_fit’ object. This is used as input for fwbw with the argument fw = TRUE. The fwbw algo-
rithm will try to select an optimal subset of all degrees of freedom, starting with the smallest subset
possible.

Although lmvar_no_fit does not carry out a model fit, it will do the following:

• add an intercept term to the model matrices (unless intercept_mu is FALSE and/or intercept_sigma
is FALSE), and

• make the model matrices full rank.

Value

An object of class ’lmvar_no_fit’, which is a list. The list-members are the same as for an object of
call ’lmvar’, but with members that are the result of the model fit left out.

Users are discouraged to access list-members directly. Instead, list-members are to be accessed with
the various accessor and utility functions in the package. Exceptions are the following list members
for which no accessor functions exist:

• call the function call

• y the vector of observations

• X_mu the model matrix for µ. In general, it differs from the user-supplied X_mu because
lmvar_no_fit adds an intercept-column (unless intercept_mu is FALSE) and makes the
matrix full-rank.

34 logLik.lmvar

• X_sigma the model matrix for log σ. In general, it differs from the user-supplied X_sigma
because lmvar_no_fit adds an intercept-column (unless intercept_sigma is FALSE) and
makes the matrix full-rank.

• intercept_mu boolean which tells whether or not an intercept column (Intercept) has been
added to the model matrix Xµ

• intercept_sigma boolean which tells whether or not an intercept column (Intercept_s)
has been added to the model matrix Xσ

• sigma_min the value of the argument sigma_min in the call of lmvar_no_fit

• slvr_options the value of the argument slvr_options in the call of lmvar_no_fit

• control the value of the argument control in the call of lmvar_no_fit

Examples

As example we sue the dataset 'iris' from the library 'datasets'
library(datasets)

Create the model matrix for both the expected values and the standard deviations
X = model.matrix(~ Species - 1, data = iris)

Take as response variabe the variable Sepal.length
y = iris$Sepal.Length

Construct a 'lmvar_no_fit' object
no_fit = lmvar_no_fit(y, X, X)

The following functions all work on such an object
nobs(no_fit)
dfree(no_fit)
alias(no_fit)

You can also supply 'lmvar' arguments
no_fit = lmvar_no_fit(y, X[,-1], X[,-1], intercept_mu = FALSE, intercept_sigma = FALSE)
dfree(no_fit)

Some (most) arguments have no effect except that they are stored in the 'lmvar_no_fit'
object
no_fit = lmvar_no_fit(y, X, X, control = list(slvr_log = TRUE, remove_df_sigma = TRUE))
no_fit$control

logLik.lmvar Log-likelihood for an object of class ’lmvar’

Description

Log-likelihood for an object of class ’lmvar’

nobs.lmvar_no_fit 35

Usage

S3 method for class 'lmvar'
logLik(object, ...)

Arguments

object Object of class ’lmvar’

... For compatibility with logLik generic

Value

’logLik’ object, a number containing the log-likelihood with an attribute ’df’ containing the degrees
of freedom

See Also

dfree for the degrees of freedom for an object of class ’lmvar’.

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
fit = lmvar(attenu$accel, X, X_s)

Show the log-likelihood and the degrees of freedom of the fit
using the 'print' method for an object of class 'logLik'
logLik(fit)

Obtain the log-likelihood itself
logLik(fit)[1]

nobs.lmvar_no_fit Number of observations for an object of class ’lmvar’

Description

The number of observations in an object of class ’lmvar’.

36 plot.lmvar

Usage

S3 method for class 'lmvar_no_fit'
nobs(object, ...)

Arguments

object Object of class ’lmvar_no_fit’ (hence it can also be of class ’lmvar’)

... For compatibility with nobs generic

Value

Integer containing the number of observations in the model in object.

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
fit = lmvar(attenu$accel, X, X_s)

Return the number of observations in the fit
nobs(fit)

Check that this is equal to the number of observations in the dataset
nobs(fit) == nrow(attenu)

Function also works on object of class 'lmvar_no_fit'
no_fit = lmvar_no_fit(attenu$accel, X, X_s)
nobs(no_fit)

plot.lmvar Plot diagnostics for an ’lmvar’ object

Description

This function produces 5 plots which should help to judge the goodness of an ’lmvar’ fit.

plot.lmvar 37

Usage

S3 method for class 'lmvar'
plot(x, which = c(1:3, 5), id.n = 3, cex.id = 0.75,
show = TRUE, ...)

Arguments

x Object of class ’lmvar’

which Integer vector slecting which of the 5 plots is produced

id.n Integer, the number of ’extreme’ observations that are labelled in the plots

cex.id Numeric, scale-factor for the size of the observation labels in the plots

show Boolean, if TRUE the number of the plot is shown in the plot-title and the name
of x is shown in the label of the x-axis.

... for compatibility with plot generic

Details

The plots are intended to be a quick and easy way to get an impression of the goodness-of-fit.
The function is intended for an interactive R-session and users must hit <enter> before each plot is
deplayed. The following plots can be produced.

1. A plot of the residuals y − µ versus the fitted values µ.

2. A QQ-plot, showing the z-score (y− µ)/σ resulting from the fit versus the z-score calculated
from the sample quantiles. The sample quantiles are calculated as ppoints(n) with n the
number of obervations in x.

3. A histogram of the distribution of the quantiles of the response values. The quantiles are cal-
culated under the assumption that the response values are normally distributed with expected
values µ and standard deviations σ.

4. A plot of the z-scores versus the fitted values.

5. A scale-location plot showing the square root of the absolute z-scores versus the fitted values.

If relevant, plots show the average y-value as a red line. This line is created by the function
panel.smooth. If relevant, plots show the expected average y-value as a dotted gray line.

To suppress labelling of observations in the plots, set id.n to zero or a negative value. If id.n is set
to a value equal to or larger than the number of observations in x, all points in the plots are labelled.

Value

There is no return value. The function only shows plots in the graphics output device.

Examples

if (interactive()){

As example we use the dataset 'cats' from the library 'MASS'.
library(MASS)

38 plot_lm_loglik

We regress the cats heart weight 'Hwt' onto its body weight 'Bwt'
X = model.matrix(~ Bwt - 1, cats)
fit = lmvar(cats$Hwt, X_mu = X, X_sigma = X)

Display all plots
plot(fit)

Display two plots that focus on the shape of the distribution
plot(fit, which = c(2, 3))

Suppress plot number and name of the 'lmvar' object being plot in plot 3
plot(fit, which = 3, show = FALSE)

Label the 5 observations with the most extreme residuals in plot 1
plot(fit, which = 1, id.n = 5)

}

plot_lm_loglik Plot of the log-likelihood surface of a lineair model

Description

Creates a 3-d plot of the maximum log-likelihood of a lineair model. The maximum log-likelihood
is plotted as a function of two elements of the parameter vector β. Optionally, the maximum of a
quadratic approximation to the log-likelihood surface is plotted.

This function is intended for development purposes only.

Usage

plot_lm_loglik(y, X, beta_or, beta_x, beta_y, add_qa = FALSE,
plot_width = 3, plot_points = 20)

Arguments

y Vector of observations
X Model matrix
beta_or Vector of beta values around which the plot is centered. Also the origin of the

quadratic appriximation.
beta_x Component of beta to be plotted at the x-axis. Can be an index of beta_or or a

name in case beta_or is a named vector
beta_y Component of beta to be plotted at the y-axis. Can be an index of beta_or or a

name in case beta_or is a named vector
add_qa Boolean, specifies whether or not a quadratic approximation of the maximum

log-likelihood surface is plotted
plot_width Single numeric value, half the range of x- and y-values
plot_points Integer, number of points in the x- and y-dimension at which the maximum-

likelihood surface is calculated.

plot_lm_loglik 39

Details

The function plots the maximum log-likelihood of linear model as a function of two components of
the vector β. Optionally, it also plots a quadratic approximation to the log-likelihood and plot its
maximum.

The quadratic approximation is defined as

logLq(β) = logL(βo) + g(β − βo) + 0.5(β − βo)H(β − βo)
where logLq is the quadratic approximation of the log-likelihood, βo the value of β at the origin, g
the gradient and H the Hessian of the log-likelihood at βo.

For each point (βx, βy), the other components of the vector β are chosen such that the log-likelihood
is at its maximum. This maximum is plotted.

The same is true for a quadratic approximation of the log-likelihood, except when it has no maxi-
mum (i.e. the HessianH is not negative-definite at βo). In that case, a waning is issued and the other
components of β are set to the value they have in beta_or. The resulting quadratic approximation
is plotted. This does not affect the plot of the maximum of the true log-likelihood.

To create the plot, the package plotly needs to be installed. A warning is issued if that is not the
case.

Examples

Not run:

Carry out a linear regression with the 'iris' data set
fit = lm(Petal.Length ~ Species, data = iris, x = TRUE, y = TRUE)
X = fit$x
y = fit$y

We center the plot at the maximum-likelihood
beta_or = coef(fit)

Plot the maximum log-likelihood
lmvar:::plot_lm_loglik(y, X, beta_or = beta_or, beta_x = "(Intercept)",

beta_y = "Speciesversicolor")

Plot against the two species
lmvar:::plot_lm_loglik(y, X, beta_or = beta_or, beta_x = "Speciesversicolor",

beta_y = "Speciesvirginica")

Increase the resolution
lmvar:::plot_lm_loglik(y, X, beta_or = beta_or, beta_x = "Speciesversicolor",

beta_y = "Speciesvirginica", plot_points = 40)

Remove the intercept term from the model matrix and fit again
XX = X[,-1]
fit = lm(y ~ . - 1, data = as.data.frame(XX))

Estimate the effect of adding an intercept term in a quadratic approximation and compare
with exact result
beta_or = c(0, coef(fit))
lmvar:::plot_lm_loglik(y, X, beta_or = beta_or, beta_x = 1, beta_y = "Speciesversicolor",

40 plot_qdis.lm

add_qa = TRUE, plot_points = 40, plot_width = 5)

Note that in the last case the quadratic approximation has no maximum. Hence the beta for
"Speciesvirginica" is kept at beta_or[3] in the calculation of the surface of the
quadratic approximation.

End(Not run)

plot_qdis Plot of the distribution of quantiles

Description

Function produces plot of the distribution of quantiles for one or more model fits

Usage

plot_qdis(object_1, object_2 = NULL, ...)

Arguments

object_1 Object which contains model fit

object_2 Object which contains model fit

... Other arguments.

Details

If object_2 is specified, a plot for the distribution of quantiles for object and one for object_2
will be combined in the same plot.

See Also

plot_qdis.lm and plot_qdis.lmvar

plot_qdis.lm Plot of the distribution of quantiles for an object of class ’lm’

Description

Function produces plot of the distribution of quantiles for an object of class ’lm’ and, optionally,
for another object of class ’lm’ or ’lmvar’.

Usage

S3 method for class 'lm'
plot_qdis(object_1, object_2 = NULL, ...)

plot_qdis.lmvar 41

Arguments

object_1 Object of class ’lm’

object_2 Object of class ’lm’ or class ’lmvar’

... for compatibility with plot_qdis generic.

Details

If object_2 is specified, a plot for object_1 and one for object_2 will be combined in the same
plot.

All inputs of class ’lm’ must contain the response vector y. I.e., one must run lm with argument
y = TRUE.

See Also

plot_qdis

Examples

if(interactive()){

library(lmvar)

create a linear model using the 'iris' data set
fit_lm = lm(Petal.Length ~ Species, data = iris, y = TRUE)

plot_qdis(fit_lm)

compare 'lm' with 'lmvar' fit
X = model.matrix(~ Species - 1, data = iris)
fit_lmvar = lmvar(iris$Petal.Length, X, X)

plot_qdis(fit_lm, fit_lmvar)

check whether inclustion of petal in model improves distribution of quantiles
fit_lm_width = lm(Petal.Length ~ Species + Petal.Width, data = iris, y = TRUE)

plot_qdis(fit_lm, fit_lm_width)

}

plot_qdis.lmvar Plot of the distribution of quantiles for an object of class ’lmvar’

Description

Function produces plot of the distribution of quantiles for an object of class ’lmvar’ and, optionally,
for another object of class ’lm’ or ’lmvar’.

42 plot_qdis.lmvar

Usage

S3 method for class 'lmvar'
plot_qdis(object_1, object_2 = NULL, ...)

Arguments

object_1 Object of class ’lmvar’

object_2 Object of class ’lm’ or class ’lmvar’

... for compatibility with plot_qdis generic.

Details

If object_2 is specified, a plot for object_1 and one for object_2 will be combined in the same
plot.

If object_2 is of class ’lm’, it must contain the response vector y. I.e., one must run lm with
argument y = TRUE.

See Also

plot_qdis

Examples

if (interactive()){

library(lmvar)

create a 'lmvar' model using the 'iris' data set
X = model.matrix(~ Species - 1, data = iris)
fit_lmvar = lmvar(iris$Petal.Length, X, X)

plot_qdis(fit_lmvar)

compare 'lmvar' model with linear model
fit_lm = lm(Petal.Length ~ Species, data = iris, y = TRUE)

plot_qdis(fit_lmvar, fit_lm)

check whether inclustion of petal in model improves distribution of quantiles
X = model.matrix(~ Species + Petal.Width - 1, data = iris)
fit_lmvar_width = lmvar(iris$Petal.Length, X, X)

plot_qdis(fit_lmvar, fit_lmvar_width)

}

plot_qdis_lmlike 43

plot_qdis_lmlike Plot of the distribution of quantiles for objects of class ’lm’ or ’lmvar’

Description

Function produces a histogram of quantiles for objects of class ’lm’ or ’lmvar’. This function is
called by plot_qdis.lm and plot_qdis.lmvar. It is not intended to be called directly.

Usage

plot_qdis_lmlike(object_1, object_2 = NULL, name_1, name_2 = NULL)

Arguments

object_1 Object of class ’lm’ or ’lmvar’

object_2 Object of class ’lm’ or class ’lmvar’

name_1 Character string, the name of object_1

name_2 Character string, the name of object_2

Details

If object_2 is specified, a plot for object_1 and one for object_2 will be combined in the same
plot.

The string name_1 and (optionally) name_2 are used in the legend of the plot as names for object_1
and (optionally) object_2.

All inputs of class ’lm’ must contain the response vector y. I.e., one must run lm with argument
y = TRUE.

plot_qq QQ-plot

Description

Function produces QQ-plots for one or more model fits

Usage

plot_qq(object_1, object_2 = NULL, ...)

Arguments

object_1 Object which contains model fit

object_2 Object which contains model fit

... Other arguments.

44 plot_qq.lm

Details

If object_2 is specified, a QQ-plot for object_1 and one for object_2 will be combined in the
same plot.

See Also

plot_qq.lm and plot_qq.lmvar

plot_qq.lm QQ-plot for an object of class ’lm’

Description

Function produces QQ-plots for an object of class ’lm’ and, optionally, for another object of class
’lm’ or ’lmvar’.

Usage

S3 method for class 'lm'
plot_qq(object_1, object_2 = NULL, ...)

Arguments

object_1 Object of class ’lm’

object_2 Object of class ’lm’ or class ’lmvar’

... for compatibility with plot_qq generic.

Details

If object_2 is specified, a QQ-plot for object_1 and one for object_2 will be combined in the
same plot.

All inputs of class ’lm’ must contain the response vector y. I.e., one must run lm with argument
y = TRUE.

See Also

plot_qq

Examples

if (interactive()){

library(lmvar)

create a linear model using the 'iris' data set
fit_lm = lm(Petal.Length ~ Species, data = iris, y = TRUE)

plot_qq.lmvar 45

plot_qq(fit_lm)

compare 'lm' with 'lmvar' fit
X = model.matrix(~ Species - 1, data = iris)
fit_lmvar = lmvar(iris$Petal.Length, X, X)

plot_qq(fit_lm, fit_lmvar)

check whether inclustion of petal in model improves QQ-plot
fit_lm_width = lm(Petal.Length ~ Species + Petal.Width, data = iris, y = TRUE)

plot_qq(fit_lm, fit_lm_width)

}

plot_qq.lmvar QQ-plot for an object of class ’lmvar’

Description

Function produces QQ-plots for an object of class ’lmvar’ and, optionally, for another object of
class ’lm’ or ’lmvar’.

Usage

S3 method for class 'lmvar'
plot_qq(object_1, object_2 = NULL, ...)

Arguments

object_1 Object of class ’lmvar’

object_2 Object of class ’lm’ or class ’lmvar’

... for compatibility with plot_qq generic.

Details

If object_2 is specified, a QQ-plot for object_1 and one for object_2 will be combined in the
same plot.

If object_2 id of class ’lm’, it must contain the response vector y. I.e., one must run lm with
argument y = TRUE.

See Also

plot_qq

46 plot_qq_lmlike

Examples

if (interactive()){

library(lmvar)

create a 'lmvar' model using the 'iris' data set
X = model.matrix(~ Species - 1, data = iris)
fit_lmvar = lmvar(iris$Petal.Length, X, X)

plot_qq(fit_lmvar)

compare the 'lmvar' model with a lineair model
fit_lm = lm(Petal.Length ~ Species, data = iris, y = TRUE)

plot_qq(fit_lmvar, fit_lm)

check whether inclustion of petal in model improves QQ-plot
X = model.matrix(~ Species + Petal.Width - 1, data = iris)
fit_lmvar_width = lmvar(iris$Petal.Length, X, X)

plot_qq(fit_lmvar, fit_lmvar_width)

}

plot_qq_lmlike QQ-plot for an object of class ’lm’ or class ’lmvar’

Description

Function produces QQ-plots for an object of class ’lm’ or ’lmvar’. This function is called by
plot_qq.lm and plot_qq.lmvar. It is not intended to be called directly.

Usage

plot_qq_lmlike(object_1, object_2 = NULL, name_1, name_2 = NULL)

Arguments

object_1 Object of class ’lm’ or class ’lmvar’

object_2 Object of class ’lm’ or class ’lmvar’

name_1 Character string, the name of object_1

name_2 Character string, the name of object_2

predict.lmvar 47

Details

If object_2 is specified, a QQ-plot for object_1 and one for object_2 will be combined in the
same plot.

The string name_1 and (optionally) name_2 are used in the legend of the plot as names for object_1
and (optionally) object_2.

All inputs of class ’lm’ must contain the response vector y. I.e., one must run lm with argument
y = TRUE.

predict.lmvar Predictions for model matrices

Description

Estimators and confidence intervals for the expected values and standard deviations of the response
vector Y , given model matrices X_mu and X_sigma. Prediction intervals for Y . Alternatively,
estimators and intervals can be for eY .

The estimators and intervals are based on the maximum likelihood-estimators for βµ and βσ and
their covariance matrix present in an ’lmvar’ object.

Usage

S3 method for class 'lmvar'
predict(object, X_mu = NULL, X_sigma = NULL,
mu = TRUE, sigma = TRUE, log = FALSE, interval = c("none",
"confidence", "prediction"), level = 0.95, ...)

Arguments

object Object of class ’lmvar’

X_mu Model matrix for the expected values

X_sigma Model matrix for the logarithm of the standard deviations

mu Boolean, specifies whether or not to include the estimators and intervals for the
expected values

sigma Boolean, specifies whether or not to include the estimators and intervals for the
standard deviations

log Boolean, specifies whether estimators and intervals should be for Y (log = FALSE)
or for eY (log = TRUE).

interval Character string, specifying the type of interval. Possible values are

• "none" No interval, this is the default
• "confidence" Confidence intervals for the estimators
• "prediction" Prediction intervals

level Numeric value between 0 and 1, specifying the confidence level

... For compatibility with predict generic

48 predict.lmvar

Details

When X_mu = NULL, the model matrixXµ is taken from object. Likewise, when X_sigma = NULL,
Xσ is taken from object.

Both X_mu and X_sigma must have column names. Column names are matched with the names of
the elements of βµ and βσ in object. Columns with non-matching names are ignored. In case not
all names in βµ can be matched with a column in X_mu, a warning is given. The same is true for βσ
and X_sigma.

X_mu can not have a column with the name "(Intercept)". This column is added by predict.lmvar
in case it is present in object. Likewise, X_sigma can not have a column with the name "(Inter-
cept_s)". It is added by predict.lmvar in case it is present in object

Both matrices must be numeric and can not contain special values like NULL, NaN, etc.

If log = FALSE, predict.lmvar returns expected values and standard deviations for the observa-
tions Y corresponding to the model matrices Xµ and Xσ .

If log = TRUE, predict.lmvar returns expected values and standard deviations for eY .

The fit in object can be obtained under the constraint that the standard deviations σ are larger than
a minimum value (see the documentation of lmvar). However, there is no guarantee that the values
of σ given by predict, satisfy the same constraint. This depends entirely on X_sigma.

Confidence intervals are calculated under the asumption of asymptotic normality. This asumption
holds when the number of observations is large. Intervals must be treated cautiously in case of
a small number of observations. Intervals can also be unreliable if object was created with a
constraint on the minimum values of the standard deviations σ.

predict.lmvar with X_mu = NULL and X_sigma = NULL is equivalent to the function fitted.lmvar.

Value

In the case mu = FALSE and interval = "none": a numeric vector containing the estimators for
the standard deviation.

In the case sigma = FALSE and interval = "none": a numeric vector containing the estimators
for the expected values.

In all other cases: a matrix with one column for each requested feature and one row for each
observation. The column names are

• mu Estimators for the expected value µ

• sigma Estimators for the standard deviation σ

• mu_lwr Lower bound of the confidence interval for µ

• mu_upr Upper bound of the confidence interval for µ

• sigma_lwr Lower bound of the confidence interval for σ

• sigma_upr Upper bound of the confidence interval for σ

• lwr Lower bound of the prediction interval

• upr Upper bound of the prediction interval

predict.lmvar 49

See Also

coef.lmvar and confint for maximum likelihood estimators and confidence intervals for βµ and
βσ .

fitted.lmvar is equivalent to predict.lmvar with X_mu = NULL and X_sigma = NULL.

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Create the response vector
y = attenu$accel

Carry out the fit
fit = lmvar(y, X, X_s)

Calculate the expected values and standard deviations of 'accel'
for the current magnitudes and distances
predict(fit)

Calculate the expected values and standard deviations of 'accel' for earthquakes
with a 10% larger magnitude, at the current distances
XP = cbind(1.1 * attenu$mag, attenu$dist)
colnames(XP) = c("mag", "dist")

XP_s = cbind(1.1 * attenu$mag, 1 / attenu$dist)
colnames(XP_s) = c("mag", "dist_inv")

predict(fit, XP, XP_s)

Calculate only the expected values
predict(fit, XP, XP_s, sigma = FALSE)

Calculate only the standard deviations
predict(fit, XP, XP_s, mu = FALSE)

Calculate the expected values and their 95% confidence intervals
predict(fit, XP, XP_s, sigma = FALSE, interval = "confidence")

Calculate the standard deviations and their 90% confidence intervals
predict(fit, XP, XP_s, mu = FALSE, interval = "confidence", level = 0.9)

Calculate the expected values and the 90% prediction intervals of 'accel'

50 print.cvlmvar

predict(fit, XP, XP_s, sigma = FALSE, interval = "prediction", level = 0.9)

Change the model and fit the log of 'accel'
y = log(attenu$accel)
fit_log = lmvar(y, X, X_s)

Calculate the expected values and standard deviations of the log of 'accel'
predict(fit_log, XP, XP_s)

Calculate the expected values and standard deviations of 'accel'
predict(fit_log, XP, XP_s, log = TRUE)

Calculate the expected values and standard deviations of 'accel',
as well as their 99% confidence intervals
predict(fit_log, XP, XP_s, log = TRUE, interval = "confidence", level = 0.99)

print.cvlmvar Print method for an object of class ’cvlmvar’

Description

Print method for an object of class ’cvlmvar’. This object is created by the functions cv.lm and
cv.lmvar.

Usage

S3 method for class 'cvlmvar'
print(x, digits = NULL, ...)

Arguments

x Object of class ’cvlmvar’

digits Integer, number of significant digits of standard deviations in printed output.
Must be larger than zero, or NULL.

... For compatibility with print generic.

Details

If digits = NULL, printed values are not rounded. Otherwise, all standard deviations are rounded
to digits significant digits. All corresponding mean values are rounded to a precision equal to the
maximum precision of the rounded value of the standard deviation.

Examples of print.cvlmvar are provided in the examples of the functions cv.lm and cv.lmvar.

print.summary_lmvar 51

print.summary_lmvar Print method for the summary of an ’lmvar’ object.

Description

Print method for an object of the class ’summary_lmvar’. This object is created by summary.lmvar.

Usage

S3 method for class 'summary_lmvar'
print(x, ...)

Arguments

x Object of class ’summary_lmvar’

... For compatibility with print generic.

See Also

summary.lmvar for a summary of the fit present in an object of class ’lmvar’.

residuals.lmvar Residuals from an ’lmvar’ object

Description

Calculates residuals from an ’lmvar’ object. This object can be a fit to either a response vector or
the logarithm of the response vector.

Usage

S3 method for class 'lmvar'
residuals(object, log = FALSE, ...)

Arguments

object Object of class ’lmvar’

log Boolean, specifies whether object is a fit to a response-variable Y or to its
logarithm log Y In both cases, residuals.lmvar returns residuals for Y itself.

... For compatibility with residuals generic

52 summary.lmvar

Details

In case log = FALSE, the residual of an observation is defined as y − µ, where y is the value of the
observation and µ its expected value.

In case log = TRUE, the residual of an observation is defined as ey − µ, where µ is the expected
value of ey .

Value

A numeric vector with the residual for each observation in object.

See Also

fitted.lmvar for the expected values in an object of class ’lmvar’.

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
fit = lmvar(attenu$accel, X, X_s)

Calculate the residuals
residuals(fit)

summary.lmvar Summary overview for an object of class ’lmvar’

Description

Summary overview for an object of class ’lmvar’.

Usage

S3 method for class 'lmvar'
summary(object, mu = TRUE, sigma = TRUE, ...)

summary.lmvar 53

Arguments

object Object of class ’lmvar’
mu Boolean, specifies whether or not to include the coefficients βµ in the table of

coefficients
sigma Boolean, specifies whether or not to include the coefficients βσ in the table of

coefficients
... For compatibility with summary generic

Details

Standard errors and z-statistics are calculated under the assumption of asymptotic normality for
maximum likelihood estimators. They may not be reliable when the number of observations in
object is small.

Value

An object of class ’summary_lmvar’. This is a list with the following members:

• call Call that created object

• coefficients Data frame with one row for each element of βµ and βσ and the following
variables.

– Estimate maximum-likelihood estimate
– Std. Error standard error, defined as

√
(var(β)) with var(β) the estimated variance of

β.
– z value z-statistic, defined as β/

√
(var(β))

– Pr(>|z|) p-value of the z-statistic, calculated from the standard normal distribution.
• residuals A numeric vector with the minimum, the 25% quartile, the median, the 75% quar-

tile and the maximum standardized residual. The standardized residual of an observation is
defined as (y − µ)/σ where y is the value of the observation, µ the expectation value and σ
the standard deviation of the observation.

• sigma A numeric vector with the minimum, the 25% quartile, the median, the 75% quartile
and the maximum standard deviation σ of all observations.

• aliased_mu A named logical vector. The names are the column names of the user-supplied
model matrix Xµ. The values (TRUE or FALSE) tell whether or not the column has been re-
moved by lmvar to make the matrix full-rank.

• aliased_sigma As aliased_mu but for the user-supplied model matrix Xσ .
• logLik_ratio The difference in log-likelihood between the model in object and a classical

linear model with model matrix Xµ and a constant variance for all observations.
• df_additional The difference in degrees in freedom between the model in object and a

classical linear model with model matrix Xµ and a constant variance for all observations. Is
equal to NULL if Xσ does not contain an intercept term.

• p_value The p-value of 2 loglik_ratio, calculated from a chi-squared distribution with df
degrees of freedom. Is equal to NULL if there are no additional degrees of freedom.

• nobs The number of observations in object.
• df The degrees of freedom of the fit in object.
• options A list of argument-values of the function call.

54 vcov.lmvar

See Also

coef to extract the matrix with estimates, standard-errors, t-statistics and p-values for βµ and βσ
from a ’summary_lmvar’ object.

vcov.lmvar for the covariance matrix of the βµ and βσ in an object of class ’lmvar’.

print.summary_lmvar for a print method for a ’summary_lmvar’ object.

fitted.lmvar for the expected values and standard deviations of the observations in an object of
class ’lmvar’.

logLik.lmvar for the log-likelihood of a fit in an object of class ’lmvar’.

alias.lmvar_no_fit to obtain the aliased columns of the user-supplied model matrices in the call
of lmvar.

Examples

As example we use the dataset 'attenu' from the library 'datasets'. The dataset contains
the response variable 'accel' and two explanatory variables 'mag' and 'dist'.
library(datasets)

Create the model matrix for the expected values
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")

Create the model matrix for the standard deviations.
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")

Carry out the fit
fit = lmvar(attenu$accel, X, X_s)

Print a summary of the fit
summary(fit)

Include only the coefficients beta for the expected values
summary(fit, sigma = FALSE)

Include only the coefficients beta for the standard deviations
summary(fit, mu = FALSE)

Extract the matrix of coefficients from the summary
coef(summary(fit))

vcov.lmvar Variance-covarience matrix of the coefficients beta for an object of
class ’lmvar’

vcov.lmvar 55

Description

Variance-covarience matrix (also simply called the ’covariance matrix’) for the maximum-likelihood
estimators of βµ and βσ . The matrix is calculated with the assumption of asymptotic normality of
maximum likelihood estimators. This assumption is only valid in the limit of a large number of
observations.

Usage

S3 method for class 'lmvar'
vcov(object, mu = TRUE, sigma = TRUE, ...)

Arguments

object Object of class ’lmvar’

mu Specifies whether or not the covariance matrix for βµ is included in the returned
matrix

sigma Specifies whether or not the covariance matrix for βσ is included in the returned
matrix

... For compatibility with vcov generic

Details

The variance-covariance matrix is calculated as I−1/nwhere I is the Fisher information matrix and
n the number of observations.

When mu = TRUE and sigma = TRUE, the full covariance matrix for the combined vector (βµ, βσ)
is returned.

When mu = TRUE and sigma = FALSE, only the covariance matrix for βµ is returned.

When mu = FALSE and sigma = TRUE, only the covariance matrix for βσ is returned.

Value

A ’matrix’ object containing the (approximate) variance-covariance matrix of the maximum-likelihood
estimators of βµ and βσ in object.

See Also

summary.lmvar for standard errors for βµ and βµ.

nobs.lmvar_no_fit for the number of observations in an object of class ’lmvar’.

fisher for the Fisher information matrix of an object of class ’lmvar’.

See the vignette "Math" (to be viewed with vignette("Math", "lmvar")) for details.

Index

AIC, 2, 23
AIC.lmvar, 2, 26
alias.lmvar_no_fit, 3, 33, 54

beta_sigma_names, 4, 6
BIC, 23, 26

coef, 6, 54
coef.lmvar, 5, 17, 19, 49
confint, 6, 19, 49
convergence_precheck, 7
cv.lm, 8, 14, 50
cv.lmvar, 10, 11, 50

detectCores, 9, 13
dfree, 15, 27, 33, 35

fisher, 17, 55
fitted, 19
fitted.lmvar, 17, 18, 48, 49, 52, 54
fwbw, 21, 22, 23, 25, 27
fwbw.lm, 21, 21, 27
fwbw.lmvar_no_fit, 21, 23, 24, 33

ks.test, 9, 12

lm, 8, 23, 41–45, 47
lmvar, 13, 14, 16, 26, 27, 28, 33, 48, 54
lmvar_no_fit, 27, 31, 32
logLik, 35
logLik.lmvar, 34, 54

Matrix, 29
matrix, 29
maxLik, 11, 28, 30, 31

nobs, 36
nobs.lmvar_no_fit, 17, 33, 35, 55
numeric, 29

panel.smooth, 37

plot, 37
plot.lmvar, 36
plot_lm_loglik, 38
plot_qdis, 40, 41, 42
plot_qdis.lm, 40, 40, 43
plot_qdis.lmvar, 40, 41, 43
plot_qdis_lmlike, 43
plot_qq, 43, 44, 45
plot_qq.lm, 44, 44, 46
plot_qq.lmvar, 44, 45, 46
plot_qq_lmlike, 46
ppoints, 37
predict, 47
predict.lmvar, 19, 30, 47
print, 50, 51
print.cvlmvar, 10, 14, 50
print.summary_lmvar, 51, 54

residuals, 51
residuals.lmvar, 51

summary, 53
summary.lm, 22
summary.lmvar, 26, 30, 51, 52, 55

vcov, 55
vcov.lmvar, 17, 54, 54

56

	AIC.lmvar
	alias.lmvar_no_fit
	beta_sigma_names
	coef.lmvar
	convergence_precheck
	cv.lm
	cv.lmvar
	dfree
	fisher
	fitted.lmvar
	fwbw
	fwbw.lm
	fwbw.lmvar_no_fit
	lmvar
	lmvar_no_fit
	logLik.lmvar
	nobs.lmvar_no_fit
	plot.lmvar
	plot_lm_loglik
	plot_qdis
	plot_qdis.lm
	plot_qdis.lmvar
	plot_qdis_lmlike
	plot_qq
	plot_qq.lm
	plot_qq.lmvar
	plot_qq_lmlike
	predict.lmvar
	print.cvlmvar
	print.summary_lmvar
	residuals.lmvar
	summary.lmvar
	vcov.lmvar
	Index

