The lorentz
package furnishes some R-centric functionality for special relativity. Lorentz transformations of four-vectors are handled and some functionality for the stress energy tensor is given. The package deals with four-momentum and has facilities for dealing with photons and mirrors in relativistic situations. A detailed vignette is provided in the package.
The original motivation for the package was the investigation of the (nonassociative) gyrogroup structure of relativistic three-velocities under Einsteinian velocity composition. Natural R idiom may be used to manipulate vectors of three-velocities, although one must be careful with brackets.
To install the most recent stable version on CRAN, use install.packages()
at the R prompt:
R> install.packages("lorentz")
To install the current development version use devtools
:
R> devtools::install_github("RobinHankin/lorentz")
And then to load the package use library()
:
lorentz
package in useThe package furnishes natural R idiom for working with three-velocities, four-velocities, and Lorentz transformations as four-by-four matrices. Although natural units in which are used by default, this can be changed.
u <- as.3vel(c(0.6,0,0)) # define a three-velocity, 0.6c to the right
u
#> x y z
#> [1,] 0.6 0 0
as.4vel(u) # convert to a four-velocity:
#> t x y z
#> [1,] 1.25 0.75 0 0
gam(u) # calculate the gamma term
#> [1] 1.25
B <- boost(u) # give the Lorentz transformation
B
#> t x y z
#> t 1.25 -0.75 0 0
#> x -0.75 1.25 0 0
#> y 0.00 0.00 1 0
#> z 0.00 0.00 0 1
The boost matrix can be used to transform arbitrary four-vectors:
B %*% (1:4) # Lorentz transform of an arbitrary four-vector
#> [,1]
#> t -0.25
#> x 1.75
#> y 3.00
#> z 4.00
But it can also be used to transform four-velocities:
v <- as.4vel(c(0,0.7,-0.2))
B %*% t(v)
#> [,1]
#> t 1.823312
#> x -1.093987
#> y 1.021055
#> z -0.291730
The classical parallelogram law for addition of velocities is incorrect when relativistic effects are included. To combine and in terms of successive boosts we would simply multiply the boost matrices:
boost(u) %*% boost(v)
#> t x y z
#> t 1.823312 -0.75 -1.2763187 0.3646625
#> x -1.093987 1.25 0.7657912 -0.2187975
#> y -1.021055 0.00 1.4240348 -0.1211528
#> z 0.291730 0.00 -0.1211528 1.0346151
and note that the result depends on the order:
boost(v) %*% boost(u)
#> t x y z
#> t 1.8233124 -1.0939874 -1.0210549 0.2917300
#> x -0.7500000 1.2500000 0.0000000 0.0000000
#> y -1.2763187 0.7657912 1.4240348 -0.1211528
#> z 0.3646625 -0.2187975 -0.1211528 1.0346151
The package is fully vectorized and can deal with vectors whose entries are three-velocities or four-velocities:
set.seed(0)
options(digits=3)
# generate 5 random three-velocities:
(u <- r3vel(5))
#> x y z
#> [1,] 0.230 0.0719 0.314
#> [2,] -0.311 0.4189 -0.277
#> [3,] -0.185 0.5099 -0.143
#> [4,] -0.739 -0.4641 0.129
#> [5,] -0.304 -0.2890 0.593
# calculate the gamma correction term:
gam(u)
#> [1] 1.09 1.24 1.21 2.13 1.46
# add a velocity of 0.9c in the x-direction:
v <- as.3vel(c(0.9,0,0))
v+u
#> x y z
#> [1,] 0.936 0.026 0.113
#> [2,] 0.818 0.253 -0.168
#> [3,] 0.858 0.267 -0.075
#> [4,] 0.480 -0.605 0.168
#> [5,] 0.820 -0.174 0.356
# convert u to a four-velocity:
as.4vel(u)
#> t x y z
#> [1,] 1.09 0.250 0.0783 0.341
#> [2,] 1.24 -0.385 0.5190 -0.343
#> [3,] 1.21 -0.223 0.6160 -0.173
#> [4,] 2.13 -1.571 -0.9862 0.273
#> [5,] 1.46 -0.443 -0.4209 0.864
# use four-velocities to effect the same transformation:
w <- as.4vel(u) %*% boost(-v)
as.3vel(w)
#> x y z
#> [1,] 0.936 0.026 0.113
#> [2,] 0.818 0.253 -0.168
#> [3,] 0.858 0.267 -0.075
#> [4,] 0.480 -0.605 0.168
#> [5,] 0.820 -0.174 0.356
Three-velocites behave in interesting and counter-intuitive ways.
u <- as.3vel(c(0.2,0.4,0.1)) # single three-velocity
v <- r3vel(4,0.9) # 4 random three-velocities with speed 0.9
w <- as.3vel(c(-0.5,0.1,0.3)) # single three-velocity
The three-velocity addition law is given by Ungar.
Then we can see that velocity addition is not commutative:
u+v
#> x y z
#> [1,] 0.702 -0.113 0.567
#> [2,] -0.679 0.580 0.102
#> [3,] -0.046 0.879 0.364
#> [4,] 0.312 0.407 0.788
v+u
#> x y z
#> [1,] 0.624 -0.378 0.543
#> [2,] -0.823 0.358 0.045
#> [3,] -0.234 0.832 0.401
#> [4,] 0.228 0.190 0.892
(u+v)-(v+u)
#> x y z
#> [1,] 0.243 0.506 0.1190
#> [2,] 0.201 0.490 0.1206
#> [3,] 0.503 0.245 -0.0519
#> [4,] 0.242 0.564 -0.1105
Observe that the difference between u+v
and v+u
is not “small” in any sense. Commutativity is replaced with gyrocommutatitivity:
# Compare two different ways of calculating the same thing:
(u+v) - gyr(u,v,v+u)
#> x y z
#> [1,] 3.53e-15 -1.20e-15 2.89e-15
#> [2,] 2.89e-16 -3.18e-15 -1.08e-16
#> [3,] -4.26e-15 1.09e-13 4.67e-14
#> [4,] 1.67e-15 4.76e-16 1.91e-15
# The other way round:
(v+u) - gyr(v,u,u+v)
#> x y z
#> [1,] 3.21e-15 -6.42e-16 2.89e-15
#> [2,] 3.76e-15 -1.73e-15 -2.53e-16
#> [3,] 1.47e-14 -4.07e-14 -2.03e-14
#> [4,] 9.05e-15 6.43e-15 3.24e-14
(that is, zero to numerical accuracy)
It would be reasonable to expect that u+(v+w)==(u+v)+w
. However, this is not the case:
((u+v)+w) - (u+(v+w))
#> x y z
#> [1,] 0.00613 0.0794 -0.001467
#> [2,] -0.11096 -0.1508 -0.031226
#> [3,] -0.10748 -0.1022 0.000795
#> [4,] -0.05772 -0.0631 -0.007364
(that is, significant departure from associativity). Associativity is replaced with gyroassociativity:
(u+(v+w)) - ((u+v)+gyr(u,v,w))
#> x y z
#> [1,] 0 8.16e-17 -6.53e-16
#> [2,] 0 -9.49e-16 0.00e+00
#> [3,] 0 3.21e-15 1.60e-15
#> [4,] 0 0.00e+00 0.00e+00
((u+v)+w) - (u+(v+gyr(v,u,w)))
#> x y z
#> [1,] 0.00e+00 4.03e-17 -1.29e-15
#> [2,] -1.81e-15 9.07e-16 0.00e+00
#> [3,] 0.00e+00 1.37e-14 5.48e-15
#> [4,] 0.00e+00 -1.84e-15 -1.84e-15
(zero to numerical accuracy).
The most concise reference is
For more detail, see the package vignette
vignette("lorentz")