Package 'mable'

June 24, 2022
Title Maximum Approximate Bernstein/Beta Likelihood Estimation
Version 3.1.1
Date 2022-06-21
Author Zhong Guan [aut, cre]
Maintainer Zhong Guan zguan@iusb.edu
Depends R (>= 3.5.0)
Description Fit data from a continuous population with a smooth density on finite interval by an approximate Bernstein polynomial model which is a mixture of certain beta distributions and find maximum approximate Bernstein likelihood estimator of the unknown coefficients. Consequently, maximum likelihood estimates of the unknown density, distribution functions, and more can be obtained. If the support of the density is not the unit interval then transformation can be applied. This is an implementation of the methods proposed by the author of this package published in the Journal of Nonparametric Statistics: Guan (2016) doi:10.1080/10485252.2016.1163349 and Guan (2017) doi:10.1080/10485252.2017.1374384. For c variates, under some semiparametric regression models such as Cox proportional hazards model and the accelerated failure time model, the baseline survival function can be estimated smoothly based on general interval censored data.
License LGPL (>=2.0, < 3)
LazyData true

Encoding UTF-8

Imports survival, graphics, stats, icenReg, parallel, doParallel, foreach, iterators, tcltk

Suggests mixtools, ICsurv, knitr, rmarkdown, pbapply, markdown, ks, multimode
BuildVignettes true
VignetteBuilder knitr, rmarkdown
RoxygenNote 7.2.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-06-23 23:50:02 UTC

R topics documented:

chicken.embryo 2
cosmesis 3
dmixbeta 4
dmixmvbeta 5
dtmixbeta 6
mable 8
mable.aft 11
mable.ctrl 14
mable.decon 15
mable.dr 17
mable.dr.group 19
mable.group 21
mable.ic 23
mable.mvar 25
mable.ph 28
mable.reg 30
maple.aft 32
maple.dr 34
maple.dr.group 36
maple.ph 38
marginal.p 40
optim.gcp 41
optimable 42
pancreas 44
plot.mable 45
plot.mable_reg 46
se.coef.dr 47
summary.mable 48
Vaal.Flow 49
Index 50
chicken.embryo Chicken Embryo Data

Description

The chicken embryo dataset which contains day, number of days, and $n T$, the corresponding frequencies.

Usage

data(chicken.embryo)

Format

The format is: List of 2: day: int [1:21] 12345678910 ...; nT : int [1:21] 65112230000 ..

Source

Jassim, E. W., Grossman, M., Koops, W. J. And Luykx, R. A. J. (1996). Multi-phasic analysis of embryonic mortality in chickens. Poultry Sci. 75, 464-71.

References

Kuurman, W. W., Bailey, B. A., Koops, W. J. And Grossman, M. (2003). A model for failure of a chicken embryo to survive incubation. Poultry Sci. 82, 214-22.
Guan, Z. (2017) Bernstein polynomial model for grouped continuous data. Journal of Nonparametric Statistics, 29(4):831-848.

Examples

data(chicken.embryo)
cosmesis Breast cosmesis data

Description

Data contain the interval-censored times to cosmetic deterioration for breast cancer patients undergoing radiation or radiation plus chemotherapy.

Usage

data(cosmesis)

Format

A data frame with 94 observations on the following 3 variables.

- left left endpoint of the censoring interval in months
- right right endpoint of the censoring interval in months
- treat a factor with levels RT and RCT representing radiotherapy-only and radiation plus chemotherapy treatments, respectively

Source

Finkelstein, D. M. and Wolfe, R. A. (1985) A semiparametric model for regression analysis of interval-censored failure time data. Biometrics 41, 933-945.

References

Finkelstein, D. M. (1986) A proportional hazards model for interval-censored failure time data. Biometrics 42, 845-854.

Examples

```
data(cosmesis)
```


Mixture Beta Distribution

Description

Density, distribution function, quantile function and pseudorandom number generation for the Bernstein polynomial model, mixture of beta distributions, with shapes $(i+1, m-i+1), i=0, \ldots, m$, given mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ and support interval.

Usage

dmixbeta(x, p, interval $=c(0,1))$
pmixbeta(x, p, interval $=c(0,1))$
qmixbeta(u, p , interval $=c(0,1))$
rmixbeta(n, p, interval $=c(0,1))$

Arguments

x	a vector of quantiles
p	a vector of $m+1$ values. The $m+1$ components of p must be nonnegative and sum to one for mixture beta distribution. See 'Details'.
interval	support/truncation interval $[a, b]$. u
n	a vector of probabilities
sample size	

Details

The density of the mixture beta distribution on an interval $[a, b]$ can be written as a Bernstein polynomial $f_{m}(x ; p)=(b-a)^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}[(x-a) /(b-a)] /(b-a)$, where $p=\left(p_{0}, \ldots, p_{m}\right)$, $p_{i} \geq 0, \sum_{i=0}^{m} p_{i}=1$ and $\beta_{m i}(u)=(m+1)\binom{m}{i} u^{i}(1-x)^{m-i}, i=0,1, \ldots, m$, is the beta density with shapes $(i+1, m-i+1)$. The cumulative distribution function is $F_{m}(x ; p)=$ $\sum_{i=0}^{m} p_{i} B_{m i}[(x-a) /(b-a)]$, where $B_{m i}(u), i=0,1, \ldots, m$, is the beta cumulative distribution function with shapes $(i+1, m-i+1)$. If $\pi=\sum_{i=0}^{m} p_{i}<1$, then f_{m} / π is a truncated desity on $[a, b]$ with cumulative distribution function F_{m} / π. The argument p may be any numeric vector of $\mathrm{m}+1$ values when pmixbeta() and and qmixbeta() return the integral function $F_{m}(x ; p)$ and its inverse, respectively, and dmixbeta() returns a Bernstein polynomial $f_{m}(x ; p)$. If components of p are not all nonnegative or do not sum to one, warning message will be returned.

Value

A vector of $f_{m}(x ; p)$ or $F_{m}(x ; p)$ values at x. dmixbeta returns the density, pmixbeta returns the cumulative distribution function, qmixbeta returns the quantile function, and rmixbeta generates pseudo random numbers.

Author(s)

Zhong Guan zguan@iusb.edu

References

Bernstein, S.N. (1912), Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilities, Communications of the Kharkov Mathematical Society, 13, 1-2.
Guan, Z. (2016) Efficient and robust density estimation using Bernstein type polynomials. Journal of Nonparametric Statistics, 28(2):250-271.
Guan, Z. (2017) Bernstein polynomial model for grouped continuous data. Journal of Nonparametric Statistics, 29(4):831-848.

See Also

mable

Examples

```
# classical Bernstein polynomial approximation
a<--4; b<-4; m<-200
x<-seq(a,b,len=512)
u<-(0:m)/m
p<-dnorm(a+(b-a)*u)
plot(x, dnorm(x), type="l")
lines(x, (b-a)*dmixbeta(x, p, c(a, b))/(m+1), lty=2, col=2)
legend(a, dnorm(0), lty=1:2, col=1:2, c(expression(f(x)==phi(x)),
    expression(B^{f}*(x))))
```

 dmixmvbeta
 Multivariate Mixture Beta Distribution

Description

Density, distribution function, and pseudorandom number generation for the multivariate Bernstein polynomial model, mixture of multivariate beta distributions, with given mixture proportions $p=$ $\left(p_{0}, \ldots, p_{K-1}\right)$, given degrees $m=\left(m_{1}, \ldots, m_{d}\right)$, and support interval.

Usage

dmixmvbeta(x, p, m, interval $=$ NULL)
pmixmvbeta(x, p, m, interval $=$ NULL)
rmixmvbeta(n, p, m, interval $=$ NULL)

Arguments

x
p
m
interval
n
a matrix with d columns or a vector of length d within support hyperrectangle $[a, b]=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$ a vector of K values. All components of p must be nonnegative and sum to one for the mixture multivariate beta distribution. See 'Details'.
a vector of degrees, $\left(m_{1}, \ldots, m_{d}\right)$

Details

dmixmvbeta() returns a linear combination f_{m} of d-variate beta densities on $[a, b], \beta_{m j}(x)=$ $\prod_{i=1}^{d} \beta_{m_{i}, j_{i}}\left[\left(x_{i}-a_{i}\right) /\left(b_{i}-a_{i}\right)\right] /\left(b_{i}-a_{i}\right)$, with coefficients $p\left(j_{1}, \ldots, j_{d}\right), 0 \leq j_{i} \leq m_{i}, i=$ $1, \ldots, d$, where $[a, b]=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$ is a hyperrectangle, and the coefficients are arranged in the column-major order of $j=\left(j_{1}, \ldots, j_{d}\right), p_{0}, \ldots, p_{K-1}$, where $K=\prod_{i=1}^{d}\left(m_{i}+1\right)$. pmixmvbeta() returns a linear combination F_{m} of the distribution functions of d-variate beta distribution.

If all p_{i} 's are nonnegative and sum to one, then p are the mixture proportions of the mixture multivariate beta distribution.

Description

Density, distribution function, quantile function and pseudorandom number generation for the exponentially tilted mixture of beta distributions, with shapes $(i+1, m-i+1), i=0, \ldots, m$, given mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ and support interval.

Usage

```
dtmixbeta(x, p, alpha, interval \(=c(0,1)\), regr, \(\ldots\) )
ptmixbeta(x, p, alpha, interval \(=c(0,1)\), regr, \(\ldots\) )
qtmixbeta(u, p, alpha, interval \(=c(0,1)\), regr, \(\ldots\) )
    rtmixbeta(n, p, alpha, interval \(=c(0,1)\), regr, \(\ldots)\)
```


Arguments

x
p
alpha
interval
regr
... additional arguments to be passed to regr
u
n
a vector of quantiles beta distribution. See 'Details'.
regression coefficients
support/truncation interval [a, b]. matrix, $\mathrm{n}=$ length (x)
a vector of probabilities
sample size
a vector of $m+1$ components of p must be nonnegative and sum to one for mixture
regressor vector function $r(x)=\left(1, r_{1}(x), \ldots, r_{d}(x)\right)$ which returns $\mathrm{n} \mathrm{x}(\mathrm{d}+1)$

Details

The density of the mixture exponentially tilted beta distribution on an interval $[a, b]$ can be written $f_{m}(x ; p)=(b-a)^{-1} \exp \left(\alpha^{\prime} r(x)\right) \sum_{i=0}^{m} p_{i} \beta_{m i}[(x-a) /(b-a)] /(b-a)$, where $p=\left(p_{0}, \ldots, p_{m}\right)$, $p_{i} \geq 0, \sum_{i=0}^{m} p_{i}=1$ and $\beta_{m i}(u)=(m+1)\binom{m}{i} u^{i}(1-x)^{m-i}, i=0,1, \ldots, m$, is the beta density with shapes $(i+1, m-i+1)$. The cumulative distribution function is $F_{m}(x ; p)=$ $\sum_{i=0}^{m} p_{i} B_{m i}\left[(x-a) /(b-a) ;\right.$ alpha], where $B_{m i}(u ; a l p h a), i=0,1, \ldots, m$, is the exponentially tilted beta cumulative distribution function with shapes $(i+1, m-i+1)$.

Value

A vector of $f_{m}(x ; p)$ or $F_{m}(x ; p)$ values at x. dmixbeta returns the density, pmixbeta returns the cumulative distribution function, qmixbeta returns the quantile function, and rmixbeta generates pseudo random numbers.

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z., Application of Bernstein Polynomial Model to Density and ROC Estimation in a Semiparametric Density Ratio Model

See Also

mable

Examples

```
# classical Bernstein polynomial approximation
a<--4; b<-4; m<-200
x<-seq(a,b,len=512)
u<-(0:m)/m
p<-dnorm(a+(b-a)*u)
plot(x, dnorm(x), type="l")
```

```
lines(x, (b-a)*dmixbeta(x, p, c(a, b))/(m+1), lty=2, col=2)
legend(a, dnorm(0), lty=1:2, col=1:2, c(expression(f(x)==phi(x)),
    expression(B^{f}*(x))))
```

 mable
 Mable fit of one-sample raw data with an optimal or given degree.

Description

Maximum approximate Bernstein/Beta likelihood estimation based on one-sample raw data with an optimal selected by the change-point method among $\mathrm{m} 0: \mathrm{m} 1$ or a preselected model degree m .

```
Usage
    mable(
        x,
        M,
        interval = c(0, 1),
        IC = c("none", "aic", "hqic", "all"),
        vb = 0,
        controls = mable.ctrl(),
        progress = TRUE
    )
```


Arguments

x
M a positive integer or a vector ($m 0, m 1$). If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $\mathrm{m} 0<\mathrm{m} 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
interval $\quad a$ vector containing the endpoints of supporting/truncation interval $c(a, b)$
IC information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Han-nan-Quinn information criterion).
$\mathrm{vb} \quad$ code for vanishing boundary constraints, $-1: \mathrm{f} 0(\mathrm{a})=0$ only, $1: \mathrm{f} 0(\mathrm{~b})=0$ only, 2 : both, 0 : none (default).
controls Object of class mable.ctrl() specifying iteration limit and the convergence criterion eps. Default is mable.ctrl. See Details.
progress if TRUE a text progressbar is displayed

Details

Any continuous density function f on a known closed supporting interval $[a, b]$ can be estimated by Bernstein polynomial $f_{m}(x ; p)=\sum_{i=0}^{m} p_{i} \beta_{m i}[(x-a) /(b-a)] /(b-a)$, where $p=\left(p_{0}, \ldots, p_{m}\right)$, $p_{i} \geq 0, \sum_{i=0}^{m} p_{i}=1$ and $\beta_{m i}(u)=(m+1)\binom{m}{i} u^{i}(1-x)^{m-i}, i=0,1, \ldots, m$, is the beta density with shapes $(i+1, m-i+1)$. For each m , the MABLE of the coefficients p , the mixture proportions, are obtained using EM algorithm. The EM iteration for each candidate m stops if either the total absolute change of the log likelihood and the coefficients of Bernstein polynomial is smaller than eps or the maximum number of iterations maxit is reached.
If $\mathrm{m} 0<\mathrm{m} 1$, an optimal model degree is selected as the change-point of the increments of log-likelihood, log likelihood ratios, for $m \in\left\{m_{0}, m_{0}+1, \ldots, m_{1}\right\}$. Alternatively, one can choose an optimal degree based on the BIC (Schwarz, 1978) which are evaluated at $m \in\left\{m_{0}, m_{0}+1, \ldots, m_{1}\right\}$. The search for optimal degree m is stoped if either $m 1$ is reached with a warning or the test for changepoint results in a p-value pval smaller than sig. level. The BIC for a given degree m is calculated as in Schwarz (1978) where the dimension of the model is $d=\#\left\{i: \hat{p}_{i} \geq \epsilon, i=0, \ldots, m\right\}-1$ and a default ϵ is chosen as .Machine\$double.eps.
If data show a clearly multimodal distribution by plotting the histogram for example, the model degree is usually large. The range M should be large enough to cover the optimal degree and the computation is time-consuming. In this case the iterative method of moment with an initial selected by a method of mode which is implemented by optimable can be used to reduce the computation time.

Value

A list with components

- m the given or a selected degree by method of change-point
- p the estimated vector of mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ with the selected/given optimal degree m
- mloglik the maximum log-likelihood at degree m
- interval support/truncation interval (a,b)
- convergence An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in M). Possible error codes are
- 1, indicates that the iteration limit maxit had been reached in at least one EM iteration;
-2 , the search did not finish before m1.
- delta the convergence criterion delta value
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($m 0, m 1$), where $m 1$, if greater than $m 0$, is the largest candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Note

Since the Bernstein polynomial model of degree m is nested in the model of degree $m+1$, the maximum likelihood is increasing in m. The change-point method is used to choose an optimal degree m. The degree can also be chosen by a method of moment and a method of mode which are implemented by function optimal().

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2016) Efficient and robust density estimation using Bernstein type polynomials. Journal of Nonparametric Statistics, 28(2):250-271.

See Also

optimable

Examples

```
# Vaal Rive Flow Data
    data(Vaal.Flow)
    x<-Vaal.Flow$Flow
    res<-mable(x, M = c(2,100), interval = c(0, 3000), controls =
        mable.ctrl(sig.level = 1e-8, maxit = 2000, eps = 1.0e-9))
    op<-par(mfrow = c(1,2),lwd = 2)
    layout(rbind(c(1, 2), c(3, 3)))
    plot(res, which = "likelihood", cex = .5)
    plot(res, which = c("change-point"), lgd.x = "topright")
    hist(x, prob = TRUE, xlim = c(0,3000), ylim = c(0,.0022), breaks = 100*(0:30),
        main = "Histogram and Densities of the Annual Flow of Vaal River",
        border = "dark grey",lwd = 1,xlab = "x", ylab = "f(x)", col = "light grey")
    lines(density(x, bw = "nrd0", adjust = 1), lty = 4, col = 4)
    lines(y<-seq(0, 3000, length = 100), dlnorm(y, mean(log(x)),
                sqrt(var(log(x)))), lty = 2, col = 2)
    plot(res, which = "density", add = TRUE)
    legend("top", lty = c(1, 2, 4), col = c(1, 2, 4), bty = "n",
    c(expression(paste("MABLE: ",hat(f)[B])),
            expression(paste("Log-Normal: ",hat(f)[P])),
                expression(paste("KDE: ",hat(f)[K]))))
    par(op)
# Old Faithful Data
    library(mixtools)
    x<-faithful$eruptions
    a<-0; b<-7
    v<-seq(a, b,len = 512)
    mu<-c(2,4.5); sig<-c(1,1)
```

mable.aft

```
pmix<-normalmixEM(x,.5, mu, sig)
lam<-pmix$lambda; mu<-pmix$mu; sig<-pmix$sigma
y1<-lam[1]*dnorm(v,mu[1], sig[1])+lam[2]*dnorm(v, mu[2], sig[2])
res<-mable(x, M = c(2,300), interval = c(a,b), controls =
    mable.ctrl(sig.level = 1e-8, maxit = 2000L, eps = 1.0e-7))
op<-par(mfrow = c(1,2),lwd = 2)
layout(rbind(c(1, 2), c(3, 3)))
plot(res, which = "likelihood")
plot(res, which = "change-point")
hist(x, breaks = seq(0,7.5,len = 20), xlim = c(0,7), ylim = c(0,.7),
    prob = TRUE,xlab = "t", ylab = "f(t)", col = "light grey",
    main = "Histogram and Density of
            Duration of Eruptions of Old Faithful")
lines(density(x, bw = "nrd0", adjust = 1), lty = 4, col = 4, lwd = 2)
plot(res, which = "density", add = TRUE)
lines(v, y1, lty = 2, col = 2, lwd = 2)
legend("topright", lty = c(1,2,4), col = c(1,2,4), lwd = 2, bty = "n",
    c(expression(paste("MABLE: ",hat(f)[B](x))),
        expression(paste("Mixture: ",hat(f)[P](t))),
        expression(paste("KDE: ",hat(f)[K](t)))))
par(op)
```

mable.aft

Mable fit of Accelerated Failure Time Model

Description

Maximum approximate Bernstein/Beta likelihood estimation for accelerated failure time model based on interval censored data.

Usage

```
    mable.aft(
        formula,
        data,
        M,
        g = NULL,
        tau = NULL,
        x0 = NULL,
        controls = mable.ctrl(),
        progress = TRUE
    )
```


Arguments

formula regression formula. Response must be cbind. See 'Details'.
data a dataset

M	a positive integer or a vector $(m 0, m 1)$. If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
g	the given d-vector of regression coefficients, default is zero vector.
tau	the right endpoint of the support or truncation interval $[0, \tau)$ of the baseline density. Default is NULL (unknown), otherwise if tau is given then it is taken as a known value of τ. See 'Details'.
x0	a working baseline covariate x_{0}, default is zero vector. See 'Details'.
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider the accelerated failure time model with covariate for interval-censored failure time data: $S(t \mid x)=S\left(t \exp \left(\gamma^{\prime}\left(x-x_{0}\right)\right) \mid x_{0}\right)$, where x_{0} is a baseline covariate. Let $f(t \mid x)$ and $F(t \mid x)=$ $1-S(t \mid x)$ be the density and cumulative distribution functions of the event time given $X=x$, respectively. Then $f\left(t \mid x_{0}\right)$ on a truncation interval $[0, \tau]$ can be approximated by $f_{m}\left(t \mid x_{0} ; p\right)=$ $\tau^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}(t / \tau)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=1, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ is larger than the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S\left(t \mid x_{0}\right)$ on $[0, \tau]$ by $S_{m}\left(t \mid x_{0} ; p\right)=\sum_{i=0}^{m} p_{i} \bar{B}_{m i}(t / \tau)$, where $\bar{B}_{m i}(u)$ is the beta survival function with shapes $i+1$ and $m-i+1$.
Response variable should be of the form $\operatorname{cbind}(l, u)$, where (l, u) is the interval containing the event time. Data is uncensored if $l=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if 1 $=0$. The truncation time tau and the baseline x 0 should be chosen so that $S(t \mid x)=S\left(t \exp \left(\gamma^{\prime}(x-\right.\right.$ $\left.\left.\left.x_{0}\right)\right) \mid x_{0}\right)$ on $[\tau, \infty)$ is negligible for all the observed x.
The search for optimal degree m stops if either m 1 is reached or the test for change-point results in a p-value pval smaller than sig.level.

Value

A list with components

- m the given or selected optimal degree m
- p the estimate of $p=\left(p _0, \ldots, p _m\right)$, the coefficients of Bernstein polynomial of degree m
- coefficients the estimated regression coefficients of the AFT model
- SE the standard errors of the estimated regression coefficients
- z the z-scores of the estimated regression coefficients
- mloglik the maximum log-likelihood at an optimal degree m
- tau.n maximum observed time τ_{n}
- tau right endpoint of trucation interval $[0, \tau)$
- $x 0$ the working baseline covariates
- egx0 the value of $e^{\gamma^{\prime} x_{0}}$
- convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one m or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occured, and 0 indicates a successful completion.
- delta the final delta if $m 0=m 1$ or the final pval of the change-point for searching the optimal degree m;
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($m 0, m 1$), where $m 1$ is the last candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Likelihood Estimation in Accelerated Failure Time Model for Interval-Censored Data, arXiv:1911.07087.

See Also

```
maple.aft
```


Examples

```
## Breast Cosmesis Data
    bcos=cosmesis
    bcos2<-data.frame(bcos[,1:2], x=1*(bcos$treat=="RCT"))
    g <- 0.41 #Hanson and Johnson 2004, JCGS
    aft.res<-mable.aft(cbind(left, right)~x, data=bcos2, M=c(1, 30), g=g, tau=100, x0=1)
    op<-par(mfrow=c(1,2), lwd=1.5)
    plot(x=aft.res, which="likelihood")
    plot(x=aft.res, y=data.frame(x=0), which="survival", model='aft', type="l", col=1,
        add=FALSE, main="Survival Function")
    plot(x=aft.res, y=data.frame(x=1), which="survival", model='aft', lty=2, col=1)
    legend("bottomleft", bty="n", lty=1:2, col=1, c("Radiation Only", "Radiation and Chemotherapy"))
    par(op)
```

```
mable.ctrl Control parameters for mable fit
```


Description

Control parameters for mable fit

Usage

```
    mable.ctrl(
        sig.level = 0.01,
        eps = 1e-07,
        maxit = 5000L,
        eps.em = 1e-07,
        maxit.em = 5000L,
        eps.nt = 1e-07,
        maxit.nt = 1000L,
        tini = 1e-04
    )
```


Arguments

sig.level	the sigificance level for change-point method of choosing optimal model degree
eps	convergence criterion for iteration involves EM like and Newton-Raphson iter- ations
maxit	maximum number of iterations involve EM like and Newton-Raphson iterations
eps.em	convergence criterion for EM like iteration
maxit.em	maximum number of EM like iterations
eps.nt	convergence criterion for Newton-Raphson iteration
maxit.nt	maximum number of Newton-Raphson iterations
tini	a small positive number used to make sure initial p is in the interior of the sim- plex

Value

a list of the arguments' values

Author(s)

Zhong Guan zguan@iusb.edu

```
mable.decon Mable deconvolution with a known error density
```


Description

Maximum approximate Bernstein/Beta likelihood estimation in additive density deconvolution model with a known error density.

Usage

```
mable.decon(
    y,
    gn = NULL,
    ...,
    M,
    interval = c(0, 1),
    IC = c("none", "aic", "hqic", "all"),
    vanished = TRUE,
    controls = mable.ctrl(maxit.em = 1e+05, eps.em = 1e-05, maxit.nt = 100, eps.nt =
            1e-10),
    progress = TRUE
)
```


Arguments

y	vector of observed data values
gn	error density function if known, default is NULL if unknown
	additional arguments to be passed to gn
M	a vector ($\mathrm{m} 0, \mathrm{~m} 1$) specifies the set of consective candidate model degrees, $\mathrm{M}=$ $\mathrm{m} 0: \mathrm{m} 1$. If gn is unknown then $\mathrm{Ma} 2 \times 2$ matrix whose rows ($\mathrm{m} 0, \mathrm{~m} 1$) and ($\mathrm{k} 0, \mathrm{k} 1$) specify lower and upper bounds for degrees m and k, respectively.
interval	a finite vector (a, b), the endpoints of supporting/truncation interval if gn is known. Otherwise, it is a 2×2 matrix whose rows (a, b) and ($a 1, b 1$) specify supporting/truncation intervals of X and ϵ, respectively. See Details.
IC	information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Han-nan-Quinn information criterion).
vanished	logical whether the unknown error density vanishes at both end-points of [a1, b1]
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider the additive measurement error model $Y=X+\epsilon$, where X has an unknown distribution F on a known support $[\mathrm{a}, \mathrm{b}], \epsilon$ has a known or unknown distribution G, and X and ϵ are independent. We want to estimate density $f=F^{\prime}$ based on independent observations, $y_{i}=x_{i}+\epsilon_{i}, i=1, \ldots, n$, of Y. We approximate f by a Bernstein polynomial model on $[\mathrm{a}, \mathrm{b}]$. If $g=G^{\prime}$ is unknown on a known support [a1, b1], then we approximate g by a Bernstein polynomial model on [a1, b1], $a 1<0<b 1$. We assume $E(\epsilon)=0$. AIC and BIC methods are used to select model degrees (m, k).

Value

A mable class object with components, if g is known,

- M the vector ($\mathrm{m} 0, \mathrm{~m} 1$), where m 1 is the last candidate degree when the search stoped
- m the selected optimal degree m
- p the estimate of $p=\left(p _0, \ldots, p _m\right)$, the coefficients of Bernstein polynomial of degree m
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- convergence An integer code. 0 indicates an optimal degree is successfully selected in M. 1 indicates that the search stoped at m 1 .
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees
if g is unknown,
- M the 2×2 matrix with rows ($m 0, m 1$) and ($k 0, k 1$)
- nu_aic the selected optimal degrees (m, k) using AIC method
- p_aic the estimate of $p=\left(p_{_} 0, \ldots, p_{-} m\right)$, the coefficients of Bernstein polynomial model for f of degree m as in nu_aic
- q_aic the estimate of $q=\left(q_{-} 0, \ldots, q_{_} k\right)$, the coefficients of Bernstein polynomial model for g of degree k as in nu_aic
- nu_bic the selected optimal degrees (m, k) using BIC method
- p_bic the estimate of $p=\left(p_{_} 0, \ldots, p _m\right)$, the coefficients of Bernstein polynomial model for f of degree m as in nu_bic
- q_bic the estimate of $q=\left(q_{_} 0, \ldots, q_{-} k\right)$, the coefficients of Bernstein polynomial model for g of degree k as in nu_bic
- 1 k matrix of log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$ and $k \in\left\{k_{0}, \ldots, k_{1}\right\}$
- aic a matrix containing the Akaike information criterion(s) at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$ and $k \in$ $\left\{k_{0}, \ldots, k_{1}\right\}$
- bic a matrix containing the Bayesian information criterion(s) at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$ and $k \in\left\{k_{0}, \ldots, k_{1}\right\}$

Author(s)

Zhong Guan zguan@iusb.edu
mable.dr

References

Guan, Z., (2019) Fast Nonparametric Maximum Likelihood Density Deconvolution Using Bernstein Polynomials, Statistica Sinica, doi:10.5705/ss.202018.0173

Examples

```
# A simulated normal dataset
set.seed(123)
mu<-1; sig<-2; a<-mu-sig*5; b<-mu+sig*5;
gn<-function(x) dnorm(x, 0, 1)
n<-50;
x<-rnorm(n, mu, sig); e<-rnorm(n); y<-x+e;
res<-mable.decon(y,gn, interval = c(a, b), M = c(5, 50))
op<-par(mfrow = c(2, 2),lwd = 2)
plot(res, which="likelihood")
plot(res, which="change-point", lgd.x="topright")
plot(xx<-seq(a, b, length=100), yy<-dnorm(xx, mu, sig), type="l", xlab="x",
    ylab="Density", ylim=c(0, max(yy)*1.1))
plot(res, which="density", types=c(2,3), colors=c(2,3))
# kernel density based on pure data
lines(density(x), lty=4, col=4)
legend("topright", bty="n", lty=1:4, col=1:4,
c(expression(f), expression(hat(f)[cp]), expression(hat(f)[bic]), expression(tilde(f)[K])))
plot(xx, yy<-pnorm(xx, mu, sig), type="l", xlab="x", ylab="Distribution Function")
plot(res, which="cumulative", types=c(2,3), colors=c(2,3))
legend("bottomright", bty="n", lty=1:3, col=1:3,
    c(expression(F), expression(hat(F)[cp]), expression(hat(F)[bic])))
par(op)
```

mable.dr MABLE in Desnity Ratio Model

Description

Maximum approximate Bernstein/Beta likelihood estimation in a density ratio model based on twosample raw data.

Usage

mable.dr(
x ,
y,
M,
regr,
...,
interval $=c(0,1)$,
alpha = NULL,

```
    vb = 0,
    baseline = NULL,
    controls = mable.ctrl(),
    progress = TRUE,
    message = FALSE
)
```


Arguments

x, y	original two sample raw data, codex:"Control", $\mathrm{y}:$ "Case".
M	a positive integer or a vector $(\mathrm{m0}, \mathrm{~m} 1)$.
regr	regressor vector function $r(x)=\left(1, r_{1}(x), \ldots, r_{d}(x)\right)$ which returns $\mathrm{n} \mathrm{x}(\mathrm{d}+1)$ matrix, $\mathrm{n}=$ length (x)
\ldots	additional arguments to be passed to regr
interval	a vector (a, b) containing the endpoints of supporting/truncation interval of x and y.
alpha	initial regression coefficient, missing value is imputed by logistic regression code for vanishing boundary constraints, -1: f0(a)=0 only, 1: f0(b)=0 only, 2: both, 0: none (default).
baseline	the working baseline, "Control" or "Case", if NULL it is chosen to the one with smaller estimated lower bound for model degree.
controls	Object of class mable.ctrl () specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is mable.ctrl. See Details.
progress	logical: should a text progressbar be displayed
message	logical: should warning messages be displayed

Details

Suppose that x ("control") and y ("case") are independent samples from f0 and f 1 which samples satisfy $\mathrm{f} 1(\mathrm{x})=\mathrm{f} 0(\mathrm{x}) \exp [$ alpha0 0 alpha'r(x$)$] with $\mathrm{r}(\mathrm{x})=\left(\mathrm{r} 1(\mathrm{x}), \ldots, \mathrm{r} _\mathrm{d}(\mathrm{x})\right)$. Maximum approximate Bernstein/Beta likelihood estimates of (alpha0,alpha), f0 and f1 are calculated. If support is (a,b) then replace $r(x)$ by $r[a+(b-a) x]$. For a fixed m, using the Bernstein polynomial model for baseline f_{0}, MABLEs of f_{0} and parameters alpha can be estimated by EM algorithm and Newton iteration. If estimated lower bound m_{b} for m based on y is smaller that that based on x, then switch x and y and f_{1} is used as baseline. If $\mathrm{M}=\mathrm{m}$ or $\mathrm{m} 0=\mathrm{m} 1=\mathrm{m}$, then m is a preselected degree. If $\mathrm{m} 0<\mathrm{m} 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree by the change-point method, where m1-m0>3.

Value

A list with components

- m the given or a selected degree by method of change-point
- p the estimated vector of mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ with the given or selected degree m
- alpha the estimated regression coefficients
- mloglik the maximum log-likelihood at degree m
- interval support/truncation interval (a, b)
- baseline $=$ "control" if f_{0} is used as baseline, or $=$ "case" if f_{1} is used as baseline.
- M the vector ($m 0, m 1$), where $m 1$, if greater than $m 0$, is the largest candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z., Maximum Approximate Bernstein Likelihood Estimation of Densities in a Two-sample Semiparametric Model

Examples

```
# Hosmer and Lemeshow (1989):
# ages and the status of coronary disease (CHD) of 100 subjects
x<-c}(20,23, 24, 25, 26, 26, 28, 28, 29, 30, 30, 30, 30, 30, 32
32, 33, 33, 34, 34, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39,
40, 41, 41, 42, 42, 42, 43, 43, 44, 44, 45, 46, 47, 47, 48, 49,
49, 50, 51, 52, 55, 57, 57, 58, 60, 64)
y<-c}(25,30,34,36, 37, 39, 40, 42, 43, 44, 44, 45, 46, 47, 48
48, 49, 50, 52, 53, 53, 54, 55, 55, 56, 56, 56, 57, 57, 57, 57,
58, 58, 59, 59, 60, 61, 62, 62, 63, 64, 65, 69)
regr<-function(x) cbind(1,x)
chd.mable<-mable.dr(x, y, M=c(1, 15), regr, interval = c(20, 70))
chd.mable
```

mable.dr.group

Mable fit of the density ratio model based on grouped data

Description

Maximum approximate Bernstein/Beta likelihood estimation in a density ratio model based on twosample grouped data.

Usage

```
mable.dr.group(
        t,
        n0,
        n1,
        M,
        regr,
        interval \(=c(0,1)\),
        alpha = NULL,
        \(\mathrm{vb}=0\),
        controls = mable.ctrl(),
        progress = TRUE,
        message = TRUE
    )
```


Arguments

t
$\mathrm{n} 0, \mathrm{n} 1$ frequencies of two sample data grouped by the classes specified by t . coden0:"Control", n1: "Case".

M
regr
... additional arguments to be passed to regr
interval a vector (a,b) containing the endpoints of supporting/truncation interval of x and y.
alpha a given regression coefficient, missing value is imputed by logistic regression
$\mathrm{vb} \quad$ code for vanishing boundary constraints, $-1: \mathrm{f} 0(\mathrm{a})=0$ only, $1: \mathrm{f} 0(\mathrm{~b})=0$ only, 2 : both, 0 : none (default).
controls Object of class mable.ctrl() specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is mable.ctrl. See Details.
progress logical: should a text progressbar be displayed
message logical: should warning messages be displayed

Details

Suppose that n 0 ("control") and n 1 ("case") are frequencies of independent samples grouped by the classes t from $f 0$ and $f 1$ which satisfy $\mathrm{f} 1(\mathrm{x})=\mathrm{f} 0(\mathrm{x}) \exp [$ alpha0 0 alpha'r(x$)$] with $\mathrm{r}(\mathrm{x})=\left(\mathrm{rl}(\mathrm{x}), \ldots, \mathrm{r} _\mathrm{d}(\mathrm{x})\right)$. Maximum approximate Bernstein/Beta likelihood estimates of (alpha0,alpha), f0 and f1 are calculated. If support is (a, b) then replace $r(x)$ by $r[a+(b-a) x]$. For a fixed m, using the Bernstein polynomial model for baseline f_{0}, MABLEs of f_{0} and parameters alpha can be estimated by EM algorithm and Newton iteration. If estimated lower bound m_{b} for m based on $n 1$ is smaller that that based on n 0 , then switch n 0 and n 1 and use f_{1} as baseline. If $\mathrm{M}=\mathrm{m}$ or $\mathrm{m} 0=\mathrm{m} 1=\mathrm{m}$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $m 0: m 1$ for searching an optimal degree by the change-point method, where m1-m0>3.

```
mable.group
```

Mable fit of one-sample grouped data by an optimal or a preselected model degree

Description

Maximum approximate Bernstein/Beta likelihood estimation based on one-sample grouped data with an optimal selected by the change-point method among $\mathrm{m} 0: \mathrm{m} 1$ or a preselected model degree m.

Usage

```
    mable.group(
        x,
        breaks,
        M,
        interval = c(0, 1),
        IC = c("none", "aic", "hqic", "all"),
        vb = 0,
        controls = mable.ctrl(),
        progress = TRUE
    )
```


Arguments

$x \quad$ vector of frequencies
breaks class interval end points
M a positive integer or a vector ($m 0, m 1$). If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
interval a vector containing the endpoints of support/truncation interval
IC information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Han-nan-Quinn information criterion).
$\mathrm{vb} \quad$ code for vanishing boundary constraints, $-1: \mathrm{f} 0(\mathrm{a})=0$ only, $1: \mathrm{f} 0(\mathrm{~b})=0$ only, 2 : both, 0 : none (default).
controls Object of class mable.ctrl() specifying iteration limit and the convergence criterion eps. Default is mable.ctrl. See Details.
progress if TRUE a text progressbar is displayed

Details

Any continuous density function f on a known closed supporting interval $[a, b]$ can be estimated by Bernstein polynomial $f_{m}(x ; p)=\sum_{i=0}^{m} p_{i} \beta_{m i}[(x-a) /(b-a)] /(b-a)$, where $p=\left(p_{0}, \ldots, p_{m}\right)$, $p_{i} \geq 0, \sum_{i=0}^{m} p_{i}=1$ and $\beta_{m i}(u)=(m+1)\binom{m}{i} u^{i}(1-x)^{m-i}, i=0,1, \ldots, m$, is the beta density
with shapes $(i+1, m-i+1)$. For each m , the MABLE of the coefficients p , the mixture proportions, are obtained using EM algorithm. The EM iteration for each candidate m stops if either the total absolute change of the log likelihood and the coefficients of Bernstein polynomial is smaller than eps or the maximum number of iterations maxit is reached.
If $m 0<m 1$, an optimal model degree is selected as the change-point of the increments of log-likelihood, \log likelihood ratios, for $m \in\left\{m_{0}, m_{0}+1, \ldots, m_{1}\right\}$. Alternatively, one can choose an optimal degree based on the BIC (Schwarz, 1978) which are evaluated at $m \in\left\{m_{0}, m_{0}+1, \ldots, m_{1}\right\}$. The search for optimal degree m is stoped if either m 1 is reached with a warning or the test for changepoint results in a p-value pval smaller than sig.level. The BIC for a given degree m is calculated as in Schwarz (1978) where the dimension of the model is $d=\#\left\{i: \hat{p}_{i} \geq \epsilon, i=0, \ldots, m\right\}-1$ and a default ϵ is chosen as .Machine\$double.eps.

Value

A list with components

- m the given or a selected degree by method of change-point
- p the estimated p with degree m
- mloglik the maximum log-likelihood at degree m
- interval supporting interval (a, b)
- convergence An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in M). Possible error codes are
- 1, indicates that the iteration limit maxit had been reached in at least one EM iteration;
-2 , the search did not finish before m 1 .
- delta the convergence criterion delta value
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($m 0, m 1$), where $m 1$, if greater than $m 0$, is the largest candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2017) Bernstein polynomial model for grouped continuous data. Journal of Nonparametric Statistics, 29(4):831-848.
mable.ic

See Also

```
mable.ic
```


Examples

```
## Chicken Embryo Data
    data(chicken.embryo)
    a<-0; b<-21
    day<-chicken.embryo$day
    nT<-chicken.embryo$nT
    Day<-rep(day,nT)
    res<-mable.group(x=nT, breaks=a:b, M=c (2,100), interval=c(a, b), IC="aic",
            controls=mable.ctrl(sig.level=1e-6, maxit=2000, eps=1.0e-7))
    op<-par(mfrow=c(1,2), lwd=2)
    layout(rbind(c(1, 2), c(3, 3)))
    plot(res, which="likelihood")
    plot(res, which="change-point")
    fk<-density(x=rep((0:20)+.5, nT), bw="sj", n=101, from=a, to=b)
    hist(Day, breaks=seq(a,b, length=12), freq=FALSE, col="grey",
            border="white", main="Histogram and Density Estimates")
    plot(res, which="density",types=1:2, colors=1:2)
    lines(fk, lty=2, col=2)
    legend("topright", lty=c(1:2), c("MABLE", "Kernel"), bty="n", col=c(1:2))
    par(op)
```

mable.ic Mable fit based on one-sample interval censored data

Description

Maximum approximate Bernstein/Beta likelihood estimation of density and cumulative/survival distributions functions based on interal censored event time data.

Usage

```
mable.ic(
    data,
    M,
    pi0 \(=\) NULL,
    tau = Inf,
    IC = c("none", "aic", "hqic", "all"),
    controls = mable.ctrl(),
    progress = TRUE
)
```


Arguments

data	a dataset either data.frame or an $\mathrm{n} \times 2$ matrix.
M	an positive integer or a vector $(\mathrm{m} 0, \mathrm{~m} 1)$. If $\mathrm{M}=\mathrm{m}$ or $\mathrm{m} 0=\mathrm{m} 1=\mathrm{m}$, then m is a preselected degree. If $\mathrm{m} 0<\mathrm{m} 1 \mathrm{it} \mathrm{specifies} \mathrm{the} \mathrm{set} \mathrm{of} \mathrm{consective} \mathrm{candidate} \mathrm{model}$ degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
pi 0	Initial guess of $\pi=F\left(\tau_{n}\right)$. Without right censored data, pi0 $=1$. See 'Details'. tau IC right endpoint of support $[0, \tau)$ must be greater than or equal to the maximum observed time information criterion(s) in addition to Bayesian information criterion (BIC). Current choices are "aic" (Akaike information criterion) and/or "qhic" (Han- nan-Quinn information criterion).
progress	Object of class mable.ctrl () specifying iteration limit and other control op- tions. Default is mable.ctrl.
if TRUE a text progressbar is displayed	

Details

Let $f(t)$ and $F(t)=1-S(t)$ be the density and cumulative distribution functions of the event time, respectively. Then $f(t)$ on $\left[0, \tau_{n}\right]$ can be approximated by $f_{m}(t ; p)=\tau_{n}^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}\left(t / \tau_{n}\right)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=1-p_{m+1}, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ_{n} is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. We can approximate $S(t)$ on $[0, \tau]$ by $S_{m}(t ; p)=\sum_{i=0}^{m+1} p_{i} \bar{B}_{m i}(t / \tau)$, where $\bar{B}_{m i}(u), i=0, \ldots, m$, is the beta survival function with shapes $i+1$ and $m-i+1, \bar{B}_{m, m+1}(t)=1, p_{m+1}=1-\pi$, and $\pi=F\left(\tau_{n}\right)$. For data without right-censored time, $p_{m+1}=1-\pi=0$. The search for optimal degree m is stoped if either m 1 is reached or the test for change-point results in a p-value pval smaller than sig. level.
Each row of data, (l, u), is the interval containing the event time. Data is uncensored if $l=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if $l=0$.

Value

a class 'mable' object with components

- p the estimated p with degree m selected by the change-point method
- mloglik the maximum log-likelihood at an optimal degree m
- interval support/truncation interval $(0, b)$
- M the vector ($\mathrm{m} 0, \mathrm{~m} 1$), where m 1 is the last candidate when the search stoped
- m the selected optimal degree by the method of change-point
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- tau.n maximum observed time τ_{n}
- tau right endpoint of support $[0, \tau)$
- ic a list containing the selected information criterion(s)
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees
- convergence an integer code. 0 indicates successful completion(the iteration is convergent). 1 indicates that the maximum candidate degree had been reached in the calculation;
- delta the final pval of the change-point for selecting the optimal degree m;

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Bernstein Likelihood Estimation in Proportional Hazard Model for Interval-Censored Data, arXiv:1906.08882 .

See Also

mable.group

Examples

```
library(mable)
bcos=cosmesis
bc.res0<-mable.ic(bcos[bcos$treat=="RT",1:2], M=c(1,50), IC="none")
bc.res1<-mable.ic(bcos[bcos$treat=="RCT",1:2], M=c(1,50), IC="none")
op<-par(mfrow=c(2,2),lwd=2)
plot(bc.res0, which="change-point", lgd.x="right")
plot(bc.res1, which="change-point", lgd.x="right")
plot(bc.res0, which="survival", add=FALSE, xlab="Months", ylim=c(0,1), main="Radiation Only")
legend("topright", bty="n", lty=1:2, col=1:2, c(expression(hat(S)[CP]),
    expression(hat(S)[BIC])))
plot(bc.res1, which="survival", add=FALSE, xlab="Months", main="Radiation and Chemotherapy")
legend("topright", bty="n", lty=1:2, col=1:2, c(expression(hat(S)[CP]),
expression(hat(S)[BIC])))
par(op)
```

mable.mvar

Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Function

Description

Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Function

Usage

```
    mable.mvar (
        x ,
        M0 \(=1\),
        M,
        search = TRUE,
        interval = NULL,
        use.mar.deg = TRUE,
        high.dim = FALSE,
        criterion = c("cdf", "pdf"),
        controls = mable.ctrl(),
        progress \(=\) TRUE
)
```


Arguments

x
M0 a positive integer or a vector of d positive integers specify starting candidate degrees for searching optimal degrees.
M a positive integer or a vector of d positive integers specify the maximum candidate or the given model degrees for the joint density.
search logical, whether to search optimal degrees between $M 0$ and M or not but use M as the given model degrees for the joint density.
interval a vector of two endpoints or a $d \times 2$ matrix, each row containing the endpoints of support/truncation interval for each marginal density. If missing, the i-th row is assigned as $c(\min (x[, i]), \max (x[, i]))$.
use.mar. deg logical, if TRUE, the optimal degrees are selected based on marginal data, otherwise, the optimal degrees are those minimize the maximum L2 distance between marginal cdf or pdf estimated based on marginal data and the joint data. See details.
high.dim logical, data are high dimensional/large sample or not if TRUE, run a slower version procedure which requires less memory
criterion either cdf or pdf should be used for selecting optimal degrees. Default is "cdf"
controls Object of class mable.ctrl() specifying iteration limit and the convergence criterion eps. Default is mable.ctrl. See Details.
progress if TRUE a text progressbar is displayed

Details

A d-variate density f on a hyperrectangle $[a, b]=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$ can be approximated by a mixture of d-variate beta densities on $[a, b], \beta_{m j}(x)=\prod_{i=1}^{d} \beta_{m_{i}, j_{i}}\left[\left(x_{i}-a_{i}\right) /\left(b_{i}-a_{i}\right)\right] /\left(b_{i}-a_{i}\right)$, with proportion $p\left(j_{1}, \ldots, j_{d}\right), 0 \leq j_{i} \leq m_{i}, i=1, \ldots, d$. Let $\tilde{F}_{i}\left(\tilde{f}_{i}\right)$ be an estimate with degree \tilde{m}_{i} of the i -th marginal cdf (pdf) based on marginal data $\times[, \mathrm{i}], i=1, \ldots, d$. If search=TRUE and use.marginal=TRUE, then the optimal degrees are $\left(\tilde{m}_{1}, \ldots, \tilde{m}_{d}\right)$. If search=TRUE and use.marginal=FALSE,
then the optimal degrees $\left(\hat{m}_{1}, \ldots, \hat{m}_{d}\right)$ are those that minimize the maximum of L_{2}-distance between $\tilde{F}_{i}\left(\tilde{f}_{i}\right)$ and the estimate of $F_{i}\left(f_{i}\right)$ based on the joint data with degrees $m=\left(m_{1}, \ldots, m_{d}\right)$ for all m between M_{0} and M if criterion="cdf" (criterion="pdf").
For large data and multimodal density, the search for the model degrees is very time-consuming. In this case, it is suggested that the degrees are selected based on marginal data using mable or optimable.

Value

A list with components

- m a vector of the selected optimal degrees by the method of change-point
- p a vector of the mixture proportions $p\left(j_{1}, \ldots, j_{d}\right)$, arranged in the column-major order of $j=\left(j_{1}, \ldots, j_{d}\right), 0 \leq j_{i} \leq m_{i}, i=1, \ldots, d$.
- mloglik the maximum log-likelihood at an optimal degree m
- pval the p-values of change-points for choosing the optimal degrees for the marginal densities
- M the vector ($\mathrm{m} 1, \mathrm{~m} 2, \ldots, \mathrm{md}$), where mi is the largest candidate degree when the search stoped for the i-th marginal density
- interval support hyperrectangle $[a, b]=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$
- convergence An integer code. 0 indicates successful completion(the EM iteration is convergent). 1 indicates that the iteration limit maxit had been reached in the EM iteration;

Author(s)

Zhong Guan zguan@iusb.edu

References

Wang, T. and Guan, Z.,(2019) Bernstein Polynomial Model for Nonparametric Multivariate Density, Statistics, Vol. 53, no. 2, 321-338

See Also

mable, optimable

Examples

```
## Old Faithful Data
    a<-c(0, 40); b<-c(7, 110)
    ans<- mable.mvar(faithful, M = c(46,19), search =FALSE,
        interval = cbind(a,b), progress=FALSE)
    plot(ans, which="density")
    plot(ans, which="cumulative")
```

```
mable.ph Mable fit of Cox's proportional hazards regression model
```


Description

Maximum approximate Bernstein/Beta likelihood estimation in Cox's proportional hazards regression model based on interal censored event time data.

Usage

mable.ph(
formula,
data,
M,
g = NULL, pi0 $=$ NULL, tau $=$ Inf, x0 = NULL, controls = mable.ctrl(), progress = TRUE
)

Arguments

formula regression formula. Response must be cbind. See 'Details'.
data a dataset
M a positive integer or a vector ($m 0, m 1$). If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
g
initial guess of d-vector of regression coefficients. See 'Details'.
pi0 Initial guess of $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. Without right censored data, pi $0=1$. See 'Details'.
tau right endpoint of support $[0, \tau)$ must be greater than or equal to the maximum observed time
x0 a working baseline covariate. See 'Details'.
controls Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress if TRUE a text progressbar is displayed

Details

Consider Cox's PH model with covariate for interval-censored failure time data: $S(t \mid x)=S\left(t \mid x_{0}\right)^{\exp \left(\gamma^{\prime}\left(x-x_{0}\right)\right)}$, where x_{0} satisfies $\gamma^{\prime}\left(x-x_{0}\right) \geq 0$. Let $f(t \mid x)$ and $F(t \mid x)=1-S(t \mid x)$ be the density and cumulative distribution functions of the event time given $X=x$, respectively. Then $f\left(t \mid x_{0}\right)$ on $\left[0, \tau_{n}\right]$ can be approximated by $f_{m}\left(t \mid x_{0}, p\right)=\tau_{n}^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}\left(t / \tau_{n}\right)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=$
$1-p_{m+1}, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ_{n} is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S\left(t \mid x_{0}\right)$ on $\left[0, \tau_{n}\right]$ by $S_{m}\left(t \mid x_{0} ; p\right)=\sum_{i=0}^{m+1} p_{i} \bar{B}_{m i}\left(t / \tau_{n}\right)$, where $\bar{B}_{m i}(u), i=0, \ldots, m$, is the beta survival function with shapes $i+1$ and $m-i+1$, $\bar{B}_{m, m+1}(t)=1, p_{m+1}=1-\pi\left(x_{0}\right)$, and $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. For data without right-censored time, $p_{m+1}=1-\pi\left(x_{0}\right)=0$.
Response variable should be of the form $\operatorname{cbind}(l, u)$, where (l, u) is the interval containing the event time. Data is uncensored if $1=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if 1 $=0$. The associated covariate contains d columns. The baseline x 0 should chosen so that $\gamma^{\prime}\left(x-x_{0}\right)$ is nonnegative for all the observed x and all γ in a neighborhood of its true value.
A missing initial value of g is imputed by ic_sp() of package icenReg.
The search for optimal degree m stops if either $m 1$ is reached or the test for change-point results in a p-value pval smaller than sig.level. This process takes longer than maple.ph to select an optimal degree.

Value

A list with components

- m the selected/preselected optimal degree m
- p the estimate of $p=\left(p_{0}, \ldots, p_{m}, p_{m+1}\right)$, the coefficients of Bernstein polynomial of degree m
- coefficients the estimated regression coefficients of the PH model
- SE the standard errors of the estimated regression coefficients
- z the z-scores of the estimated regression coefficients
- mloglik the maximum log-likelihood at an optimal degree m
- tau.n maximum observed time τ_{n}
- tau right endpoint of support $[0, \tau)$
- $x 0$ the working baseline covariates
- egx0 the value of $e^{\gamma^{\prime} x_{0}}$
- convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one m or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occured, and 0 indicates a successful completion.
- delta the final delta if $m 0=m 1$ or the final pval of the change-point for searching the optimal degree m ;
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($\mathrm{m} 0, \mathrm{~m} 1$), where m 1 is the last candidate degree when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. Maximum Approximate Bernstein Likelihood Estimation in Proportional Hazard Model for Interval-Censored Data, Statistics in Medicine. 2020; 1-21. https://doi.org/10.1002/sim.8801.

See Also

maple.ph

Examples

```
    # Ovarian Cancer Survival Data
    require(survival)
    futime2<-ovarian$futime
    futime2[ovarian$fustat==0]<-Inf
    ovarian2<-data.frame(age=ovarian$age, futime1=ovarian$futime,
        futime2=futime2)
    ova<-mable.ph(cbind(futime1, futime2) ~ age, data = ovarian2,
        M=c(2,35),g=.16, x0=35)
    op<-par(mfrow=c(2,2))
    plot(ova, which = "likelihood")
    plot(ova, which = "change-point")
    plot(ova, y=data.frame(age=60), which="survival", add=FALSE, type="l",
        xlab="Days", main="Age = 60")
    plot(ova, y=data.frame(age=65), which="survival", add=FALSE, type="l",
        xlab="Days", main="Age = 65")
    par(op)
```

mable.reg
Mable fit of semiparametric regression model based on interval cen-
sored data

Description

Wrapping all codemable fit of regression models in one function. Using maximum approximate Bernstein/Beta likelihood estimation to fit semiparametric regression models: Cox ph model, proportional odds(po) model, accelerated failure time model, and so on.

Usage

mable.reg(
formula, data, model = c("ph", "aft"),

```
    M,
    g = NULL,
    pi0 = NULL,
    tau = Inf,
    x0 = NULL,
    eta = 1,
    controls = mable.ctrl(),
    progress = TRUE
)
```


Arguments

formula data model	regression formula. Response must be of the form cbind (l, u). See 'Details'. a dataset the model to fit. Current options are "ph" (Cox PH) or "aft" (accelerated failure time model)
M	a vector (m0, m1) specifies the set of consective integers as candidate degrees an initial guess of the regression coefficients
pi0	Initial guess of $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. Without right censored data, pi0 $=1$. See 'Details'.
tau	right endpoint of support $[0, \tau)$ must be greater than or equal to the maximum observed time
eta	a working baseline covariate. See 'Details'. controls
the given positive value of η. Used when model="po".	
progress	Object of class mable.ctrl tions. Default is mable.ctrl. specifying iteration limit and other control op- if TRUE a text progressbar is displayed

Details

For "ph" model a missing initial guess of the regression coefficients g is obtained by ic_sp() of package icenReg. For "aft" model a missing g is imputed by the rank estimate aftsrr() of package aftgee for right-censored data. For general interval censored observations, we keep the right-censored but replace the finite interval with its midpoint and fit the data by aftsrr() as a right-censored data.

Value

A 'mable_reg' class object

Author(s)

Zhong Guan zguan@iusb.edu

See Also

mable.aft, mable.ph

Description

Maximum approximate profile likelihood estimation of Bernstein polynomial model in accelerated failure time based on interal censored event time data with given regression coefficients which are efficient estimates provided by other semiparametric methods.

Usage

```
    maple.aft(
        formula,
        data,
        M,
        g,
        tau = NULL,
        x0 = NULL,
        controls = mable.ctrl(),
        progress = TRUE
    )
```


Arguments

formula data	regression formula. Response must be cbind. See 'Details'. a dataset
M	a positive integer or a vector ($m 0, m 1$). If $M=m$ or $m 0=m 1=m$, then m is a preselected degree. If $m 0<m 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
g	the given d-vector of regression coefficients.
tau	the right endpoint of the support or truncation interval $[0, \tau)$ of the baseline density. Default is NULL (unknown), otherwise if tau is given then it is taken as a known value of τ. See 'Details'.
x0	a working baseline covariate x_{0}, default is zero vector. See 'Details'.
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider the accelerated failure time model with covariate for interval-censored failure time data: $S(t \mid x)=S\left(t \exp \left(\gamma^{\prime}\left(x-x_{0}\right)\right) \mid x_{0}\right)$, where x_{0} is a baseline covariate. Let $f(t \mid x)$ and $F(t \mid x)=$ $1-S(t \mid x)$ be the density and cumulative distribution functions of the event time given $X=$ x, respectively. Then $f\left(t \mid x_{0}\right)$ on a support or truncation interval $[0, \tau]$ can be approximated by
$f_{m}\left(t \mid x_{0} ; p\right)=\tau^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}(t / \tau)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=1, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ is larger than the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. We can approximate $S\left(t \mid x_{0}\right)$ on $[0, \tau]$ by $S_{m}\left(t \mid x_{0} ; p\right)=\sum_{i=0}^{m} p_{i} \bar{B}_{m i}(t / \tau)$, where $\bar{B}_{m i}(u)$ is the beta survival function with shapes $i+1$ and $m-i+1$.
Response variable should be of the form $\operatorname{cbind}(l, u)$, where (l, u) is the interval containing the event time. Data is uncensored if $1=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if 1 $=0$. The truncation time tau and the baseline $\times 0$ should be chosen so that $S(t \mid x)=S\left(t \exp \left(\gamma^{\prime}(x-\right.\right.$ $\left.\left.\left.x_{0}\right)\right) \mid x_{0}\right)$ on $[\tau, \infty)$ is negligible for all the observed x.
The search for optimal degree m stops if either m 1 is reached or the test for change-point results in a p-value pval smaller than sig.level.

Value

A list with components

- m the selected optimal degree m
- p the estimate of $p=\left(p_{0}, \ldots, p_{m}\right)$, the coefficients of Bernstein polynomial of degree m
- coefficients the given regression coefficients of the AFT model
- SE the standard errors of the estimated regression coefficients
- z the z-scores of the estimated regression coefficients
- mloglik the maximum log-likelihood at an optimal degree m
- tau.n maximum observed time τ_{n}
- tau right endpoint of trucation interval $[0, \tau)$
- $x 0$ the working baseline covariates
- egx0 the value of $e^{\gamma^{\prime} x_{0}}$
- convergence an integer code, 1 indicates either the EM-like iteration for finding maximum likelihood reached the maximum iteration for at least one m or the search of an optimal degree using change-point method reached the maximum candidate degree, 2 indicates both occured, and 0 indicates a successful completion.
- delta the final delta if $m 0=m 1$ or the final pval of the change-point for searching the optimal degree m;
and, if $\mathrm{m} 0<\mathrm{m} 1$,
- M the vector ($m 0, m 1$), where $m 1$ is the last candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Likelihood Estimation in Accelerated Failure Time Model for Interval-Censored Data, arXiv:1911.07087.

See Also

> mable.aft

Examples

```
## Breast Cosmesis Data
    bcos=cosmesis
    bcos2<-data.frame(bcos[,1:2], x=1*(b\operatorname{cos$treat=="RCT"))}
    g<-0.41 #Hanson and Johnson 2004, JCGS,
    res1<-maple.aft(cbind(left, right) ~x, data=bcos2, M=c(1,30), g=g, tau=100, x0=1)
    op<-par(mfrow=c(1, 2), lwd=1.5)
    plot(x=res1, which="likelihood")
    plot(x=res1, y=data.frame(x=0), which="survival", model='aft', type="l", col=1,
            add=FALSE, main="Survival Function")
    plot(x=res1, y=data.frame(x=1), which="survival", model='aft', lty=2, col=1)
    legend("bottomleft", bty="n", lty=1:2, col=1, c("Radiation Only", "Radiation and Chemotherapy"))
    par(op)
```

maple.dr
Maximum approximate profile likelihood estimate of the density ratio
model

Description

Select optimal degree with a given regression coefficients.

Usage

maple.dr(
x ,
y,
M,
regr,
...,
interval $=c(0,1)$,
alpha = NULL,
$\mathrm{vb}=0$,
baseline = NULL,
controls = mable.ctrl(),
progress = TRUE,
message = TRUE
)

Arguments

x, y	original two sample raw data, codex:"Control", y: "Case".
M	a positive integer or a vector (m0, m1).
regr	regressor vector function $r(x)=\left(1, r_{1}(x), \ldots, r_{d}(x)\right)$ which returns $\mathrm{n} \mathrm{x}(\mathrm{d}+1)$ matrix, $\mathrm{n}=$ length(x)
	additional arguments to be passed to regr
interval	a vector (a, b) containing the endpoints of supporting/truncation interval of x and y.
alpha	a given regression coefficient, missing value is imputed by logistic regression
vb	code for vanishing boundary constraints, $-1: \mathrm{fO}(\mathrm{a})=0$ only, $1: \mathrm{f} 0(\mathrm{~b})=0$ only, 2 : both, 0 : none (default).
baseline	the working baseline, "Control" or "Case", if NULL it is chosen to the one with smaller estimated lower bound for model degree.
controls	Object of class mable.ctrl() specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is mable.ctrl. See Details.
progress	logical: should a text progressbar be displayed
message	logical: should warning messages be displayed

Details

Suppose that ("control") and y ("case") are independent samples from f0 and f1 which satisfy $\mathrm{f} 1(\mathrm{x})=\mathrm{f0}(\mathrm{x}) \exp \left[\operatorname{alpha} 0+\right.$ alpha'r(x)] with $\mathrm{r}(\mathrm{x})=\left(\mathrm{r} 1(\mathrm{x}), \ldots, \mathrm{r} _\mathrm{d}(\mathrm{x})\right)$. Maximum approximate Bernstein/Beta likelihood estimates of f 0 and f 1 are calculated with a given regression coefficients which are efficient estimates provided by other semiparametric methods such as logistic regression. If support is (a, b) then replace $r(x)$ by $r[a+(b-a) x]$. For a fixed m, using the Bernstein polynomial model for baseline f_{0}, MABLEs of f_{0} and parameters alpha can be estimated by EM algorithm and Newton iteration. If estimated lower bound m_{b} for m based on y is smaller that that based on x, then switch x and y and f_{1} is used as baseline. If $\mathrm{M}=\mathrm{m}$ or $\mathrm{m} 0=\mathrm{m} 1=\mathrm{m}$, then m is a preselected degree. If $\mathrm{m} 0<\mathrm{m} 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree by the change-point method, where $\mathrm{m} 1-\mathrm{m} 0>3$.

Value

A list with components

- m the given or a selected degree by method of change-point
- p the estimated vector of mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ with the given or selected degree m
- alpha the given regression coefficients
- mloglik the maximum log-likelihood at degree m
- interval support/truncation interval (a, b)
- baseline $=$ "control" if f_{0} is used as baseline, or $=$ "case" if f_{1} is used as baseline.
- M the vector ($m 0, m 1$), where $m 1$, if greater than $m 0$, is the largest candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z., Maximum Approximate Bernstein Likelihood Estimation of Densities in a Two-sample Semiparametric Model
maple.dr.group Maximum approximate profile likelihood estimate of the density ratio model for grouped data with given regression coefficients

Description

Select optimal degree of Bernstein polynomial model for grouped data with a given regression coefficients.

Usage

maple.dr.group(
t,
n0,
n1,
M,
regr,
...,
interval $=c(0,1)$,
alpha = NULL,
$\mathrm{vb}=0$,
controls = mable.ctrl(),
progress = TRUE,
message $=$ TRUE
)

Arguments

t
cutpoints of class intervals
$n 0, n 1$ frequencies of two sample data grouped by the classes specified by t. coden0:"Control", n1: "Case".

M
a positive integer or a vector ($m 0, m 1$).

regr	regressor vector function $r(x)=\left(1, r_{1}(x), \ldots, r_{d}(x)\right)$ which returns $\mathrm{n} \mathrm{x}(\mathrm{d}+1)$ matrix, $\mathrm{n}=$ length (x)
	additional arguments to be passed to regr
interval	a vector (a, b) containing the endpoints of supporting/truncation interval of x and y.
alpha	a given regression coefficient, missing value is imputed by logistic regression
vb	code for vanishing boundary constraints, $-1: \mathrm{f} 0(\mathrm{a})=0$ only, 1 : $\mathrm{f} 0(\mathrm{~b})=0$ only, 2 : both, 0 : none (default).
controls	Object of class mable.ctrl() specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is mable.ctrl. See Details.
progress	logical: should a text progressbar be displayed
message	logical: should warning messages be displayed

Details

Suppose that n 0 ("control") and n 1 ("case") are frequencies of independent samples grouped by the classes t from $\mathrm{f0}$ and f 1 which satisfy $\mathrm{f} 1(\mathrm{x})=\mathrm{f} 0(\mathrm{x}) \exp [$ alpha0 + alpha'r(x$)]$ with $\mathrm{r}(\mathrm{x})=\left(\mathrm{r} 1(\mathrm{x}), \ldots, \mathrm{r} _\mathrm{d}(\mathrm{x})\right)$. Maximum approximate Bernstein/Beta likelihood estimates of f0 and f1 are calculated with a given regression coefficients which are efficient estimates provided by other semiparametric methods such as logistic regression. If support is (a, b) then replace $r(x)$ by $r[a+(b-a) x]$. For a fixed m, using the Bernstein polynomial model for baseline f_{0}, MABLEs of f_{0} and parameters alpha can be estimated by EM algorithm and Newton iteration. If estimated lower bound m_{b} for m based on $n 1$ is smaller that that based on n 0 , then switch n 0 and n 1 and use f_{1} as baseline. If $\mathrm{M}=\mathrm{m}$ or $\mathrm{m} 0=\mathrm{m} 1=\mathrm{m}$, then m is a preselected degree. If $\mathrm{m} 0<\mathrm{m} 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree by the change-point method, where $\mathrm{m} 1-\mathrm{m} 0>3$.

Value

A list with components

- m the given or a selected degree by method of change-point
- p the estimated vector of mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ with the given or selected degree m
- alpha the given regression coefficients
- mloglik the maximum log-likelihood at degree m
- interval support/truncation interval (a, b)
- baseline $=$ "control" if f_{0} is used as baseline, or $=$ "case" if f_{1} is used as baseline.
- M the vector ($m 0, m 1$), where $m 1$, if greater than $m 0$, is the largest candidate when the search stoped
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z., Application of Bernstein Polynomial Model to Density and ROC Estimation in a Semiparametric Density Ratio Model
maple.ph Mable fit of the PH model with given regression coefficients

Description

Maximum approximate profile likelihood estimation of Bernstein polynomial model in Cox's proportional hazards regression based on interal censored event time data with given regression coefficients which are efficient estimates provided by other semiparametric methods.

Usage

```
maple.ph(
        formula,
        data,
        M,
        g,
        pi0 = NULL,
        tau = Inf,
        x0 = NULL,
        controls = mable.ctrl(),
        progress = TRUE
)
```


Arguments

formula data	regression formula. Response must be cbind. See 'Details'. a dataset
M	a positive integer or a vector ($\mathrm{m} 0, \mathrm{~m} 1$). If $\mathrm{M}=\mathrm{m}$ or $\mathrm{m} 0=\mathrm{m} 1=\mathrm{m}$, then m is a preselected degree. If $\mathrm{m} 0<\mathrm{m} 1$ it specifies the set of consective candidate model degrees $\mathrm{m} 0: \mathrm{m} 1$ for searching an optimal degree, where $\mathrm{m} 1-\mathrm{m} 0>3$.
g	the given d-vector of regression coefficients
pi0	Initial guess of $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. Without right censored data, pi $0=1$. See 'Details'.
tau	right endpoint of support $[0, \tau)$ must be greater than or equal to the maximum observed time
x0	a working baseline covariate. See 'Details'.
controls	Object of class mable.ctrl() specifying iteration limit and other control options. Default is mable.ctrl.
progress	if TRUE a text progressbar is displayed

Details

Consider Cox's PH model with covariate for interval-censored failure time data: $S(t \mid x)=S\left(t \mid x_{0}\right)^{\exp \left(\gamma^{\prime}\left(x-x_{0}\right)\right)}$, where x_{0} satisfies $\gamma^{\prime}\left(x-x_{0}\right) \geq 0$. Let $f(t \mid x)$ and $F(t \mid x)=1-S(t \mid x)$ be the density and cumulative distribution functions of the event time given $X=x$, respectively. Then $f\left(t \mid x_{0}\right)$ on $\left[0, \tau_{n}\right]$ can be approximated by $f_{m}\left(t \mid x_{0} ; p\right)=\tau_{n}^{-1} \sum_{i=0}^{m} p_{i} \beta_{m i}\left(t / \tau_{n}\right)$, where $p_{i} \geq 0, i=0, \ldots, m, \sum_{i=0}^{m} p_{i}=$ $1-p_{m+1}, \beta_{m i}(u)$ is the beta denity with shapes $i+1$ and $m-i+1$, and τ_{n} is the largest observed time, either uncensored time, or right endpoint of interval/left censored, or left endpoint of right censored time. So we can approximate $S\left(t \mid x_{0}\right)$ on $\left[0, \tau_{n}\right]$ by $S_{m}\left(t \mid x_{0} ; p\right)=\sum_{i=0}^{m+1} p_{i} \bar{B}_{m i}\left(t / \tau_{n}\right)$, where $\bar{B}_{m i}(u), i=0, \ldots, m$, is the beta survival function with shapes $i+1$ and $m-i+1$, $\bar{B}_{m, m+1}(t)=1, p_{m+1}=1-\pi\left(x_{0}\right)$, and $\pi\left(x_{0}\right)=F\left(\tau_{n} \mid x_{0}\right)$. For data without right-censored time, $p_{m+1}=1-\pi\left(x_{0}\right)=0$.
Response variable should be of the form $\operatorname{cbind}(l, u)$, where $(1, u)$ is the interval containing the event time. Data is uncensored if $l=u$, right censored if $u=\operatorname{Inf}$ or $u=N A$, and left censored data if l $=0$. The associated covariate contains d columns. The baseline x 0 should chosen so that $\gamma^{\prime}\left(x-x_{0}\right)$ is nonnegative for all the observed x.
The search for optimal degree m stops if either $m 1$ is reached or the test for change-point results in a p-value pval smaller than sig.level.

Value

a class 'mable_reg' object, a list with components

- M the vector ($m 0, m 1$), where $m 1$ is the last candidate degree when the search stoped
- m the selected optimal degree m
- p the estimate of $p=\left(p_{0}, \ldots, p_{m}, p_{m+1}\right)$, the coefficients of Bernstein polynomial of degree m
- coefficients the given regression coefficients of the PH model
- mloglik the maximum log-likelihood at an optimal degree m
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- tau.n maximum observed time τ_{n}
- tau right endpoint of support $[0, \tau)$
- $x 0$ the working baseline covariates
- egx0 the value of $e^{\gamma^{\prime} x_{0}}$
- convergence an integer code. 0 indicates successful completion(the iteration is convergent). 1 indicates that the maximum candidate degree had been reached in the calculation;
- delta the final convergence criterion for EM iteration;
- chpts the change-points among the candidate degrees;
- pom the p-value of the selected optimal degree m as a change-point;

Author(s)

Zhong Guan zguan@iusb.edu

References

Guan, Z. (2019) Maximum Approximate Bernstein Likelihood Estimation in Proportional Hazard Model for Interval-Censored Data, arXiv:1906.08882 .

See Also

mable.ph

Examples

```
## Simulated Weibull data
    require(icenReg)
    set.seed(123)
    simdata<-simIC_weib(70, inspections = 5, inspectLength = 1)
    sp<-ic_sp(cbind(l, u) ~ x1 + x2, data = simdata)
    res0<-maple.ph(cbind(l, u) ~ x1 + x2, data = simdata, M=c(2,20),
            g=sp$coefficients, tau=7)
    op<-par(mfrow=c(1,2))
    plot(res0, which=c("likelihood","change-point"))
    par(op)
    res1<-mable.ph(cbind(l, u) ~ x1 + x2, data = simdata, M=res0$m,
            g=c(.5,-.5), tau=7)
    op<-par(mfrow=c(1,2))
    plot(res1, y=data.frame(x=0, x2=0), which="density", add=FALSE, type="l",
            xlab="Time", main="Desnity Function")
    lines(xx<-seq(0, 7, len=512), dweibull(xx, 2,2), lty=2, col=2)
    legend("topright", bty="n", lty=1:2, col=1:2, c("Estimated","True"))
    plot(res1, y=data.frame(x=0, x2=0), which="survival", add=FALSE, type="l",
            xlab="Time", main="Survival Function")
    lines(xx, 1-pweibull(xx, 2, 2), lty=2, col=2)
    legend("topright", bty="n", lty=1:2, col=1:2, c("Estimated","True"))
    par(op)
```

marginal.p

The mixing proportions of marginal distribution from the mixture of multivariate beta distribution

Description

The mixing proportions of marginal distribution from the mixture of multivariate beta distribution

Usage

marginal.p(p, m)

Arguments

$\mathrm{p} \quad$ the mixing proportions of the mixture of multivariate beta distribution
m the model degrees $\mathrm{m}=(\mathrm{m} 1, \ldots, \mathrm{md})$ of the mixture of multivariate beta distribution

Value

a list of mixing proportions of all the marginal distributions

```
optim.gcp
```

Choosing optimal model degree by gamma change-point method

Description

Choose an optimal degree using gamma change-point model with two changing shape and scale parameters.

Usage

optim.gcp(obj)

Arguments

obj a class "mable" or 'mable_reg' object containig a vector $M=(m 0, m 1), l k, \log$ likelihoods evaluated evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$

Value

a list with components

- m the selected optimal degree m
- M the vector ($m 0, m 1$), where $m 1$ is the last candidate when the search stoped
- mloglik the maximum log-likelihood at degree m
- interval support/truncation interval (a, b)
- lk log-likelihoods evaluated at $m \in\left\{m_{0}, \ldots, m_{1}\right\}$
- Ir likelihood ratios for change-points evaluated at $m \in\left\{m_{0}+1, \ldots, m_{1}\right\}$
- pval the p-values of the change-point tests for choosing optimal model degree
- chpts the change-points chosen with the given candidate model degrees

Examples

```
# simulated data
p<-c(1:5,5:1)
p<-p/sum(p)
x<-rmixbeta(100, p)
res1<-mable(x, M=c(2, 50), IC="none")
m1<-res1$m[1]
res2<-optim.gcp(res1)
m2<-res2$m
op<-par(mfrow=c(1,2))
plot(res1, which="likelihood", add=FALSE)
plot(res2, which="likelihood")
#segments(m2, min(res1$lk), m2, res2$mloglik, col=4)
plot(res1, which="change-point", add=FALSE)
plot(res2, which="change-point")
par(op)
```

```
optimable mable with degree selected by the method of moment and method of
mode
```


Description

Maximum Approximate Bernstein/Beta Likelihood Estimation with an optimal model degree estimated by the Method of Moment

Usage

optimable(
x ,
interval,
$\mathrm{m}=\mathrm{NULL}$,
$\mathrm{mu}=\mathrm{NULL}$,
lam = NULL,
modes $=$ NULL,
nmod $=1$,
ushaped = FALSE,
maxit $=50 \mathrm{~L}$
)

Arguments

$x \quad$ a univariate sample data in interval
interval a closed interval $c(a, b)$, default is [0,1]
$\mathrm{m} \quad$ initial degree, default is 2 times the number of modes nmod.

mu	a vector of component means of multimodal mixture density, default is NULL for unimodal or unknown
lam	a vector of mixture proportions of same length of mu
modes	a vector of the locations of modes, if it is NULL (default) and multimode : : locmodes() the number of modes, if nmod=0, the lower bound for m is estimated based on mean and variance only.
nod	logical, whether or not the density is clearly U-shaped including J- and L-shaped with mode occurs at the endpoint of the support.
maxit	maximum iterations

Details

If the data show a clear uni- or multi-modal distribution, then give the value of nmod as the number of modes. Otherwise nmod=0. The degree is estimated by the iterative method of moment with an initial degree estimated by the method of mode. For multimodal density, if useful estimates of the component means mu and proportions lam are available then they can be used to give an initial degree. If the distribution is clearly $\mathrm{U}-$, J -, or L-shaped, i.e., the mode occurs at the endpoint of interval, then set ushaped=TRUE. In this case the degree is estimated by the method of mode.

Value

A class "mable" object with components

- m the given or a selected degree by method of change-point
- p the estimated vector of mixture proportions $p=\left(p_{0}, \ldots, p_{m}\right)$ with the selected/given optimal degree m
- mloglik the maximum log-likelihood at degree m
- interval support/truncation interval (a, b)
- convergence An integer code. 0 indicates successful completion (all the EM iterations are convergent and an optimal degree is successfully selected in M). Possible error codes are
- 1, indicates that the iteration limit maxit had been reached in at least one EM iteration;
-2 , the search did not finish before $m 1$.
- delta the convergence criterion delta value

Author(s)

Zhong Guan zguan@iusb.edu

Examples

```
## Old Faithful Data
x<-faithful
x1<-faithful[,1]
x2<-faithful[,2]
a<-c(0, 40); b<-c(7, 110)
mu<-(apply(x, 2,mean)-a)/(b-a)
```

```
s2<-apply(x,2,var)/(b-a)^2
# mixing proportions
lambda<-c(mean(x1<3), mean(x2<65))
# guess component mean
mu1<-(c(mean(x1[x1<3]), mean(x2[x2<65]))-a)/(b-a)
mu2<-(c(mean(x1[x1>=3]), mean(x2[x2>=65]))-a)/(b-a)
# estimate lower bound for m
mb<-ceiling((mu*(1-mu)-s2)/(s2-lambda*(1-lambda)*(mu1-mu2)^2)-2)
mb
m1<-optimable(x1, interval=c(a[1],b[1]), nmod=2, modes=c(2,4.5))$m
m2<-optimable(x2, interval=c(a[2],b[2]), nmod=2, modes=c(52.5,80))$m
m1;m2
erupt1<-mable(x1, M=mb[1], interval=c(a[1],b[1]))
erupt2<-mable(x1, M=m1, interval=c(a[1],b[1]))
wait1<-mable(x2, M=mb[2],interval=c(a[2],b[2]))
wait2<-mable(x2, M=m2,interval=c(a[2],b[2]))
ans1<- mable.mvar(faithful, M = mb, search =FALSE, interval = cbind(a,b))
ans2<- mable.mvar(faithful, M = c(m1,m2), search =FALSE, interval = cbind(a,b))
op<-par(mfrow=c(1,2), cex=0.8)
hist(x1, probability = TRUE, col="grey", border="white", main="",
    xlab="Eruptions", ylim=c(0,.65), las=1)
plot(erupt1, add=TRUE,"density")
plot(erupt2, add=TRUE,"density",lty=2,col=2)
legend("topleft", lty=c(1,2),col=1:2, bty="n", cex=.7,
    c(expression(paste("m = ", m[b])), expression(paste("m = ", hat(m)))))
hist(x2, probability = TRUE, col="grey", border="white", main="",
    xlab="Waiting", las=1)
plot(wait1, add=TRUE,"density")
plot(wait2, add=TRUE,"density",lty=2,col=2)
legend("topleft", lty=c(1,2),col=1:2, bty="n", cex=.7,
    c(expression(paste("m = ", m[b])),expression(paste("m = ", hat(m)))))
par(op)
op<-par(mfrow=c(1, 2), cex=0.7)
plot(ans1, which="density", contour=TRUE)
plot(ans2, which="density", contour=TRUE, add=TRUE, lty=2, col=2)
plot(ans1, which="cumulative", contour=TRUE)
plot(ans2, which="cumulative", contour=TRUE, add=TRUE, lty=2, col=2)
par(op)
```

pancreas Pancreatic Cancer Biomarker Data

Description

Contain sera measurements from 51 control patients with pancreatitis and 90 case patients with pancreatic cancer at the Mayo Clinic with a cancer antigen, CA125, and with a carbohydrate antigen, CA19-9 (Wieand, et al, 1989)

Usage

```
data(pancreas)
```


Format

A data frame with 141 rows and 3 variables.

- ca199. CA19-9 levels
- ca125. CA125 levels
- status. $0=$ controls (non-cancer) and $1=$ cases (cancer).

Source

Wieand, S., Gail, M. H., James, B. R., and James, K.L. (1989). A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika, 76, 585-592.

References

Wieand, S., Gail, M. H., James, B. R., and James, K.L. (1989). A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika, 76, 585-592.

Examples

```
data(pancreas)
```

```
plot.mable Plot mathod for class 'mable'
```


Description

Plot mathod for class 'mable'

```
Usage
## S3 method for class 'mable'
plot(
    x,
    which = c("density", "cumulative", "survival", "likelihood", "change-point", "all"),
    add = FALSE,
    contour = FALSE,
    lgd.x = NULL,
    lgd.y = NULL,
    nx = 512,
    ...
)
```


Arguments

X
Class "mable" object return by mablem, mable, mablem. group or mable.group functions which contains p, mloglik, and $M=m 0: m 1, l k, l r$,
which indicates which graphs to plot, options are "density", "cumulative", "likelihood", "change-point", "all". If not "all", which can contain more than one options.
add logical add to an existing plot or not
contour logical plot contour or not for two-dimensional data
lgd. $x, \operatorname{lgd} . y \quad$ coordinates of position where the legend is displayed
$n x \quad$ number of evaluations of density, or cumulative distribution curve to be plotted.
$\ldots \quad$ additional arguments to be passed to the base plot function

Value

The data used for 'plot()', 'lines()', or 'persp()' are returned invisibly.

```
plot.mable_reg Plot mathod for class 'mable_reg'
```


Description

Plot mathod for class 'mable_reg'

```
Usage
    ## S3 method for class 'mable_reg'
    plot(
        x,
        y,
        newdata = NULL,
        ntime = 512,
        xlab = "Time",
        which = c("survival", "likelihood", "change-point", "density", "all"),
        add = FALSE,
    )
```


Arguments

x
y
y
newdata
a class 'mable_reg' object return by functions such as mable. ph which contains M, coefficients, p, m, x0, tau.n, tau lk, lr.
a new data.frame of covariate value(s) as row(s), whose columns are arranged in the same order as in the formula called by the function that returned the object x.
a new data.frame (ignored if y is included), imputed by the working baseline x 0 if both missing.
ntime number of evaluations of density, survival or cumulative distribution curve to be plotted.
x xab $\quad x$-axis label
which indicates which graphs to plot, options are "survival", "likelihood", "changepoint", "density", or "all". If not "all", which can contain more than one options.
add logical add to an existing plot or not
... additional arguments to be passed to the base plot function

Author(s)

Zhong Guan zguan@iusb.edu

```
se.coef.dr
```


Description

Bootstrap estimates of standard errors for the regression coefficients which are estimated by maximum approximate Bernstein/Beta likelihood estimation method in a density ratio model based on two-sample raw data.

Usage

```
se.coef.dr(
    obj,
    grouped = FALSE,
    B = 500,
    parallel = FALSE,
    ncore = NULL,
    controls = mable.ctrl()
)
```


Arguments

obj Class 'mable_dr' object return by mable.dr or mable.dr.group functions
grouped logical: are data grouped or not.
B number of bootstrap runs.
parallel logical: do parallel or not.
ncore number of cores used for parallel computing. Default is half of availables.
controls Object of class mable.ctrl() specifying iteration limit and the convergence criterion for EM and Newton iterations. Default is mable.ctrl. See Details.

Details

Bootstrap method is used based on bootstrap samples generated from the MABLE's of the densities f 0 and f 1 . The bootstrap samples are fitted by the Bernstein polynomial model and the glm() to obtain bootstrap versions of coefficient estimates.

Value

the estimated standard errors
summary.mable Summary mathods for classes 'mable' and 'mable_reg'

Description

Produces a summary of a mable fit.

Usage

```
## S3 method for class 'mable'
summary(object, ...)
    ## S3 method for class 'mable_reg'
    summary(object, ...)
```


Arguments

object
Class "mable" or 'mable_reg' object return by mable or mable.xxxx functions
... for future methods

Value

Invisibly returns its argument, object.

Examples

```
## Breast Cosmesis Data
    bcos=cosmesis
    bcos2<-data.frame(bcos[,1:2], x=1*(bcos$treat=="RCT"))
    aft.res<-mable.aft(cbind(left, right)~x, data=bcos2, M=c(1, 30), g=.41,
            tau=100, x0=1)
    summary(aft.res)
```


Description

The annual flow data of Vaal River at Standerton as given by Table 1.1 of Linhart and Zucchini (1986) give the flow in millions of cubic metres.

Usage

```
data(Vaal.Flow)
```


Format

The format is: int [1:65] 22210944521298882988276216103490 ...

References

Linhart, H., and Zucchini, W., Model Selection, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, New York: John Wiley and Sons Inc, 1986.

Examples

```
data(Vaal.Flow)
```


Index

```
* Accelerated failure time model
    mable.aft, 11
    maple.aft, 32
* Additive measurement error
    mable.decon, 15
* Bernstein polynomial model
    dmixbeta,4
    dtmixbeta,6
    mable, 8
    mable.decon, 15
    mable.group, 21
* Cox proportional hazards model
    mable.ph, 28
    mable.reg, 30
    maple.ph, 38
* Density deconvolution
    mable.decon, }1
* Mixture beta distribution
    dmixbeta, 4
    dtmixbeta, }
* accelerated failure time model
    mable.reg, 30
* datasets
    chicken.embryo, 2
    cosmesis, 3
    pancreas,44
    Vaal.Flow, 49
* density estimation
    mable.mvar, 25
* distribution
    dmixbeta, 4
    dtmixbeta,6
    mable,8
    mable.aft, 11
    mable.group, 21
    mable.mvar, 25
    mable.ph, 28
    mable.reg, 30
    maple.aft, 32
```

maple.ph, 38

* interval censoring
mable.aft, 11
mable.ph, 28
mable.reg, 30
maple.aft, 32
maple.ph, 38
* models
dmixbeta, 4
dtmixbeta, 6
mable, 8
mable.aft, 11
mable.group, 21
mable.ph, 28
mable.reg, 30
maple.aft, 32
maple.ph, 38
* multivariate Bernstein polynomial model
mable.mvar, 25
* multivariate
mable.mvar, 25
* nonparametric
dmixbeta, 4
dtmixbeta, 6
mable, 8
mable.aft, 11
mable.group, 21
mable.mvar, 25
mable.ph, 28
mable.reg, 30
maple.aft, 32
maple.ph, 38
* regression
mable.aft, 11
mable.ph, 28
mable.reg, 30
maple.aft, 32
maple.ph, 38
* smooth

```
    dmixbeta, 4
    dtmixbeta,6
    mable, 8
    mable.aft, 11
    mable.group, 21
    mable.ph, 28
    mable.reg, 30
    maple.aft, 32
    maple.ph, 38
* survival
    mable.aft, 11
    mable.ph, 28
    mable.reg, 30
    maple.aft,32
    maple.ph, }3
* univar
    mable, 8
    mable.group,21
chicken.embryo, 2
cosmesis, }
dmixbeta,4
dmixmvbeta,5
dtmixbeta,6
mable, 5, 7, 8, 27
mable.aft, 11, 31,34
mable.ctrl, 8,12,14, 15,18, 20, 21, 24, 26,
    28,31,32, 35, 37, 38,47
mable.decon, 15
mable.dr, 17
mable.dr.group, 19
mable.group, 21,25
mable.ic, 23,23
mable.mvar, }2
mable.ph, 28, 31,40
mable.reg, 30
maple.aft, 13,32
maple.dr, 34
maple.dr.group, 36
maple.ph, 29, 30, }3
marginal.p,40
optim.gcp,41
optimable, 9, 10, 27, 42
pancreas,44
plot.mable,45
```

plot.mable_reg, 46
pmixbeta (dmixbeta), 4
pmixmvbeta (dmixmvbeta), 5
ptmixbeta (dtmixbeta), 6
qmixbeta (dmixbeta), 4
qtmixbeta (dtmixbeta), 6
rmixbeta (dmixbeta), 4
rmixmvbeta (dmixmvbeta), 5
rtmixbeta (dtmixbeta), 6
se.coef.dr, 47
summary.mable, 48
summary.mable_reg (summary.mable), 48

Vaal.Flow, 49

