Package 'Ispline’

April 10, 2017
Type Package
Title Linear Splines with Convenient Parametrisations
Version 1.0-0
Description Linear splines with convenient parametrisations such that
(1) coefficients are slopes of consecutive segments or (2) coefficients are slope changes at consecutive knots. Knots can be set manually or at break points of equal-frequency or equal-width intervals covering the range of ' x '.
The implementation follows Greene (2003), chapter 7.2.5.
Suggests testthat, knitr, rmarkdown, scales, ggplot2, broom
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
VignetteBuilder knitr
NeedsCompilation no
Author Michal Bojanowski [aut, cre]
Maintainer Michal Bojanowski michal2992@gmail.com
Repository CRAN
Date/Publication 2017-04-10 21:15:06 UTC

R topics documented:

lspline . 2

Index
5

Description

These functions compute the basis of piecewise-linear spline such that, depending on the argument marginal, the coefficients can be interpreted as (1) slopes of consecutive spline segments, or (2) slope change at consecutive knots.

Usage

lspline(x, knots = NULL, marginal = FALSE, names $=$ NULL)
qlspline(x, q, na.rm = FALSE, ...)
elspline(x, n, ...)

Arguments

X
knots numeric vector of knot positions
marginal logical, how to parametrize the spline, see Details
names character, vector of names for constructed variables
$\mathrm{q} \quad$ numeric, a single scalar greater or equal to 2 for a number of equal-frequency intervals along x or a vector of numbers in $(0 ; 1)$ specifying the quantiles explicitely.
na.rm logical, whether NA should be removed when calculating quantiles, passed to na.rm of quantile.
... other arguments passed to lspline
$\mathrm{n} \quad$ integer greater than 2 , knots are computed such that they cut n equally-spaced intervals along the range of x

Details

If marginal is FALSE (default) the coefficients of the spline correspond to slopes of the consecutive segments. If it is TRUE the first coefficient correspond to the slope of the first segment. The consecutive coefficients correspond to the change in slope as compared to the previous segment.

Function qlspline wraps lspline and calculates the knot positions to be at quantiles of x. If q is a numerical scalar greater or equal to 2 , the quantiles are computed at seq $(0,1$, length. out $=q+1)[-c(1, q+1)]$, i.e. knots are at q-tiles of the distribution of x. Alternatively, q can be a vector of values in $[0 ; 1]$ specifying the quantile probabilities directly (the vector is passed to argument probs of quantile).
Function elspline wraps lspline and computes the knot positions such that they cut the range of x into n equal-width intervals.

Author(s)

This function is inspired by Stata command mkspline and function ares: :lspline from Junger \& Ponce de Leon (2011). As such, the implementation follows Greene (2003), chapter 7.2.5

References

- Poirier, Dale J., and Steven G. Garber. (1974) "The Determinants of Aerospace Profit Rates 1951-1971." Southern Economic Journal: 228-238.
- Greene, William H. (2003) Econometric analysis. Pearson Education
- Junger \& Ponce de Leon (2011) "ares: Environment air pollution epidemiology: a library for timeseries analysis". R package version 0.7.2 retrieved from CRAN archives.

See Also

See the package vignette.

Examples

```
# Data from a quadratic polynomial
set.seed(666)
x <- rnorm(100, 5, 2)
y <- (x-5)^2 + rnorm(100)
plot(x, y)
# -- Marginal and non-marginal parametrisations
m.nonmarginal <- lm(y ~ lspline(x, 5))
m.marginal <- lm(y ~ lspline(x, 5, marginal=TRUE))
# Slope of consecutive segments
coef(m.nonmarginal)
# Slope change and consecutive knots
coef(m.marginal)
# Identical predicted values
identical( fitted(m.nonmarginal), fitted(m.marginal))
# -- Different ways to place knots
# Manually: knots at x=4 and x=6
m1 <- lm(y ~ lspline(x, c(4, 6)))
# 2 knots at terciles of 'x'
m2 <- lm(y ~ qlspline(x, 3))
# 3 knots dividing range of 'x' into 4 equal-width intervals
m3 <- lm(y ~ elspline(x, 4))
# Graphically
ox <- seq(min(x), max(x), length=100)
lines(ox, predict(m1, data.frame(x=ox)), col="red")
lines(ox, predict(m2, data.frame(x=ox)), col="blue")
lines(ox, predict(m3, data.frame(x=ox)), col="green")
legend("topright",
    legend=c("m1: lspline", "m2: qlspline", "m3: elspline"),
    col=c("red", "blue", "green"),
```

bty="n", lty=1)

Index

elspline(lspline), 2
lspline, 2
qlspline (lspline), 2 quantile, 2

