Package 'lorentz'

September 24, 2020

Type Package
Title The Lorentz Transform in Relativistic Physics
Version 1.0-5
Depends magrittr
Suggests knitr,testthat
Imports emulator (>= 1.2-20),tensor,magic
Maintainer Robin K. S. Hankin < hankin.robin@gmail.com>
Description The Lorentz transform in special relativity; also the gyrogroup structure of three-velocities. Includes active and passive transforms and the ability to use units in which the speed of light is not one. For general relativity, see the 'schwarzschild' package.
License GPL-3
<pre>URL https://github.com/RobinHankin/lorentz</pre>
Encoding UTF-8
LazyData true
VignetteBuilder knitr
NeedsCompilation no
Author Robin K. S. Hankin [aut, cre] (https://orcid.org/0000-0001-5982-0415)
Repository CRAN
Date/Publication 2020-09-24 09:30:02 UTC
R topics documented:
lorentz-package 2 3vel 4 4mom 5 4vel 7 as.matrix.3vel 8 boost 6 c.3vel 12

2 lorentz-package

cosines . Extract.3vel	 23
cosines . Extract.3vel	 23
cosines . Extract.3vel	
cosines . Extract.3vel	00
cosines	
cosines	 19
	 15 16
coordnames	

Description

The Lorentz transform in special relativity; also the gyrogroup structure of three-velocities. Includes active and passive transforms and the ability to use units in which the speed of light is not one. For general relativity, see the 'schwarzschild' package.

Details

The DESCRIPTION file:

Package: lorentz Type: Package

Title: The Lorentz Transform in Relativistic Physics

Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c("aut", "cre"), email="hankin.robin@gmail.co

Version:

Depends: magrittr Suggests: knitr,testthat

Imports: emulator (>= 1.2-20),tensor,magic

Robin K. S. Hankin hankin.robin@gmail.com Maintainer:

Description: The Lorentz transform in special relativity; also the gyrogroup structure of three-velocities. Includes active

License: GPL-3

URL: https://github.com/RobinHankin/lorentz

UTF-8 Encoding: LazyData: true VignetteBuilder:

Author: Robin K. S. Hankin [aut, cre] (https://orcid.org/0000-0001-5982-0415) lorentz-package 3

Index of help topics:

3vel Three velocities
4mom Four momentum
4vel Four velocities

Extract.3vel Extract or replace parts of three-velocity
Ops.3vel Arithmetic Ops Group Methods for 3vel objects
as.matrix.3vel Coerce 3-vectors and 4-vectors to a matrix

boost Lorentz transformations

c.3vel Combine vectors of three-velocities and

four-velocities into a single vector

comm_fail Failure of commutativity and associativty using

visual plots

coordnames Coordinate names for relativity

cosines Direction cosines

galileo Classical mechanics; Newtonian approximation;

infinite speed of light

gam Gamma correction gyr Gyr function

lorentz-package The Lorentz Transform in Relativistic Physics

photon Photons

print.3vel Print methods for three-velocities and

four-velocities

r3vel Random relativstic velocities

reflect Mirrors

seq.3vel seq method for three velocities sol Speed of light and Minkowski metric

transform The energy-momentum tensor

Author(s)

NA

Maintainer: Robin K. S. Hankin < hankin.robin@gmail.com>

References

- Ungar 2006. "Thomas precession: a kinematic effect...". European Journal of Physics, 27:L17-L20.
- https://www.youtube.com/watch?v=9Y9CxiukURw&index=68&list=PL9_n3Tqzq9iWtgD8POJFdnVUCZ_ zw60iB

4 3vel

```
B2 <- boost(as.3vel(c(-0.1,0.8,0.3)))
B3 <- boost(as.3vel(c(-0.1,0.1,0.9))) # more boosts
Bi <- B1 %*% B2 # Bi is the boost for successive Lorentz transforms
pureboost(Bi)
                   # Decompose Bi into a pure boost...
orthog(Bi)
                   # and an orthogonal matrix
Bj <- B2 %*% B1
                   # B1 and B2 do not commute...
(B1 %*% B2) %*% B3
B1 %*% (B2 %*% B3)
                      # ...but composition *is* associative
## Three velocities and the gyrogroup
## Create some random three-velocities:
u <- r3vel(10)
v <- r3vel(10)</pre>
w <- r3vel(10)</pre>
u+v
           # Three-velocity addition is not commutative...
v+u
u+(v+w)
          # ... nor associative
(u+v)+w
```

3vel

Three velocities

Description

Create and test for three-velocities, 3vel objects.

Usage

```
`3vel`(n)
threevel(n)
as.3vel(x)
is.3vel(x)
## S3 method for class 'vec'
length(x)
## S3 method for class 'vec'
names(x)
## S3 replacement method for class 'vec'
names(x) <- value</pre>
```

4mom 5

Arguments

```
n In function 3vel(), number of three velocities to create x,value Vectors of three-velocities
```

Note

Class vel is a virtual class containing classes 3vel and 4vel. Function threevel() is a convenience wrapper for 3vel().

Author(s)

Robin K. S. Hankin

Examples

```
U <- r4vel(7)
as.4vel(as.3vel(U)) # equal to U, to numerical precision

x <- as.3vel(1:3/4)
u <- as.3vel(matrix(runif(30)/10,ncol=3))

names(u) <- letters[1:10]

x+u
u+x # not equal</pre>
```

4mom

Four momentum

Description

Create and test for four-momentum

Usage

```
## S3 method for class '4mom'
Ops(e1, e2)
## S3 method for class '4mom'
sum(..., na.rm=FALSE)
vel_to_4mom(U, m=1)
p_to_4mom(p,E=1)
as.4mom(x)
is.4mom(x)
fourmom_mult(P,n)
fourmom_add(e1,e2)
```

6 4mom

Arguments

x,P,e1,e2	Four-momentum
p	Three-momentum
E	Scalar; energy
U	Object coerced to four-velocity
m	Scalar; rest mass
n	Multiplying factor
,na.rm	Arguments sent to sum()

Details

Four-momentum is a relativistic generalization of three-momentum, with the object's energy as the first element. It can be defined as mU, where m is the rest mass and U the four-velocity. Equivalently, one can define four-momentum as $(E/c, p_x, p_y, p_z)$ where E is the energy and (p_x, p_y, p_z) the three-momentum.

Function vel_to_4mom() converts three-velocity to four-momentum, and function p_to_4mom()) converts a three-momentum to a four-momentum.

The function Ops.4mom() passes unary and binary arithmetic operators "+", "-" and "*" to the appropriate specialist function.

The package is designed so that natural R idiom may be used for physically meaningful operations such as combining momenta of different objects, using the conservation of four-momentum.

For the four-momentum of a photon, use as.photon().

Author(s)

Robin K. S. Hankin

See Also

boost,as.photon

4vel 7

```
p_to_4mom(v,E=10)  # slower
p_to_4mom(v,E=100)  # even slower

# Four-momentum of objects moving closely parallel to the x-axis:
P <- vel_to_4mom(as.3vel(c(0.8,0,0)) + r3vel(7,0.01))

reflect(P)
reflect(P,c(1,1,1))

sum(P)</pre>
```

4vel

Four velocities

Description

Create and test for four-velocities.

Usage

```
as.4vel(u)
is.consistent.4vel(U, give=FALSE, TOL=1e-10)
inner4(U,V=U)
to3(U)
```

Arguments

u	A vector of three-velocities
U,V	A vector of four-velocities
give	In function is.consistent.4vel(), Boolean with TRUE meaning to return $U\cdot U+c^2$, which is zero for a four-velocity, and default FALSE meaning to return whether the four-velocity is consistent to numerical precision
TOL	Small positive value used for tolerance

Details

Function as . 4vel() takes a three-velocity and returns a four-velocity.

Given a four-vector V, function inner4() returns the Lorentz invariant $V^iV_i = \eta_{ij}V^iV^j$. This quantity is unchanged under Lorentz transforms. Note that function inner4() works for any four-vector, not just four-velocities. It will work for (eg) a four-displacement, a four-momentum vector or a four-frequency. In electromagnetism, we could have a four-current or a four-potential. If U is a four-velocity, then $U^iU_i = -c^2$; if U is a 4-displacement, then U^iU_i is the squared interval. If P is the four-momentum of a photon then $P^iP_i = 0$.

Function to3() is a low-level helper function used when as.3vel() is given a four-velocity.

Function is.consistent.4vel() checks for four-velocities being consistent in the sense that $U^iU_i = -c^2$. Giving this function a vector, for example, is.consistent.4vel(1:5), will return an error.

8 as.matrix.3vel

Compare the functions documented here with boost(), which returns a 4×4 transformation matrix (which also includes rotation information).

Author(s)

Robin K. S. Hankin

See Also

boost

Examples

```
a <- r3vel(10)
as.4vel(a)  # a four-velocity

as.3vel(as.4vel(a))-a  # zero to numerical precision

inner4(as.4vel(a))  # -1 to numerical precision

stopifnot(all(is.consistent.4vel(as.4vel(a))))

## check Lorentz invariance of dot product:
U <- as.4vel(r3vel(10))
V <- as.4vel(r3vel(10))
B <- boost(as.3vel(1:3/10))

frame1dotprod <- inner4(U, V)
frame2dotprod <- inner4(U %*% B, V %*% B)
max(abs(frame1dotprod-frame2dotprod))  # zero to numerical precision</pre>
```

as.matrix.3vel

Coerce 3-vectors and 4-vectors to a matrix

Description

Coerce 3-vectors and 4-vectors to a matrix. A convenience wrapper for unclass()

Usage

```
## S3 method for class '3vel'
as.matrix(x, ...)
## S3 method for class '4vel'
as.matrix(x, ...)
```

boost 9

Arguments

x Object of class 3vel or 4vel... Further arguments (currently ignored)

Author(s)

Robin K. S. Hankin

Examples

```
as.matrix(r3vel(5))
as.matrix(r4vel(5))
```

boost

Lorentz transformations

Description

Lorenz transformations: boosts and rotations

Usage

```
boost(u)
rot(u,v,space=TRUE)
is.consistent.boost(L, give=FALSE, TOL=1e-10)
is.consistent.boost.galilean(L, give=FALSE, TOL=1e-10)
pureboost(L,include_sol=TRUE)
orthog(L)
pureboost.galilean(L, tidy=TRUE)
orthog.galilean(L)
```

Arguments

u,v	Three-velocities, coerced to class 3vel
L	Lorentz transform expressed as a 4×4 matrix
TOL	Numerical tolerance
give	Boolean with TRUE meaning to return the transformed metric tensor (which should be the flat-space $\texttt{eta}()$; qv) and default FALSE meaning to return whether the matrix is a consistent boost or not
space	Boolean, with default TRUE meaning to return just the spatial component of the rotation matrix and FALSE meaning to return the full 4×4 matrix transformation
tidy	In pureboost.galilean(), Boolean with default TRUE meaning to return a "tidy" boost matrix with spatial components forced to be a 3×3 identity matrix
include_sol	In function pureboost(), Boolean with default TRUE meaning to correctly account for the speed of light, and FALSE meaning to assume $c=1$. See details

10 boost

Details

Arguments u, v are coerced to three-velocities.

A rotation-free Lorentz transformation is known as a *boost* (sometimes a *pure boost*), here expressed in matrix form. Pure boost matrices are symmetric if c=1. Function boost(u) returns a 4×4 matrix giving the Lorentz transform of an arbitrary three-velocity u.

Boosts can be successively applied with regular matrix multiplication. However, composing two successive pure boosts does not in general return a pure boost matrix: the product is not symmetric in general. Also note that boost matrices do not commute. The resulting matrix product represents a *Lorentz transform*.

It is possible to decompose a Lorentz transform L into a pure boost and a spatial rotation. Thus L = OP where O is an orthogonal matrix and P a pure boost matrix; these are returned by functions orthog() and pureboost() respectively. If the speed of light is not equal to 1, the functions still work but can be confusing.

Functions pureboost.galilean() and orthog.galilean() are the Newtonian equivalents of pureboost() and orthog(), intended to be used when the speed of light is infinite (which causes problems for the relativistic functions).

As noted above, the composition of two pure Lorentz boosts is not necessarily pure. If we have two successive boosts corresponding to u and v, then the composed boost may be decomposed into a pure boost of boost(u+v) and a rotation of rot(u,v).

The reason argument include_sol exists is that function orthog() needs to call pureboost() in an environment where we pretend that c=1.

Value

Function boost() returns a 4×4 matrix; function rot() returns an orthogonal matrix.

Note

Function rot() uses crossprod() for efficiency reasons but is algebraically equivalent to boost(-u-v) %*% boost(u) %*% boost(v).

Author(s)

Robin K. S. Hankin

References

- Ungar 2006. "Thomas precession: a kinematic effect...". European Journal of Physics, 27:L17-L20
- Sbitneva 2001. "Nonassociative geometry of special relativity". *International Journal of Theoretical Physics, volume 40, number 1, pages 359–362*
- Wikipedia contributors 2018. "Wigner rotation", Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Wigner_rotation&oldid=838661305. Online; accessed 23 August 2018

boost 11

```
boost(as.3vel(c(0.4, -0.2, 0.1)))
u \leftarrow r3vel(1)
v \leftarrow r3vel(1)
w \leftarrow r3vel(1)
boost(u) - solve(boost(-u)) # should be zero
boost(u) %*% boost(v) # not a pure boost (not symmetrical)
boost(u+v) # not the same!
boost(v+u) # also not the same!
u+v # returns a three-velocity
boost(u) %*% boost(v) %*% boost(w) # associative, no brackets needed
boost(u+(v+w)) # not the same!
boost((u+v)+w) # also not the same!
rot(u,v)
rot(v,u)
         # transpose (=inverse) of rot(u,v)
rot(u,v,FALSE) %*% boost(v) %*% boost(u)
boost(u+v) # should be the same.
orthog(boost(u) \% \% boost(v)) - rot(u,v,FALSE) # zero to numerical precision
pureboost(boost(v) %*% boost(u)) - boost(u+v) # ditto
## Define a random-ish Lorentz transform
L <- boost(r3vel(1)) %*% boost(r3vel(1)) %*% boost(r3vel(1))
## check it:
## Not run: # needs emulator package
quad.form(eta(),L) # should be eta()
## End(Not run)
## More concisely:
is.consistent.boost(L) # should be TRUE
## Decompose L into a rotation and a pure boost:
U <- orthog(L)
P <- pureboost(L)
L - U %*% P
                      # should be zero (L = UP)
```

12 c.3vel

```
crossprod(U)  # should be identity (U is orthogonal)
P - t(P)  # should be zero (P is symmetric)

## First row of P should be a consistent 4-velocity:
is.consistent.4vel(P[1,,drop=FALSE],give=TRUE)
```

c.3vel

Combine vectors of three-velocities and four-velocities into a single vector

Description

Combines its arguments recursively to form a vector of three velocities or four velocities

Usage

```
## $3 method for class '3vel'
c(...)
## $3 method for class '4vel'
c(...)
```

Arguments

... Vectors of three-velocities

Details

Returns a vector of three-velocities or four-velocities. These are stored as three- or four- column matrices; each row is a velocity.

Names are inherited from the behaviour of cbind(), not c().

Note

This function is used extensively in inst/distributive_search.R.

For "c" as in celerity or speed of light, see sol().

Author(s)

Robin K. S. Hankin

See Also

sol

```
c(r3vel(3), r3vel(6, 0.99))
```

comm_fail 13

comm_fail

Failure of commutativity and associativty using visual plots

Description

Relativistic addition of three-velocities is neither commutative nor associative, and the functions documented here show this visually.

Usage

```
comm_fail1(u, v, bold=5, r=1)
comm_fail2(u, v, bold=5, r=1)
ass_fail(u, v, w, bold=5, r=1)
my_seg(u,start=as.3vel(0), bold=5, ...)
```

Arguments

u,v,w,start	Three velocities. Arguments u and w are single-element three velocities, argu-
	ment v is a vector. See the examples
bold	Integer specifying which vector element to be drawn in bold
r	Radius of dotted green circle, defaulting to 1 (corresponding to $c=1$). Use NA $$
	to suppress plotting of circle
	Further arguments, passed to arrows()

Value

These functions are called for their side-effect of plotting a diagram.

Note

The vignette lorentz gives more details and interpretation of the diagrams. Function my_seg() is an internal helper function.

Author(s)

Robin K. S. Hankin

```
u <- as.3vel(c(0.4,0,0))
v <- seq(as.3vel(c(0.4,-0.2,0)), as.3vel(c(-0.3,0.9,0)),len=20)
w <- as.3vel(c(0.8,-0.4,0))

comm_fail1(u=u, v=v)
comm_fail2(u=u, v=v)
  ass_fail(u=u, v=v, w=w, bold=10)</pre>
```

14 coordnames

coordnames

Coordinate names for relativity

Description

Trivial function to set coordinate names to "t", "x", "y", "z".

Usage

```
coordnames(...)
flob(x)
```

Arguments

```
... Further arguments, currently ignored
```

x A matrix

Details

Function coordnames() simply returns the character string c("t", "x", "y", "z"). It may be overwritten. Function flob() sets the row and columnnames of a 4×4 matrix to coordnames().

Note

If anyone can think of a better name than flob() let me know.

Author(s)

Robin K. S. Hankin

```
coordnames()
flob(diag(3))
flob(matrix(1,4,4))

## You can change the names if you wish:
coordnames <- function(x){letters[1:4]}
flob(outer(1:4,1:4))</pre>
```

cosines 15

cosines Direction cosines

Description

Given a vector of three-velocities, returns their direction cosines

Usage

```
cosines(u, drop = TRUE)
```

Arguments

u A vector of three-velocities

drop Boolean, with default TRUE meaning to coerce return value from a one-row ma-

trix to a vector, and FALSE meaning to consistently return a matrix

Author(s)

Robin K. S. Hankin

Examples

```
cosines(r3vel(7))

cosines(r3vel(1),drop=TRUE)
cosines(r3vel(1),drop=FALSE)
```

Extract.3vel

Extract or replace parts of three-velocity

Description

Extract or replace subsets of three-velocities

Arguments

x A three-vector

index elements to extract or replace

value replacement value

16 galileo

Details

These methods (should) work as expected: an object of class 3vel is a three-column matrix with rows corresponding to three-velocities; a single argument is interpreted as a row number. Salient use-cases are u[1:5] < u[1] and u[1] < 0.

To extract a single component, pass a second index: u[,1] returns the x- component of the three-velocity.

Extraction functions take a drop argument, except for x[i] which returns a vec object.

Currently, u[] returns u but I am not sure this is desirable. Maybe it should return unclass(u) or perhaps c(unclass(u)).

Use idiom u[] <-x to replace entries of u elementwise.

Examples

```
u <- r3vel(10)
u[1:4]
u[5:6] <- 0
u[7:8] <- u[1]
u[,1] <- 0.1
```

galileo

Classical mechanics; Newtonian approximation; infinite speed of light

Description

The Lorentz transforms reduce to their classical limit, the Galilean transforms, if speeds are low compared with c. Package idiom for working in a classical framework is to use an infinite speed of light: sol(Inf). Here I show examples of this.

Author(s)

Robin K. S. Hankin

See Also

boost

gam 17

```
B <- boost(as.3vel(1:3))
orthog(B) %*% pureboost(B) # should be B
sol(1)</pre>
```

gam

Gamma correction

Description

Lorentz gamma correction term in special relativity

Usage

```
## S3 method for class '3vel'
speed(u)
## S3 method for class '4vel'
speed(u)
speedsquared(u)
gam(u)
gamm1(u)
## S3 method for class '3vel'
gam(u)
## S3 method for class '4vel'
gam(u)
## S3 method for class '3vel'
gamm1(u)
## S3 method for class '4vel'
gamm1(u)
gam_ur(d)
```

Arguments

u Speed: either a vector of speeds or a vector of three-velocities or four-velocitiesd In function gam_ur(), deficit of speed; speed of light minus speed of object

Details

Function speed(u) returns the speed of a 3vel object or 4vel object.

Function gam(u) returns the Lorentz factor

$$\frac{1}{\sqrt{1-\mathbf{u}\cdot\mathbf{u}/c^2}}$$

Function gamm1 (u) returns the Lorentz factor minus 1, useful for slow speeds when larger accuracy is needed (much like expm1()); to see the R idiom, type "gamm1.3vel" at the commandline. Function gamm1() is intended to work with 3vel objects or speeds. The function will take a 4-velocity,

18 gam

but this is not recommended as accuracy is lost (all it does is return the time component of the 4-velocity minus 1).

Function gam_ur() is used for the ultrarelativistic case where speeds are very close to the speed of light (the function is named for "gamma, ultrarelativistic").

Function speedsquared(u) returns the square of the speed of a 3vel object. Use this to avoid taking a needless square root.

Author(s)

Robin K. S. Hankin

```
gam(seq(from=0,by=0.1,len=10))
gam(r3vel(6,0.7))
x \leftarrow as.3vel(c(0.1,0.4,0.5))
speed(x)
gam(speed(x)) # works, but slow and inaccurate
gam(x)
               # recommended: avoids needless coercion
## Use SI units and deal with terrestrial speeds. Use gamm1() for this.
sol(299792458)
sound <- 343 # speed of sound in SI
gam(sound)
gam(sound)-1
gamm1(sound)
               # gamm1() gives much higher precision
snail \leftarrow as.3vel(c(0.00275,0,0)) # even the world's fastest snail...
gamm1(snail)
                                  # ...has only a small relativistic correction
## For the ultrarelativistic case of speeds very close to the speed of
## light, use gam_ur():
sol(1)
                 # revert to relativistic units
gam(0.99) - gam_ur(0.01) # zero to numerical accuracy
omgp <- 4.9e-24 # speed deficit of the Oh-My-God particle
                 # numeric overflow
gam(1-omgp)
                 # large but finite
gam_ur(omgp)
```

gyr 19

gyr

Gyr function

Description

Relativistic addition of three velocities

Usage

```
gyr(u, v, x)
gyr.a(u, v, x)
gyrfun(u, v)
```

Arguments

u,v,x

Three-velocities, objects of class 3vel

Details

Function gyr(u, v, x) returns the three-vector gyr[u, v]x.

Function gyrfun(u, v) returns a function that returns a three-vector; see examples.

The speed of light (1 by default) is not used directly by these functions; set it with sol().

Note

```
Function gyr() is slightly faster than gyr.a(), which is included for pedagogical reasons. Function gyr() is simply add3(neg3(add3(u,v)),add3(u,add3(v,x))) while function gyr.a() uses the slower but more transparent idiom -(u+v)+(u+(v+x))
```

Author(s)

Robin K. S. Hankin

References

- Ungar 2006. "Thomas precession: a kinematic effect of the algebra of Einstein's velocity addition law. Comments on 'Deriving relativistic momentum and energy: II. Three-dimensional case". *European Journal of Physics*, 27:L17-L20.
- Sbitneva 2001. "Nonassociative geomery of special relativity". *International Journal of Theoretical Physics, volume 40, number 1, pages 359–362*

Ops.3vel

Examples

```
u <- r3vel(10)
v <- r3vel(10)
w <- r3vel(10)
x \leftarrow as.3vel(c(0.4,0.1,-0.5))
y \leftarrow as.3vel(c(0.1,0.2,-0.7))
z \leftarrow as.3vel(c(0.2,0.3,-0.1))
gyr(u,v,x) # gyr[u,v]x
f <- gyrfun(u,v)</pre>
g <- gyrfun(v,u)
f(x)
f(r3vel(10))
                       # zero, by eqn 9
f(g(x)) - x
g(f(x)) - x
                        # zero, by eqn 9
                  # zero by eqn 10
(x+y) - f(y+x)
(u+(v+w)) - ((u+v)+f(w)) # zero by eqn 11
# Following taken from Sbitneva 2001:
rbind(x+(y+(x+z)) ,
                       (x+(y+x))+z) # left Bol property
rbind((x+y)+(x+y) ,
                       x+(y+(y+x))) # left Bruck property
sol(299792458) # speed of light in SI
as.3vel(c(1000,3000,1000)) + as.3vel(c(1000,3000,1000))
## should be close to Galilean result
sol(1) # revert to default c=1
```

Ops.3vel

Arithmetic Ops Group Methods for 3vel objects

Description

Arithmetic operations for three-velocities

Usage

```
## S3 method for class '3vel'
```

Ops.3vel 21

```
Ops(e1, e2)
## S3 method for class '4vel'
Ops(e1, e2)
massage3(u,v)
neg3(u)
prod3(u,v=u)
add3(u,v)
dot3(v,r)
```

Arguments

e1,e2,u,v Objects of class "3ve1", three-velocities r Scalar value for circle-dot multiplication

Details

The function Ops.3vel() passes unary and binary arithmetic operators "+", "-" and "*" to the appropriate specialist function.

The most interesting operators are "+" and "*", which are passed to add3() and dot3() respectively. These are defined, following Ungar, as:

$$\mathbf{u} + \mathbf{v} = \frac{1}{1 + \mathbf{u} \cdot \mathbf{b}/c^2} \left\{ \mathbf{u} + \frac{1}{\gamma_{\mathbf{u}}} \mathbf{v} + \frac{1}{c^2} \frac{\gamma_{\mathbf{u}}}{1 + \gamma_{\mathbf{u}}} (\mathbf{u} \cdot \mathbf{v}) \mathbf{u} \right\}$$

and

$$r \odot \mathbf{v} = c \tanh\left(r \tanh^{-1} \frac{||\mathbf{v}||}{c}\right) \frac{\mathbf{v}}{||\mathbf{v}||}$$

where \mathbf{u} and \mathbf{v} are three-vectors and r a scalar. Function dot3() has special dispensation for zero velocity and does not treat NA entries entirely consistently.

Arithmetic operations, executed via Ops.4vel(), are not defined on four-velocities.

The package is designed so that natural R idiom may be used for three velocity addition, see the examples section.

Value

Returns an object of class 3vel, except for prod3() which returns a numeric vector.

```
u <- as.3vel(c(-0.7, 0.1,-0.1))
v <- as.3vel(c( 0.1, 0.2, 0.3))
w <- as.3vel(c( 0.5, 0.2,-0.3))

x <- r3vel(10)  # random three velocities
y <- r3vel(10)  # random three velocities</pre>
```

photon 22

```
# add3(u,v)
      # add3(u,neg3(v))
      # neg3(v)
gyr(u,v,w)
## package is vectorized:
u+x
х+у
f <- gyrfun(u,v)</pre>
g <- gyrfun(v,u)
             # should be zero by eqn10
f(g(x)) - x
g(f(x)) - x
(u+v) - f(v+u)
                                   # zero by eqn 10
(u+(v+w)) - ((u+v)+f(w))
                                   # zero by eqn 11
((u+v)+w) - (u+(v+g(w)))
                                   # zero by eqn 11
## NB, R idiom is unambiguous. But always always ALWAYS use brackets.
## Ice report in lat 42.n to 41.25n Long 49w to long 50.30w saw much
## heavy pack ice and great number large icebergs also field
## ice. Weather good clear
## -u+v == (-u) + v == neg3(u) + v == add3(neg3(u),v)
## u+v+w == (u+v)+w == add3(add3(u,v),w)
```

photon

Photons

Description

Various functionality to deal with the 4-momentum of a photon

Usage

```
is.consistent.nullvec(N,TOL=1e-10)
as.photon(x,E=1)
```

print.3vel 23

Arguments

N Four-momentum to be tested for nullness

TOL tolerance

x Vector of three-velocities

E Energy, a scalar

Details

Returns the four-momentum of a photon.

Author(s)

Robin K. S. Hankin

See Also

```
4mom.reflect
```

Examples

```
## A bunch of photons all approximately parallel to the x-axis:
as.photon(as.3vel(cbind(0.9,runif(10)/1000,runif(10)/1000)))

## mirror ball:
disco <- matrix(rnorm(30),10,3) %>% sweep(1, sqrt(rowSums(.^2)),`/`)
p <- as.photon(c(1,0,0))
reflect(p,disco)

table(reflect(p,disco)[,2]>0) # should be TRUE with probability sqrt(0.5)

## relativistic disco; mirror ball moves at 0.5c:

B <- boost(as.3vel(c(0.5,0,0)))
p %>% tcrossprod(B) %>% reflect(disco) %>% tcrossprod(solve(B))
```

print.3vel

Print methods for three-velocities and four-velocities

Description

Print methods for three-velocities

24 r3vel

Usage

```
## $3 method for class '3vel'
print(x, ...)
## $3 method for class '4vel'
print(x, ...)
## $3 method for class '4mom'
print(x, ...)
```

Arguments

x Vector of three-velocities

... Further arguments, currently ignored

Value

Returns a vector of three-velocities

Author(s)

Robin K. S. Hankin

Examples

```
r3vel(10)
```

r3vel

Random relativstic velocities

Description

Generates random three-velocities or four-velocities, optionally specifiying a magnitude

Usage

```
r3vel(n, r = NA)
r4vel(...)
rboost(r = NA)
```

Arguments

n Number of three- or four- velocities to generate

r Absolute value of the three-velocities, with default NA meaning to sample uni-

formly from the unit ball

... Arguments passed to r3vel()

reflect 25

Details

Function r3vel() returns a random three-velocity. Function r4vel() is a convenience wrapper for as.4vel(r3vel()).

Function rboost() returns a random 4×4 Lorentz boost matrix, drawn from the connected component. If given r=0, then a transform corresponding to a random rotation will be returned.

Value

Returns a vector of three- or four- velocities.

Note

If the speed of light is infinite, these functions require a specified argument for r.

It is not entirely trivial to sample *uniformly* from the unit ball or unit sphere, but it is not hard either.

Author(s)

Robin K. S. Hankin

Examples

```
a <- r3vel(10000)
b <- r3vel(1000,0.8)
u <- as.3vel(c(0,0,0.9))

pairs(unclass(u+a),asp=1)
pairs(unclass(a+u),asp=1)
is.consistent.boost(rboost())

sol(299792458)  # switch to SI units
sound <- 343  # speed of sound in metres per second
r3vel(100,343)  # random 3-velocities with speed = 343 m/s

sol(1)  # return to default c=1</pre>
```

reflect

Mirrors

Description

Plane mirrors in special relativity

Usage

```
reflect(P,m,ref=1)
```

26 reflect

Arguments

m Orientation of mirror, expressed as a three-vector

ref Coefficient of reflectivity of the mirror

Value

Takes a four-momentum and returns the four-momentum after reflection. Will handle objects or photons.

Note

All four-momenta are measured in the rest frame of the mirror, but it is easy to reflect from moving mirrors; see examples.

However, note that the ref argument is designed to work with photons only, where it is conceptually the percentage of photons reflected and not absorbed by the mirror. If ref is less than unity, odd results are given for four momenta of nonzero restmass objects.

Author(s)

Robin K. S. Hankin

See Also

photon

```
## We will reflect some photons from an oblique mirror moving at half
## the speed of light.

## First create 'A', a bunch of photons all moving roughly along the x-axis:
A <- as.photon(as.3vel(cbind(0.9,runif(10)/1000,runif(10)/1000)))

## Now create 'm', a mirror oriented perpendicular to c(1,1,1):
m <- c(1,1,1)

## Reflect the photons in the mirror:
reflect(A,m)

## Reflect the photons in a series of mirrors:
A %>% reflect(m) %>% reflect(1:3) %>% reflect(3:1)

## To reflect from a moving mirror we need to transform to a frame in
## which the mirror is at rest, then transform back to the original
## frame. First create B, a boost representing the mirror's movement
## along the x-axis at speed c/2:
B <- boost(as.3vel(c(0.5,0,0)))</pre>
```

seq.3vel

```
## Transform to the mirror's rest frame:
A %*% t(B)

## NB: in the above, take a transpose because the *rows* of A are 4-vectors.

## Then reflect the photons in the mirror:
reflect(A %*% t(B),m)

## Now transform back to the original rest frame (NB: active transform):
reflect(A %*% t(B),m) %*% solve(t(B))

## or, better, use magrittr:
A %>% tcrossprod(B) %>% reflect(m) %>% tcrossprod(solve(B))
```

seq.3vel

seq method for three velocities

Description

Simplified version of seq() for three-velocities.

Usage

```
## S3 method for class '3vel'
seq(from, to, len, ...)
```

Arguments

from, to	Start and end of sequence
len	Length of vector returned
	Further arguments (currently ignored)

Details

```
seq(a,b,n) returns a + t*(-b+a) where t is numeric vector seq(from=0,to=1,len=n).
```

This definition is one of several plausible alternatives, but has the nice property that the first and last elements are exactly equal to a and b respectively.

Author(s)

Robin K. S. Hankin

28 sol

Examples

```
a <- as.3vel(c(4,5,6)/9)
b <- as.3vel(c(-5,6,8)/14)
x <- seq(a,b,len=9)

x[1]-a # should be zero
x[9]-b # should be zero

jj <- a + seq(0,1,len=9)*(b-a)

jj-x # decidedly non-zero</pre>
```

sol

Speed of light and Minkowski metric

Description

Getting and setting the speed of light

Usage

```
sol(c)
eta(downstairs=TRUE)
ptm(to_natural=TRUE, change_time=TRUE)
```

Arguments

c Scalar, speed of light. If missing, return the speed of light

downstairs Boolean, with default TRUE meaning to return the covariant metric tensor g_{ij}

with two downstairs indices, and FALSE meaning to return the contravariant version g^{ij} with two upstairs indices

to_natural,change_time

Boolean, specifying the nature of the passive transform matrix

Details

In the context of an R package, the symbol "c" presents particular problems. In the **lorentz** package, the speed of light is denoted "sol", for 'speed of light'. You can set the speed of light with sol(x), and query it with sol(); see the examples. An infinite speed of light is sometimes useful for Galilean transforms.

The speed of light is a global variable, governed by options("c"). If NULL, define c=1. Setting showSOL to TRUE makes sol() change the prompt to display the speed of light which might be useful.

transform 29

Function eta() returns the Minkowski flat-space metric

$$\left(\begin{array}{ccccc}
-c^2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

Note that the top-left element of eta() is $-c^2$, not -1.

Function ptm() returns a passive transformation matrix that converts displacement vectors to natural units (to_natural=TRUE) or from natural units (to_natural=FALSE). Argument change_time specifies whether to change the unit of time (if TRUE) or the unit of length (if FALSE).

Note

Typing "sol(299792458)" is a lot easier than typing "options("c"=299792458)", which is why the package uses the idiom that it does.

Author(s)

Robin K. S. Hankin

Examples

```
sol()  # returns current speed of light
sol(299792458)  # use SI units
sol()  # speed of light now SI value

eta()  # note [t,t] term
u <- as.3vel(c(100,200,300))  # fast terrestrial speed, but not relativistic
boost(u)  # boost matrix practically Galilean
is.consistent.boost(boost(u))  # should be TRUE
sol(1)  # revert to relativisitic units</pre>
```

transform

The energy-momentum tensor

Description

Various functionality to deal with the stress-energy tensor in special relativity.

30 transform

Usage

```
perfectfluid(rho,p,u=0)
dust(rho,u=0)
photongas(rho,u=0)
transform_dd(TT, B)
transform_ud(TT, B)
transform_uu(TT, B)
raise(TT)
lower(TT)
```

Arguments

TT A second-rank tensor with indices either downstairs-downstairs, downstairs-

upstairs, or upstairs-upstairs

B A boost matrix

rho, p, u Density, pressure, and four-velocity of the dust

Details

Function perfectfluid() returns the stress-energy tensor, with two upstairs indices, for a perfect fluid with the conditions specified. No checking for physical reasonableness (eg the weak energy condition) is performed: caveat emptor!

Function dust() is a (trivial) function that returns the stress-energy tensor of a zero-pressure perfect fluid (that is, dust). Function photongas() returns the stress-energy tensor of a photon gas. They are here for discoverability reasons; both are special cases of a perfect fluid.

Functions transform_dd() et seq transform a second-rank tensor using the Lorentz transform. The letters "u" or "d" denote the indices of the tensor being upstairs (contravariant) or downstairs (covariant). The stress-energy tensor is usually written with two upstairs indices, so use transform_uu() to transform it.

Function lower() lowers both indices of a tensor with two upstairs indices. Function raise() raises two downstairs indices. These two functions have identical R idiom but do not return identical values if $c \neq 1$.

Author(s)

Robin K. S. Hankin

```
perfectfluid(10,1)  \\ u <- as.3vel(c(0.4,0.4,0.2)) \\ \# \text{ In the following, LHS is stationary dust and RHS is dust moving at } \\ \# \text{ velocity 'u', but transformed to a frame also moving at velocity 'u': } \\ \text{LHS <- dust(1)}
```

transform 31

```
RHS <- transform_uu(dust(1,u),boost(u))</pre>
max(abs(LHS-RHS)) # should be small
## In the following, negative sign needed because active/passive
## difference:
LHS <- dust(1,u)
RHS <- transform_uu(dust(1),boost(-u))</pre>
max(abs(LHS-RHS)) # should be small
## Now test behaviour when c!=1:
sol(299792458)
perfectfluid(1.225,101325) # air at STP
LHS <- transform_uu(perfectfluid(1.225,101325),boost(as.3vel(c(1000,0,0))))
RHS <- perfectfluid(1.225,101325)
LHS-RHS # should be small
sol(10)
u <- as.3vel(4:6)
LHS <- photongas(1,u)
RHS <- transform_uu(photongas(1),boost(-u))</pre>
LHS-RHS # should be small
B1 <- boost(r3vel(1)) %*% boost(r3vel(1))
B2 <- boost(r3vel(1)) %*% boost(r3vel(1))
LHS <- transform_uu(transform_uu(dust(1),B1),B2)</pre>
RHS <- transform_uu(dust(1),B2 %*% B1) # note order
LHS-RHS # should be small
## remember to re-set c:
sol(1)
```

Index

* array c.3vel, 12 * package	coordnames, 14 cosines, 15
lorentz-package, 2	dcosines (cosines), 15
[.3vel (Extract.3vel), 15	decompose (boost), 9
[.4vel (Extract.3vel), 15	direction.cosines(cosines), 15
[.vel(Extract.3vel), 15	dot3(Ops.3vel), 20
[<3vel (Extract.3vel), 15	dust (transform), 29
[<4vel (Extract.3vel), 15	
[<vel (extract.3vel),="" 15<="" td=""><td>energy-momentum (transform), 29</td></vel>	energy-momentum (transform), 29
3-velocity (3vel), 4	energy-momentum-tensor (transform), 29
3vel, 4	equal3 (Ops. 3vel), 20
3velocity (3vel), 4	eta (sol), 28
4-momentum (4mom), 5	Extract.3vel, 15
4-velocity (4vel), 7	extract.3vel (Extract.3vel), 15
4mom, 5, 23	flob (coordnames), 14
4momentum (4mom), 5	four-momentum (4mom), 5
4vel, 7	four-velocity (4vel), 7
4velocity (4vel), 7	fourmom (4mom), 5
	fourmom_add (4mom), 5
add3 (Ops.3vel), 20	fourmom_mult (4mom), 5
as.3vel (3vel), 4	fourmomentum (4mom), 5
as.4mom (4mom), 5	fourvel (4vel), 7
as.4vel (4vel), 7	fourvelocity (4vel), 7
as.matrix.3vel,8	
as.matrix.4vel(as.matrix.3vel),8	Galilean (galileo), 16
as.photon, 6	galilean(galileo), 16
as.photon (photon), 22	Galileo (galileo), 16
ass_fail (comm_fail), 13	galileo, 16
	gam, 17
boost, 6, 8, 9, 16	gam_ur (gam), 17
boostfun (boost), 9	gamm1 (gam), 17
2.2.1 12	gyr, 19
c.3vel, 12	gyrfun (gyr), 19
c.4vel (c.3vel), 12	gyrogroup (lorentz-package), 2
celerity (sol), 28	inner maduet (Aug.) 7
classical (galileo), 16	inner product (4vel), 7
<pre>comm_fail, 13 comm_fail1 (comm_fail), 13</pre>	inner4 (4vel), 7
comm_fail1 (comm_fail), 13 comm_fail2 (comm_fail), 13	is.3vel(3vel),4 is.4mom(4mom),5
COIIIII_I a112 (COIIIII_I a11), 13	15.4110111 (41110111 <i>)</i> , <i>3</i>

INDEX 33

<pre>is.4vel (4vel), 7 is.consistent.4vel (4vel), 7 is.consistent.boost (boost), 9 is.consistent.galilean.boost (boost), 9 is.consistent.nullvec (photon), 22</pre>	raise (transform), 29 rboost (r3vel), 24 reflect, 23, 25 reflection (reflect), 25 rot (boost), 9
length.vec (3vel), 4 light (photon), 22 lightspeed (sol), 28 Lorentz (lorentz-package), 2 lorentz (lorentz-package), 2 lorentz-package, 2 lower (transform), 29 massage3 (Ops. 3vel), 20 minkowski (sol), 28	seq.3vel, 27 SET (transform), 29 sol, 12, 28 speed (gam), 17 speedsquared (gam), 17 stress (transform), 29 stress-energy (transform), 29 stress-energy-tensor (transform), 29 sum.4mom (4mom), 5
mirror (reflect), 25 mirrors (reflect), 25 my_seg (comm_fail), 13	Thomas (boost), 9 thomas (boost), 9 Thomas rotation (boost), 9
names.vec (3vel), 4 names <vec (3vel),="" (4mom),="" (boost),="" (galileo),="" (ops.3vel),="" (photon),="" 16="" 20="" 22="" 4="" 5="" 9<="" neg3="" newton="" newtonian="" null="" nullvec="" nullvector="" ops="" ops.3vel,="" ops.4mom="" orthog="" td="" vector=""><td>three-velocity (3vel), 4 threevel (3vel), 4 threevelocity (3vel), 4 to3 (4vel), 7 transform, 29 transform_dd (transform), 29 transform_ud (transform), 29 transform_uu (transform), 29 vel_to_4mom (4mom), 5 Wigner (boost), 9 wigner (boost), 9 Wigner rotation (boost), 9</td></vec>	three-velocity (3vel), 4 threevel (3vel), 4 threevelocity (3vel), 4 to3 (4vel), 7 transform, 29 transform_dd (transform), 29 transform_ud (transform), 29 transform_uu (transform), 29 vel_to_4mom (4mom), 5 Wigner (boost), 9 wigner (boost), 9 Wigner rotation (boost), 9
p_to_4mom (4mom), 5 perfectfluid (transform), 29 photon, 22, 26 photongas (transform), 29 precession (boost), 9 print.3vel, 23 print.4mom (print.3vel), 23 print.4vel (print.3vel), 23 prod3 (Ops.3vel), 20 ptm (sol), 28 pureboost (boost), 9	
r3vel, 24 r4vel (r3vel), 24	