Package ‘manifestoR’

November 30, 2020
Encoding UTF-8

Title Access and Process Data and Documents of the Manifesto Project
Date 2020-11-29
Version 1.5.0

Description Provides access to coded election programmes from the Manifesto
Corpus and to the Manifesto Project's Main Dataset and routines to analyse this
data. The Manifesto Project <https://manifesto-project.wzb.eu> collects and
analyses election programmes across time and space to measure the political
preferences of parties. The Manifesto Corpus contains the collected and
annotated election programmes in the Corpus format of the package 'tm' to enable
easy use of text processing and text mining functionality. Specific functions
for scaling of coded political texts are included.

Depends R (>= 3.1.0), NLP (>= 0.1-3), tm (>= 0.6)

Imports utils, stats, methods, magrittr, httr (>= 1.0.0), jsonlite (>=
0.9.12), functional (>= 0.6), zoo (>= 1.7-11), psych,
base64enc, htmlwidgets (>= 0.6), DT (>= 0.2), htmltools, purrr
(>=0.2.4), readr (>= 1.2.0), dplyr (>=0.7.5), tidyselect (>=
1.0.0), tibble (>= 2.0.0)

Suggests knitr, rmarkdown, testthat (>= 1.0.2), R.rsp, haven (>=
1.0.0), readx] (>= 1.0.0), devtools (>= 1.7.0), formatR, highr

VignetteBuilder R.rsp

Collate manifestoR-package.r manifestoR-defunct.R globals.R
pipe_helpers.R cache.R db_api.R corpus.R manifesto.R codes.R
scaling_general.R scaling_rile.R scaling_functions.R
issue_attention.R nicheness.R clarity.R scaling_bootstrap.R
dataset.R codebook.R dedication.R

License GPL (>=3)

URL https://github.com/ManifestoProject/manifestoR,
https://manifesto-project.wzb.eu/

BugReports https://github.com/ManifestoProject/manifestoR/issues
LazyData true

https://github.com/ManifestoProject/manifestoR
https://manifesto-project.wzb.eu/
https://github.com/ManifestoProject/manifestoR/issues

RoxygenNote 7.1.1
NeedsCompilation no

Author Jirka Lewandowski [aut],
Nicolas Merz [aut],
Sven Regel [aut, cre],
Pola Lehmann [ctb],
Paul Muscat [ctb]

Maintainer Sven Regel <sven.regel@wzb.eu>
Repository CRAN
Date/Publication 2020-11-29 23:00:09 UTC

R topics documented:

A@EIegate_PeIS o e e e
aggregate_pers_Cee oua e oo
attach_year,
clarity_dimensions
codes
count_codes
formatids
formatmpds oL
franzmann_kaiser
get_mpdb
get_viacache
i
issue_attention_diversity
ManifestoAvailability
ManifestoCorpus
ManifestoDocument
ManifestoDocumentMeta
manifestoR
ManifestoSource
median_voter
mpdb_api_request
mp_availability oL
mp_bootstrap
mp_check_for_corpus_update
mp_Cite
mp_clarity
mp_codebook oo
MP_COreversions

MP_COrpusSversions« oo ..
mp_dedication. L L.
mp_emptycache L.
mp_interpolate L.

R topics documented:

aggregate_pers 3

mp_load_cache e 27
mp_maindataset e e e e e e e e e e e 28
mp_metadata L. e e e e e 29
mp_nicheness e e e e e e e 30
MP_TMPS « o v v v v e 32
mp_save_cache e 33
mp_scale e 33
mp_setapikey 34
MP_USE_COTPUS_VETSION v v v vt vt it e et e e e e e e e e e e 35
mp_view_originals 35
na_replace e e 36
null to na L e e e 36
Prefix . . L 37
readManifesto L L 37
recode_cee_COodes e 38
rep.dataframe 38
rescale e e 39
rile . . . e 39
scale_weighted L 40
split_belgium 41
VA_CateZOTIES v v o e e e e e e e e e e 42
vanilla L e e e 43
Index 44
aggregate_pers Aggregate category percentages in groups
Description

aggregate_pers is a general function to aggregate percentage variables by creating a new variable
holding the sum. If a variable with the name for the aggregate already exists, it is overwritten,
giving a warning if it is changed, not NA, not zero and not named "peruncod".

Usage

aggregate_pers(

data,

groups = v5_v4_aggregation_relations(),
na.rm = FALSE,

keep = FALSE,

overwrite = names(groups)

4 aggregate_pers_cee

Arguments
data dataset to use in aggregation
groups (named) list of variable name vectors to aggregate to a new one (as given in the
name); see default value for an example of the format
na.rm passed on to sum
keep keep variables that were aggregated in result?
overwrite Names of the variables that are allowed to be overwritten by aggregate. Defaults
to all aggregate variable names. If a variable is overwritten, a message is issued
in any case.
See Also

aggregate_pers_cee

aggregate_pers_cee Aggregate cee-categories to main categories

Description

Adds the code frequencies in a dataset of the 4 digit per-variables (per1011 to per7062 - mostly used
in codings of Central and Eastern European countries) to the main categories in the coding scheme
(3 digits).

Usage

aggregate_pers_cee(data)

Arguments

data dataset to use in aggregation

Details

A wrapper of aggregate_pers using cee_aggregation_relations.

See Also

aggregate_pers

attach_year 5

attach_year Compute year from date variable in MPDS

Description

Compute year from date variable in MPDS

Usage

attach_year (mpds)

Arguments

mpds a dataframe in format of Manifesto Project Main Dataset

Value

input data with year variable attached

clarity_dimensions Default programmatic clarity dimensions from
Giebler/Lacewell/Regel/Werner 2015.

Description

Default programmatic clarity dimensions from Giebler/Lacewell/Regel/Werner 2015.

Usage

clarity_dimensions()

References

Giebler/Lacewell/Regel/Werner (2015). Mass, Catch-all, or Programmatic? Toward an Empirical
Classification of Party Types. Manuscript.

6 count_codes

codes Access the codes of a Manifesto Document or Corpus

Description

With the accessor the codes of a Manifesto Document can be read and modified. The codes of a
Manifesto Corpus can only be read, modification needs to be done document-wise.

Usage
codes(x, layer = "cmp_code”)

S3 method for class 'ManifestoDocument'
codes(x, layer = "cmp_code")

S3 method for class 'ManifestoCorpus’
codes(x, layer = "cmp_code”)

codes(x, layer = "cmp_code”) <- value

S3 replacement method for class 'ManifestoDocument'’
codes(x, layer = "cmp_code”) <- value

code_layers(x)

Arguments
X document or corpus to get the codes from
layer layer of codings to access, defaults to cmp_code, alternative: eu_code
value new codes
count_codes Count the codings from a ManifestoDocument
Description

Count the codings from a ManifestoDocument

Usage
count_codes(
doc,
code_layers = c("cmp_code"),
with_eu_codes = "auto”,

prefix = "per",

formatids 7

relative = TRUE,

include_codes = if ("cmp_code” %in% code_layers) { v4_categories() } else {
cO I,
aggregate_v5_subcategories = TRUE
)
Arguments
doc ManifestoDocument, ManifestoCorpus or vector of codes
code_layers vector of names of code layers to use, defaults to cmp_code; Caution: The layer
eu_code is handled separately in the parameter with_eu_codes due to its differ-
ent logic

with_eu_codes Whether to include special EU code layer; by default ("auto") taken from the
document’s metadata

prefix prefix for naming the count/percentage columns in the resulting data.frame
relative If true, percentages are returned, absolute counts else

include_codes Vector of categories that should be included even if they are not present in the
data; the value of the created variables then defaults to 0.0 (or NA if no codes
are present at all);

aggregate_v5_subcategories

if TRUE, for handbook version 5 subcategories, the aggregate category’s count/percentage
is computed as well

Value

A data.frame with onw row and the counts/percentages as columns

formatids Format ids for web API queries

Description
Formats a data.frame of ids such that it can be used for querying the Manifesto Project Database.
That is, it must have non-NA-fields party and date.

Usage

formatids(ids)

Arguments

ids ids data.frame, information used: party, date, edate

8 franzmann_kaiser

formatmpds Format the main data set

Description
Creates the format that is visible to the R user from the internal data.frames files (in cache or from
the API)

Usage
formatmpds (mpds)

Arguments

mpds A data.frame with a main data set version to be formatted

franzmann_kaiser Left-Right Scores based on Franzmann & Kaiser Method

Description

Computes left-right scores based on the Franzmann & Kaiser Method (see reference below). The
issue structures are not calculated from scratch but taken as given from Franzmann 2009 (or later
updates). Note that they are not available for the entire Manifesto Project Dataset, but only for a
subset of countries and elections.

Usage

franzmann_kaiser(
data,
basevalues = TRUE,
smoothing = TRUE,
vars = grep("per\\d{3}$", names(data), value = TRUE),
issue_structure = read_fk_issue_structure(mean_presplit = mean_presplit),
party_system_split = split_belgium,
mean_presplit = TRUE,

)

read_fk_issue_structure(
path = system.file("extdata”, "fk_issue_structure_2019.csv", package = "manifestoR"),
mean_presplit = TRUE,
format_version = 2

)

fk_smoothing(data, score_name, use_period_length = TRUE, ...)

get_mpdb 9

Arguments
data A data.frame with cases to be scaled, variables named "per..."
basevalues flag for transforming data to be relative to the minimum
smoothing flag for using smoothing
vars Variables/Categories to use for computation of score. Defaults to all available

handbook version 4 categories.
issue_structure
issue structure to use for Franzmann & Kaiser method, default to most recent
bundled version (for details see read_fk_issue_structure)
party_system_split
function to recode the country variable to re-partition party systems. Defaults to
splitting Belgium into two halfs as done in Franzmann 2009

mean_presplit if TRUE, for Belgium as a whole (before the split into two party systems) the
mean of the issue weights is used (which is equal to taking the mean of the output
values, since all subsequent transformations are linear). This step is required
to replicate the Franzmann 2009 dataset. If the issue structures already contain
values for Belgium as a whole they are overwritten by the newly generated ones.

passed on to fk_smoothing and party_system_split

path path from were to read issue structures (as csv data file). Defaults to the most
recent file bundled in the manifestoR package.

format_version can be 1 or 2 to switch between different structural versions of the issue struc-
tures file (1 for files containing "structure"-columns, 2 for files containing "per"-
columns)

score_name name of variable with LR Score values to be smoothed
use_period_length
whether to use electoral period length in weighting

References

Franzmann, Simon/Kaiser, Andre (2006): Locating Political Parties in Policy Space. A Reanalysis
of Party Manifesto Data, Party Politics, 12:2, 163-188

Franzmann, Simon (2009): The Change of Ideology: How the Left-Right Cleavage transforms
into Issue Competition. An Analysis of Party Systems using Party Manifesto Data. PhD Thesis.
Cologne.

get_mpdb Download content from the Manifesto Database

Description

Internal implementation. For more convenient access and caching use one of mp_corpus, mp_availability,
mp_maindataset.

10 get_viacache

Usage

get_mpdb(type, parameters = c(), versionid = NULL, apikey = NULL)

Arguments
type string of "meta”, "text"”,"original”, "main”, "versions" to indicate type of
content to get
parameters content filter parameters specific to type
versionid character string specifying the corpus version to use, either a name or tag as in
the respective columns of the value of mp_corpusversions and the API
apikey API key to use, defaults to NULL, which means the key currently stored in the
variable apikey of the environment mp_globalenv is used.
get_viacache Get API results via cache
Description

Get API results via cache

Usage
get_viacache(type, ids = c(), cache = TRUE, versionid = NULL, ...)
Arguments
type type of objects to get (metadata, documents, ...) as a string. Types are defined as
constants in globals.R
ids identifiers of objects to get. Depending on the type a data.frame or vector of
identifiers.
cache whether to use (TRUE) or bypass (FALSE) cache, defaults to TRUE
versionid string identifier of version to use
additional parameters handed over to get_mpdb
Details

This function is internal to manifestoR and not designed for use from other namespaces

iff 11

iff Apply a function if and only if test is TRUE

Description

otherwise return input value unchanged

Usage
iff(obj, test, fun, ...)
iffn(obj, test, fun, ...)
Arguments
obj object to apply test and fun to
test logical or function to apply to test
fun function to apply
passed on to test
Details

iffn is ... if and only if test is FALSE

issue_attention_diversity
Issue Attention Diversity

Description

Effective number of Manifesto Issues suggested by Zac Greene. When using the measure please
cite Greene 2015 (see reference below)

Usage
issue_attention_diversity(
data,
method = "shannon”,
prefix = "per",

include_variables = paste@(prefix, setdiff(v4_categories(), "uncod")),

aggregate_categories = list(c(101, 102), c(104, 105), c(107, 109), c(108, 110),
c(203, 204), c(301, 302), c(406, 407), c(409, 414), c(504, 505), c(506, 507), c(601,
602), c(603, 604), c(607, 608), c(701, 702))

12

Arguments

data
method

prefix

ManifestoAvailability

a data.frame in format of Manifesto Project Main Dataset

entropy measure used for the effective number of manifesto issues. Possible op-
tions are "shannon" for Shannon’s H and "herfindahl" for the Herfindahl-Index.

Prefix of variable names to use (usually "per")

include_variables

names of variables to include

aggregate_categories

References

list of category groups to aggregate into one issue. Default to selection used in
Greene 2015

Greene, Z. (2015). Competing on the Issues How Experience in Government and Economic Con-
ditions Influence the Scope of Parties’ Policy Messages. Party Politics.

ManifestoAvailability Manifesto Availability Information class

Description

Objects returned by mp_availability.

Details

ManifestoAvailability objects are data.frames with variables party and date identifying the re-
quested manifestos as in the Manifesto Project’s Main & South America Datasets. The additional
variables specify whether a machine readable document is available (manifestos), whether digi-
tal CMP coding annotations are available (annotations) or whether an orignal PDF is available

(originals).

Additional a ManifestoAvailability object has attributes query, containing the original id set which
was queried, corpus_version, specifying the Corpus version ID used for the query, and date with
the timestamp of the query.

Examples

Not run:

wanted <- data.frame(party=c(41320, 41320), date=c(200909, 200509))
mp_availability(wanted)

End(Not run)

ManifestoCorpus 13

ManifestoCorpus Manifesto Corpus class

Description

Objects of this class are returned by mp_corpus.

Usage

ManifestoCorpus(csource = ManifestoJSONSource())

Arguments

csource aManifestoJSONSource, see Source

Details

A tm Corpus storing ManifestoDocuments

For usage and structure of the stored documents see ManifestoDocument.

Examples
Not run: corpus <- mp_corpus(subset(mp_maindataset(), countryname == "Russia”))
ManifestoDocument Manifesto Document
Description

A ManifestoDocument represents a document from the Manifesto Corpus and contains text, coding
and meta information. ManifestoDocument objects need not be constructed manually but are the
content of the ManifestoCorpus objects downloaded from the Manifesto Corpus Database API via
mp_corpus.

ManifestoDocuments subclass the TextDocument class from the package tm. Hence they can
be and usually are collected in a tm Corpus to interface easily with text mining and other lin-
guistic analysis functions. manifestoR uses the subclass ManifestoCorpus of tms Corpus, but
ManifestoDocuments can be stored in any kind of Corpus.

As in tm any ManifestoDocument has metadata which can be accessed and modified via the meta
function, as well as content, accessible via content. Additionally, via codes(), the coding of
the (quasi-)sentence ccording to the CMP category scheme can be accessed (and modified). The
CMP category scheme can be found online at https://manifesto-project.wzb.eu/coding_
schemes/mp_v4 (version 4) or https://manifesto-project.wzb.eu/coding_schemes/mp_v5
(version 5).

https://manifesto-project.wzb.eu/coding_schemes/mp_v4
https://manifesto-project.wzb.eu/coding_schemes/mp_v4
https://manifesto-project.wzb.eu/coding_schemes/mp_v5

14 ManifestoDocumentMeta

Usage

ManifestoDocument (
content = data.frame(),
id = character(9),
meta = ManifestoDocumentMeta()

)
Arguments
content data.frame of text and codes for the ManifestoDocument to be constructed.
There can be multiple columns of codes, but by default the accessor method
codes searches for the column named "cmp_code".
id an id to identify the Document
meta an object of class ManifestoDocumentMeta containing the metadata for this
document
Details

Internally, a ManifestoDocument is a data.frame with a row for every quasi-sentence and the
columns text and code.

Examples

Not run:

corpus <- mp_corpus(subset(mp_maindataset(), countryname == "New Zealand"))
doc <- corpus[[1]]
print(doc)

End(Not run)

ManifestoDocumentMeta Manifesto Document Metadata

Description

Manifesto Document Metadata

Usage

ManifestoDocumentMeta(meta = list(), id = character(Q))

Arguments

meta a named list with tag-value pairs of document meta information

id a character giving a unique identifier for the text document

ManifestoSource 15

manifestoR Access and process data and documents of the Manifesto Project

Description

Provides access to coded election programmes from the Manifesto Corpus and to the Manifesto

Project’s Main Dataset and routines to analyse this data. The Manifesto Project https://manifesto-project.
wzb . eu collects and analyses election programmes across time and space to measure the political
preferences of parties. The Manifesto Corpus contains the collected and annotated election pro-

grammes in the Corpus format of the package ’tm’ to enable easy use of text processing and text

mining functionality. Specific functions for scaling of coded political texts are included.

Details
manifestoR R package

Access and process data and documents of the Manifesto Project

Package: manifestoR
Type: Package
License: GPL (>=3)
LazylLoad: yes

Author(s)

Jirka Lewandowski <jirka.lewandowski@wzb.eu>

See Also
Useful links:

e https://manifesto-project.wzb.eu: additional tutorials, documentation, data, and elec-

tion programmes

e https://github.com/ManifestoProject/manifestoR: manifestoR on GitHub
* Report bugs at https://github.com/ManifestoProject/manifestoR/issues

ManifestoSource Data Source for Manifesto Corpus

Description

Data Source for Manifesto Corpus

https://manifesto-project.wzb.eu
https://manifesto-project.wzb.eu
https://manifesto-project.wzb.eu
https://github.com/ManifestoProject/manifestoR
https://github.com/ManifestoProject/manifestoR/issues

16

Usage

ManifestoSource(texts)

ManifestoJSONSource(
texts = list(manifesto_id = c(), items = c()),
query_meta = data.frame()
)
Arguments
texts texts of the manifesto documents
query_meta metadata to attach to document by joining on manifesto_id
Details

Used internally for constructing ManifestoCorpus objects.

median_voter

median_voter

Median Voter position

Description

The position of the median voter, calculated after Kim and Fording (1998; 2003), with possible

adjustment after McDonald 2002.

Usage

median_voter(
positions,
voteshares = "pervote”,
scale = "rile",
groups = c("country”, "edate"),

)

median_voter_single(
positions,
voteshares,
adjusted = FALSE,
scalemin = -100,

scalemax = 100

median_voter 17

Arguments
positions either a vector of values or (possible only for median_voter) a data.frame con-
taining a column as named in argument scale (default: rile) and one as named in
argument voteshares (default: pervote);
voteshares either a vector of values or (possible only for median_voter) the name of a
column in the data.frame positions that contains the vote shares
scale variable of which to compute the median voter position (default: rile)
groups names of grouping variables to use for aggregation, default results in one median
voter position per election
e further arguments passed to median_voter_single
adjusted flag for adjustment after McDonald 2002
scalemin The minimum of the scale of the positions, used for computing the voter position
intervals
scalemax The maximum of the scale of the positions, used for computing the voter posi-
tion intervals
Details

median_voter is able to compute the median voter positions for multiple elections at once, while
median_voter_single treats data as coming from a single election.

calculated according to the formula by Kim and Fording (1998; 2003)

K-C

m=0L+ w

Where m is the median voter position, L is lower end of the interval containing the median, K is
0.5*sum(voteshare), C is the cumulative vote share up to but not including the interval containing
the median, F is the vote share in the interval containing the median and W is the width of the
interval containing the median.

Different parties with the same left-right position (e.g. alliances) are treated as one party with the
cumulative vote share.

In the adjusted formula the midpoint is "mirrored" from the midpoint of the other side: "Rather
than assuming the party’s voters are so widely dispersed, this variable assumes they are spread in a
symmetrical interval around the party’s position. For example, for a leftmost party at -15 and a 0
midpoint between it and an adjacent party on the right, we assume the left boundary of that party’s
voters is -30." (McDonald 2002)

References
Kim, Heemin and Richard C. Fording (1998). "Voter ideology in western democracies, 1946-1989".
In: European Journal of Political Research 33.1, 73-97. doi: 10.1111/1475-6765.00376.

Kim, Heemin and Richard C. Fording (2003). "Voter ideology in Western democracies: An update".
In: European Journal of Political Research 42.1, 95-105.

McDonald, Michael D. (2002). Median Voters: 1950-1995. url: www?2.binghamton.edu/political-
science/research/MedianVoter.doc

18 mp_availability

mpdb_api_request Manifesto Project DB API request

Description

gets the requested url and passes HTTP header error codes on to raise R errors with the same text

Usage

mpdb_api_request(file, body)

Arguments
file file to request below apiroot url
body body text of the posted request: should contain the parameters as specified by
the Manifesto Project Database API
mp_availability Availability information for election programmes
Description

Availability information for election programmes

Usage

mp_availability(ids, apikey = NULL, cache = TRUE)

Arguments
ids Information on which documents to get. This can either be a list of partys (as
ids) and dates of elections as given to mp_metadata or a ManifestoMetadata
object (data.frame) as returned by mp_metadata. Alternatively, ids can be a
logical expression specifying a subset of the Manifesto Project’s main dataset. It
will be evaluated within the data.frame returned by mp_maindataset such that
all its variables and functions thereof can be used in the expression.
apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
cache Boolean flag indicating whether to use locally cached data if available.
Value

an object of class ManifestoAvailability containing availability information. Can be treated as
a data.frame and contains detailed availability information per document

mp_bootstrap

Examples

Not run:

19

mp_availability(countryname == "New Zealand”)

wanted <- data.frame(party=c(41320, 41320), date=c(200909, 200509))
mp_availability(wanted)

End(Not run)

mp_bootstrap

Compute bootstrap distributions for scaling functions

Description

Bootstrapping of distributions of scaling functions as described by Benoit, Mikhaylov, and Laver
(2009). Given a dataset with percentages of CMP categories, for each case the distribution of
categories is resampled from a multinomial distribution and the scaling function computed for the
resampled values. Arbitrary statistics of the resulting bootstrap distribution can be returned, such
as standard deviation, quantiles, etc.

Usage

mp_bootstrap(

data,

fun = rile,
col_filter =
statistics

N = 1000,

ignore_na
rescale =

Arguments

data
fun
col_filter

statistics

N

ignore_na

"Aper (\\d{3}|\\d{43}|uncod)$",
list(sd),

TRUE,
TRUE,

A data.frame with cases to be scaled and bootstrapped
function of a data row the bootstraped distribution of which is of interest

Regular expression matching the column names that should be permuted for the
resampling (usually and by default the handbook v4_categories (plus cee_categories)
per variables)

A list (!) of statistics to be computed from the bootstrap distribution; defaults
to standard deviation (sd). Must be functions or numbers, where numbers are
interpreted as quantiles.

number of resamples to use for bootstrap distribution

if TRUE (default), for each observation drop silently the columns that have an
NA value for the permutation

20 mp_check_for_corpus_update

rescale if TRUE (default), rescale the permuted values after the permutation to the sum
of the values of the col_filter columns instead of 100

more arguments passed on to fun

References

Benoit, K., Laver, M., & Mikhaylov, S. (2009). Treating Words as Data with Error: Uncertainty
in Text Statements of Policy Positions. American Journal of Political Science, 53(2), 495-513.
http://doi.org/10.1111/5.1540-5907.2009.00383.x

mp_check_for_corpus_update
Check for Updates of Corpus in Manifesto Project DB

Description

mp_check_for_copus_update checks if the currently cached version of corpus text and metadata
is older than the most recent version available via the Manifesto Project DB APL

Usage

mp_check_for_corpus_update(apikey = NULL, only_stable = TRUE)

mp_which_corpus_version(cache_env = mp_cache())
mp_which_dataset_versions(cache_env = mp_cache())

mp_update_cache(apikey = NULL, only_stable = TRUE)

Arguments
apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
only_stable Consider only for versions marked as stable by the Manifesto Projec Team, de-
faults to TRUE
cache_env Cache environment
Details

mp_update_cache checks if a new corpus version is available and loads the new version via:
mp_use_corpus_version. That is, the internal cache of manifestoR will automatically be updated
to newer version and all future calls to the API will request for the newer version.

Note that this versioning applies to the corpus’ texts and metadata, and not the versions of the core
dataset. For this see mp_coreversions

mp_cite 21

Value
mp_update_cache returns a list with a boolean update_available and versionid, a character
string identifying the most recent online version available

mp_which_corpus_version returns the current version id of the corpus and metadata stored in the
cache

mp_which_dataset_versions returns the names of the main dataset versions which are in the
cache, i.e. have been downloaded

mp_update_cache returns the character identifier of the version updated to

mp_cite Print Manifesto Corpus citation information

Description

Print Manifesto Corpus citation information

Usage

mp_cite(
corpus_version = mp_which_corpus_version(),
core_versions = mp_which_dataset_versions(),
apikey = NULL

)

Arguments

corpus_version corpus version for which citation should be printed
core_versions core version for which citation should be printed

apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
mp_clarity Programmatic clarity measures (PC)
Description

Computes party clarity measures suggested by Giebler/Lacewell/Regel/Werner 2015.

Usage

mp_clarity(
data,
weighting_kind = "manifesto”,
weighting_source = NULL,
auto_rescale_weight = TRUE,
auto_rescale_variables = TRUE,
dimensions = clarity_dimensions()

22 mp_codebook

Arguments

data a dataframe in format of Manifesto Project Main Dataset
weighting_kind manifesto or election-specific weighting of the dimensions
weighting_source
name of variable with party importance (likely its importance within an election)
weighting (can be rmps, pervote)
auto_rescale_weight
rescale party importance weighting within elections to 0-1
auto_rescale_variables
rescale dimension variables to 0-1

dimensions dimensions to be used, must be in the format of the return value of clarity_dimensions

Value

a vector of clarity values

References

Giebler, Heiko, Onawa Promise Lacewell, Sven Regel and Annika Werner. 2015. Niedergang oder
Wandel? Parteitypen und die Krise der repraesentativen Demokratie. In Steckt die Demokratie in
der Krise?, ed. Wolfgang Merkel, 181-219. Wiesbaden: Springer VS.

mp_codebook Access to the Codebook for the Manifesto Project Main Dataset

Description

These functions provide access to machine- and human-readable versions of the Codebook (vari-
able descriptions) of the Manifesto Project Main Dataset, as can be found in PDF form under
https://manifesto-project.wzb.eu/datasets . As of this manifestoR release only the content-analytical
variables (categories) are accessible. Note also that the codebook contains only condensed descrip-
tions of the categories. For detailed information on coding instructions, you can refer to the differ-
ent handbook versions under https://manifesto-project.wzb.eu/information/documents/handbooks .
Only codebooks from version MPDS2017b on are accessible via the API.

Usage

mp_codebook(version = "current”, cache = TRUE, chapter = "categories")

mp_describe_code(

code,

version = "current”,

columns = c("title"”, "description_md"),
print = TRUE

)

mp_view_codebook(version = "current”, columns = c("type”, "code", "title"))

mp_coreversions

Arguments

version

cache

chapter

code

columns

print

Details

23

version of the Manifesto Project Main Dataset for which the codebook is re-
quested. Note that only codebooks from version MPDS2017b on are available
via the API/manifestoR. Defaults to "currrent", which fetches the most recent
codebook version. Must be formatted as e.g. "MPDS2017b".

Whether result of API call should be cached locally (defaults to TRUE)

Which part of the codebook should be returned. As of this manifestoR release,
only the content-analytical variables (parameter value "categories") are accessi-
ble via the API.

specific code(s) (as character (vector)) to display information about.

Information to display about each variable. Given as a vector of selected column

names from: "type", "domain_code", "domain_name", "code", "variable_name",
"title", "description_md", "label"

if TRUE (default), print the information, but as the function also returns invisible
a tibble containing the information, you can set print to FALSE for alternative
uses.

mp_codebook returns the codebook as a tibble, ideal for further automatic processing.

mp_describe_code pretty prints with information about the requested code(s), ideal for quick in-
teractive use, but also returns invisible the code(s) information as a tibble

mp_view_codebook displays a searchable table version of the codebook in the Viewer pane.

mp_coreversions

List the available versions of the Manifesto Project’s Main Dataset

Description

List the available versions of the Manifesto Project’s Main Dataset

Usage
mp_coreversions(apikey = NULL, cache = TRUE, kind = "main")
Arguments
apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
cache Boolean flag indicating whether to use locally cached data if available.
kind one of "main" (default) or "south_america" to discrimante the Main Dataset and
the South America Dataset
Details

For the available versions of the corpus, see mp_corpusversions

24

Examples

mp_corpus

Not run: mp_coreversions()

mp_corpus

Get documents from the Manifesto Corpus Database

Description

Documents are downloaded from the Manifesto Project Corpus Database. If CMP coding anno-
tations are available, they are attached to the documents, otherwise raw texts are provided. The
documents are cached in the working memory to ensure internal consistency, enable offline use and
reduce online traffic.

Usage

mp_corpus(
ids,

apikey = NULL,

cache =
codefilter = NULL,
codefilter_layer = "cmp_code”
)
Arguments
ids Information on which documents to get. This can either be a list of partys (as
ids) and dates of elections as given to mp_metadata or a ManifestoMetadata
object (data.frame) as returned by mp_metadata. Alternatively, ids can be a
logical expression specifying a subset of the Manifesto Project’s main dataset. It
will be evaluated within the data.frame returned by mp_maindataset such that
all its variables and functions thereof can be used in the expression.
apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
cache Boolean flag indicating whether to use locally cached data if available.
codefilter A vector of CMP codes to filter the documents: only quasi-sentences with the

codes specified in codefilter are returned. If NULL, no filtering is applied

codefilter_layer

Details

layer to which the codefilter should apply, defaults to cmp_code

See mp_save_cache for ensuring reproducibility by saving cache and version identifier to the hard
drive. See mp_update_cache for updating the locally saved content with the most recent version
from the Manifesto Project Database API.

Value

an object of Corpus’s subclass ManifestoCorpus holding the available of the requested documents

mp_corpusversions 25

Examples

Not run:
corpus <- mp_corpus(party == 61620 & rile > 10)

wanted <- data.frame(party=c(41320, 41320), date=c(200909, 201309))
mp_corpus(wanted)

mp_corpus(subset(mp_maindataset(), countryname == "France"))

partially_available <- data.frame(party=c(41320, 41320), date=c(200909, 200509))
mp_corpus(partially_available)

End(Not run)

mp_corpusversions List the available versions of the Manifesto Project’s Corpus

Description

The Manifesto Project Database API assigns a new version code whenever changes to the corpus
texts or metadata are made.

Usage

mp_corpusversions(apikey = NULL)

Arguments

apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
y g g

Details

This function always bypasses the cache.

Value

a character vector with the available version ids

26 mp_interpolate

mp_dedication Print manifestoR package dedication

Description

Print manifestoR package dedication

Usage

mp_dedication()

Value

mp_dedication returns the package dedication

mp_emptycache Empty the manifestoR’s cache

Description

Empty the manifestoR’s cache

Usage

mp_emptycache ()

mp_interpolate Interpolate values within election periods

Description

As the Manifesto Project’s variables are collected election-wise, values for the time/years in be-
tween elections are not naturally available. mp_interpolate allows to approximate them by several
methods from the abjacent observations.

Usage
mp_interpolate(
df,
vars = "(*rile$) | ("per ((\\A{3F(_\\A)?) |\\d{4)$)",
by = "year”,

approx = z00::Nna.approx,

mp_load_cache 27
Arguments

df a data.frame with observations to be interpolated

vars a regular expression matching the names of the variables to be interpolated

by increment of the interpolation sequence, passed to seq.Date

approx Interpolation function, defaults to zoo’s na. approx

Further arguments, passed on to approx

Examples

Not run:

mp_interpolate(mp_maindataset(), method = "constant")

mp_interpolate(mp_maindataset(), approx = na.spline, maxgap = 3)

End(Not run)

mp_load_cache Load manifestoR’s cache

Description

Load a cache from a variable or file to manifestoR’s current working environment.

Usage

mp_load_cache(cache = NULL, file = "mp_cache.RData")

Arguments

cache

file

Examples

Not run:

an environment that should function as manifestoR’s new cache. If this is NULL,
the environment is loaded from the file specified by argument file.

a file name from where the cache environment should be loaded

mp_load_cache() ## loads cache from file "mp_cache.RData”

28 mp_maindataset

mp_maindataset Access the Manifesto Project’s Main Dataset

Description

Gets the Manifesto Project’s Main Dataset from the project’s web API or the local cache, if it was
already downloaded before.

Usage

mp_maindataset(
version = "current”,
south_america = FALSE,
download_format = NULL,
apikey = NULL,
cache = TRUE

mp_southamerica_dataset(...)

Arguments

version Specify the version of the dataset you want to access. Use "current” to obtain
the most recent, or use mp_coreversions for a list of available versions.

south_america flag whether to download corresponding South America dataset instead of Main
Dataset

download_format
Download format. If not NULL, instead of the dataset being returned as an R
data.frame, a file path to a temporary file in the specified binary format is re-
turned. Can be one of c("dta”, "x1sx","sav"). With the "dta" option, labeled
columns can be obtained.

apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
cache Boolean flag indicating whether to use locally cached data if available.

all arguments of mp_southamerica_data are passed on to mp_maindataset

Details
mp_southamerica_dataset is a shorthand for getting the Manifesto Project’s South America Dataset
(it is equivalent to mp_maindataset(...,south_america = TRUE)).

Value

The Manifesto Project Main Dataset with classes data.frame and thl_df

mp_metadata 29

Examples
Not run:
mpds <- mp_maindataset()
head(mpds)
median(subset(mpds, countryname == "Switzerland”)$rile, na.rm = TRUE)

End(Not run)
Not run:
mp_maindataset(download_format = "dta") %>% read_dta() ## requires package haven

End(Not run)

mp_metadata Get meta data for election programmes

Description

Get meta data for election programmes

Usage

mp_metadata(ids, apikey = NULL, cache = TRUE)

Arguments
ids list of partys (as ids) and dates of elections, paired. Dates must be given ei-
ther in the date or the edate variable, formatted in the way they are in the
main data set in this package (date: as.numeric, YYYYMM, edate: as.Date()),
see mp_maindataset Alternatively, ids can be a logical expression specifying a
subset of the Manifesto Project’s main dataset. It will be evaluated within the
data.frame returned by mp_maindataset such that all its variables and functions
thereof can be used in the expression.
apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
cache Boolean flag indicating whether to use locally cached data if available.
Details

Meta data contain information on the available documents for a given party and election date. This
information comprises links to the text as well as original documents if available, language, versions
checksums and more.

Value

an object of class ManifestoMetadata, subclassing data. frame as well as tb1_df and containing
the requested metadata in rows per election programme

30 mp_nicheness

Examples

Not run:
mp_metadata(party == 21221)

wanted <- data.frame(party=c(41320, 41320), date=c(200909, 200509))
mp_metadata(wanted)

End(Not run)

mp_nicheness Party nicheness measures

Description

Computes party nicheness measures suggested by Bischof 2015 and Meyer and Miller 2013.

Usage

mp_nicheness(data, method = "bischof”, ...)

nicheness_meyer_miller(
data,
groups = meyer_miller_2013_policy_dimensions(),
transform = NULL,
smooth = FALSE,
weights = "pervote”,
party_system_normalization = TRUE,
only_non_zero = TRUE

)

nicheness_bischof(
data,
out_variables = c("party”, "date"”, "specialization”, "nicheness”, "nicheness_two"),
groups = bischof_issue_groups(),
diversification_bounds = c(@, rep(1/length(groups), length(groups)) %>% { -(. %
log(.)) } %% sum()),

smooth = function(x) { (x + lag(x, default = first(first(x))))/2 }
)
Arguments
data a dataframe or matrix in format of Manifesto Project Main Dataset
method choose between bischof and meyermiller

parmaeters passed on to specialized functions for differnet methods

mp_nicheness

groups

transform

smooth

weights

31

groups of issues to determine niches/policy dimensions; formatted as named
lists variable names. For Meyer & Miller: Defaults to adapted version of Baeck
et. al 2010 Policy dimensions (without industry, as used in the original paper
by Meyer & Miller). For Bischof: defaults to issue groups used in the Bischof
2015 paper

transform to apply to each of the group indicators. Can be a function, character

"bischof" to apply log(x + 1), or NULL for no transformation.

Smoothing of policy dimension values before nicheness computation, as sug-
gested and used by Bischof 2015

vector of the length nrow(data) or the name of a variable in data; is used to
weight mean party system position and nicheness; defaults to "pervote" as in
Meyer & Miller 2013

party_system_normalization

only_non_zero

out_variables

normalize nicheness result within election (substract weighted mean nicheness)

When dividing by the number of policy dimensions used for nicheness estima-
tion, ignore dimensions that are zero for all parties (election-wise)

names of variables to return in data.frame. Can be any from the input or that are
generated during the computation of Bischof’s nicheness measure. See details
for a list.

diversification_bounds

Details

Bounds of the range of the diversification measure (Shannon’s entropy s_p in
Bischof 2015), used for inversion and normalization; default to the theoretical
bounds of the entropy of a distribution on 5 discrete elements. If "empirical",
the empirical max and min of the diversification measure are used

List of possible outputs of nicheness_bischof:

diversification: Shannon’s entropy s_p in Bischof 2015

max_divers: used maximum for diversification

min_divers: used minimum for diversification

specialization: inverted diversification

specialization_stand: standardized specialization

nicheness: nicheness according to Meyer & Miller 2013 without vote share weighting

nicheness_stand: standardized nicheness

nicheness_two: sum of nicheness_stand and specialization_stand as proposed by Bischof 2015

References

Bischof, D. (2015). Towards a Renewal of the Niche Party Concept Parties, Market Shares and
Condensed Offers. Party Politics.

Meyer, T.M., & Miller, B. (2013). The Niche Party Concept and Its Measurement. Party Politics

21(2): 259-271.

32 mp_rmps

Baeck, H., Debus, M., & Dumont, P. (2010). Who gets what in coalition governments? Predictors
of portfolio allocation in parliamentary democracies. European Journal of Political Research 50(4):
441-478.

mp_rmps Relative measure of party size (RMPS)

Description

Computes the relative measure of party size as suggested by Giebler/Lacewell/Regel/Werner 2015.

Usage

mp_rmps(data, adapt_zeros = TRUE, ignore_na = TRUE, threshold_sum = 75)

Arguments
data a numerical vector with vote shares
adapt_zeros a boolean to switch on the conversion of zero values to 0.01 to avoid issues
concerning division by zero
ignore_na a boolean to switch on ignoring NA entries, otherwise having NA entries will

lead to only NA values in the result

threshold_sum the threshold of the sum of all vote shares for allowing the calculation

Details

Hint: In a dataset with multiple elections the usage of the function might require to calculate the
measure per election (eg. using group_by)

Value

a vector of rmps values

References

Giebler, Heiko, Onawa Promise Lacewell, Sven Regel and Annika Werner. 2015. Niedergang oder
Wandel? Parteitypen und die Krise der repraesentativen Demokratie. In Steckt die Demokratie in
der Krise?, ed. Wolfgang Merkel, 181-219. Wiesbaden: Springer VS.

mp_save_cache 33

mp_save_cache Save manifestoR’s cache

Description

Saves manifestoR’s cache to the file system. This function can and should be used to store down-
loaded snapshots of the Manifesto Project Corpus Database to your local hard drive. They can then
be loaded via mp_load_cache. Caching data in the file system ensures reproducibility of the scripts
and analyses, enables offline use of the data and reduces unnecessary traffic and waiting times.

Usage

mp_save_cache(file = "mp_cache.RData")
Arguments

file a file from which to load the cache environment
Examples

Not run: mp_save_cache() ## save to "mp_cache.RData” in current working directory

mp_scale Scaling annotated manifesto documents

Description

Since scaling functions such as scale_weighted only apply to data.frames with code percentages,
the function mp_scale makes them applies them to a ManifestoCorpus or ManifestoDocument.

Usage

mp_scale(
data,
scalingfun = rile,
scalingname = as.character(substitute(scalingfun)),

recode_v5_to_v4 = (scalingname == "rile"),
)
document_scaling(

scalingfun,

returndf = FALSE,

scalingname = "scaling”,

recode_v5_to_v4 = FALSE,

34 mp_setapikey

)
corpus_scaling(scalingfun, scalingname = "scaling”, ...)
Arguments

data ManifestoDocument or ManifestoCorpus with coding annotations or a data.frame
with category percentages

scalingfun a scaling function, i.e. a function that takes a data.frame with category percent-
ages and returns scaled positions, e.g. scale_weighted.

scalingname the name of the scale which will be used as a column name when a data.frame

is produced

recode_v5_to_v4
recode handbook version 5 scheme to version 4 before scaling; this parameter
is only relevant if data is a ManifestoDocument or ManifestoCorpus, but not for
data.frames with code percentages

further arguments passed on to the scaling function scalingfun, or count_codes

returndf if this flag is TRUE, a data.frame with category percentage values, scaling result
and, if available party and date is returned by the returned function

See Also

scale

mp_setapikey Set the API key for the Manifesto Documents Database.

Description

If you do not have an API key for the Manifesto Documents Database, you can create one via your
profile page on https://manifesto-project.wzb.eu. If you do not have an account, you can
register on the webpage.

Usage
mp_setapikey(key.file = NULL, key = NA_character_)

Arguments
key.file file name containing the API key
key new API key

Details

The key is read from the file specified in key.file. If this argument is NULL, the key given in the
argument key is used.

https://manifesto-project.wzb.eu

mp_use_corpus_version 35

mp_use_corpus_version Use a specific version of the Manifesto Project Corpus

Description

The internal cache of manifestoR will be updated to the specified version and all future calls to the
API will request for the specified version. Note that this versioning applies to the corpus’ texts and
metadata, and not the versions of the core dataset. For this see mp_coreversions

Usage

mp_use_corpus_version(versionid, apikey = NULL)

Arguments
versionid character id of the version to use (as received from API and mp_corpusversions)
apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.
mp_view_originals View original documents from the Manifesto Corpus Database
Description

Original documents are opened in the system’s browser window. All original documents are stored
on the Manifesto Project Website and the URLSs opened are all from this site.

Usage

mp_view_originals(ids, maxn = 5, apikey = NULL, cache = TRUE)

Arguments

ids Information on which originals to view This can either be a list of partys (as ids)
and dates of elections as given to mp_metadata or a ManifestoMetadata object
(data.frame) as returned by mp_metadata. Alternatively, ids can be a logical
expression specifying a subset of the Manifesto Project’s main dataset. It will
be evaluated within the data.frame returned by mp_maindataset such that all its
variables and functions thereof can be used in the expression.

maxn maximum number of documents to open simultaneously in browser, defaults to
5.

apikey API key to use. Defaults to NULL, resulting in using the API key set viamp_setapikey.

cache Boolean flag indicating whether to use locally cached data if available. The

original documents themselves are not cached locally, but the metadata required
to find them is.

36 null to_na

Examples

Not run:
mp_view_originals(party == 41320 & date == 200909)

End(Not run)

na_replace Replace NAs in vector with fixed value

Description

Replace NAs in vector with fixed value

Usage

na_replace(vec, value = QL)

Arguments

vec vector to replace NAs in

value value to inject for NA

null_to_na Convert NULL to NA

Description

Convert NULL to NA

Usage

null_to_na(x)

Arguments

X element

Value

NA if the element is NULL, the element otherwise

prefix 37

prefix Prefix a string of text

Description

Convenience function to use with magrittr wraps paste®, hence vectorised as paste@

Usage
prefix(text, ...)
Arguments
text goes to the end, rest
goes to the front.
readManifesto Reader for ManifestoSource
Description

Reader for ManifestoSource

Usage

readManifesto(elem, language, id)

Arguments

elem a named list with the component content

language is ignored

id a character giving a unique identifier for the created text document
Details

Used internally for constructing ManifestoCorpus objects. For the general mechanism refer to tms
Reader documentation.

38 rep.data.frame

recode_cee_codes Process CMP codings

Description

Several functions to process the CMP codings

Usage

recode_cee_codes(x)
aggregate_cee_codes(x)

recode_v5_to_v4(x)

Arguments

X Vector of codes, ManifestoDocument or ManifestoCorpus

Details

recode_cee_codes recode the sub-categories used in coding several manifestos in Central and
Eastern Europe (4 digits) to the main categories in the coding scheme (3 digits).

recode_v5_to_v4 recode the CMP codings according to the more specialized Coding Handbook
Version 5 to the more general categories of Handbook Version 4. Codes 202.2, 605.2 and 703.2
are converted to a 000, while all other subcategory codes with an appended dot and fourth digit are
aggregated to the corresponding three-digit main category.

rep.data.frame Replicates cases in a data.frame

Description

Replicates cases in a data.frame

Usage
S3 method for class 'data.frame'
rep(x, times =1, ...)

Arguments
X data.frame to replicate
times number of replications

unused

rescale 39

Value

data.frame with cases replicated

rescale Simple linear rescaling of positions

Description

Simple linear rescaling of positions

Usage
rescale(pos, newmin = -1, newmax = 1, oldmin = min(pos), oldmax = max(pos))
Arguments
pos position data to be rescaled
newmin indicates the minimum of the new scale (default is -1)
newmax indicates the maximum of the new scale (default is +1)
oldmin indicates the minimum of the existing scale. Can be used to rescale from a
known theoretical scale (e.g. -100). If left empty the empirical minimum is
used.
oldmax indicates the maximum of the existing. See above.
rile RILE
Description

Computes the RILE or other bipolar linear scaling measures for each case in a data.frame or Mani-
festoCorpus

Usage
rile(x)

logit_rile(x)

Arguments

X A data.frame with cases to be scaled, variables named "per..."

40 scale_weighted

scale_weighted Scaling functions

Description

Scaling functions take a data.frame of variables with information about political parties/text and
position the cases on a scale, i.e. output a vector of values. For applying scaling functions directly
to text documents, refer to mp_scale.

Usage
scale_weighted(
data,
vars = grep("per ((\\d{3}(_\\d)?) |\\d{43}]| (uncod))$", names(data), value = TRUE),
weights = 1
)
scale_logit(data, pos, neg, N = datal, "total"], zero_offset = 0.5, ...)
scale_bipolar(data, pos, neg, ...)
scale_ratio_1(data, pos, neg, ...)
scale_ratio_2(data, pos, neg, ...)
Arguments
data A data.frame with cases to be scaled
vars variable names that should contribute to the linear combination; defaults to all
CMP category percentage variables in the Manifesto Project’s Main Dataset
weights weights of the linear combination in the same order as ‘vars®.
pos variable names that should contribute to the numerator ("positively")
neg variable names that should contribute to the denominator ("negatively")
N vector of numbers of quasi sentences to convert percentages to counts

zero_offset Constant to be added to prevent 0/0 and log(0); defaults to 0.5 (smaller than any
possible non-zero count)

further parameters passed on to scale_weighted

Details

scale_weighted scales the data as a weighted sum of the variable values

If variable names used for the definition of the scale are not present in the data frame they are
assumed to be 0. scale_weighted scales the data as a weighted sum of the category percentages

scale_logit scales the data on a logit scale as described by Lowe et al. (2011).

split_belgium 41

scale_bipolar scales the data by adding up the variable values in pos and substracting the variable
values in neg.

scale_ratio_1 scales the data taking the ratio of the difference of the sum of the variable values
in pos and the sum of the variable values in neg to the sum of the variable values in pos and neg as
suggested by Kim and Fording (1998) and by Laver & Garry (2000).

scale_ratio_2 scales the data taking the ratio of the sum of the variable values in pos and the sum
of the variable values in neg.

References

Lowe, W., Benoit, K., Mikhaylov, S., & Laver, M. (2011). Scaling Policy Preferences from Coded
Political Texts. Legislative Studies Quarterly, 36(1), 123-155.

Kim, H., & Fording, R. C. (1998). Voter ideology in western democracies, 1946-1989. European
Journal of Political Research, 33(1), 73-97.

Laver, M., & Garry, J. (2000). Estimating Policy Positions from Political Texts. American Journal
of Political Science, 44(3), 619-634.

See Also

mp_scale

split_belgium Split Belgium party system into separate groups

Description

Recodes the country variable of a dataset to 218 (Flanders parties) and 219 (Wallonia parties) from
21 for Belgium

Usage

split_belgium(
data,
wallonia_parties = c(21111, 21322, 21422, 21423, 21425, 21426, 21522, 21911),
brussels_parties = c(21424, 21912),
belgium_parties = c(21320, 21420, 21520),
flanders_parties = c(21112, 21221, 21321, 21330, 21421, 21430, 21521, 21913, 21914,
21915, 21916, 21917),
presplit_countrycode = 21,

42 v4_categories

Arguments

data data.frame in format of the Manifesto Project’s Main Dataset
wallonia_parties

Party codes for the Wallonia half
brussels_parties

Party codes for Brussel specific parties, are recoded to NA
belgium_parties

Party codes for complete system, coded as presplit_countrycode
flanders_parties

Party codes for the Flanders half
presplit_countrycode

Country code for the belgium_parties

ignored

v4_categories Lists of categories and category relations

Description

Code numbers of the Manifesto Project’s category scheme. For documentation see https://
manifesto-project.wzb.eu/datasets.

Usage
v4_categories()
v5_categories(include_parents = TRUE)
cee_categories()
v5_v4_aggregation_relations()
cee_aggregation_relations()
rile_r(Q)

rile_10)

Arguments

include_parents
include v5-categories that have subcategories

https://manifesto-project.wzb.eu/datasets
https://manifesto-project.wzb.eu/datasets

vanilla 43

vanilla Vanilla Scaling by Gabel & Huber

Description

Computes scores based on the Vanilla method suggested by Gabel & Huber. A factor analysis
identifies the dominant dimension in the data. Factor scores using the regression method are then
considered as party positions on this dominant dimension.

Usage

vanilla(
data,
vars = grep("per\\d{3}$", names(data), value = TRUE),
invert = FALSE

)
Arguments
data A data.frame with cases to be scaled, variables named "per..."
vars variable names that should be used for the scaling (usually the variables per101,per102,...)
invert invert scores (to change the direction of the dimension to facilitate comparison
with other indices) (default is FALSE)
References

Gabel, M. J., & Huber, J. D. (2000). Putting Parties in Their Place: Inferring Party Left-Right
Ideological Positions from Party Manifestos Data. American Journal of Political Science, 44(1),
94-103.

Index

aggregate_cee_codes (recode_cee_codes),
38

aggregate_pers, 3,4

aggregate_pers_cee, 4,4

attach_year, 5

cee_aggregation_relations
(v4_categories), 42

cee_categories (v4_categories), 42

clarity_dimensions, 5, 22

code_layers (codes), 6

codes, 6, 13, 14

codes<- (codes), 6

Corpus, 13,24

corpus_scaling (mp_scale), 33

count_codes, 6, 34

document_scaling (mp_scale), 33

fk_smoothing (franzmann_kaiser), 8
formatids, 7

formatmpds, 8

franzmann_kaiser, 8

get_mpdb, 9
get_viacache, 10

iff, 11
iffn (iff), 11
issue_attention_diversity, 11

logit_rile(rile), 39

ManifestoAvailability, 12, I8
ManifestoCorpus, 13, 13, 16, 24, 37
ManifestoDocument, /3, 13
ManifestoDocumentMeta, /4, 14
ManifestoJSONSource, 13
ManifestoJSONSource (ManifestoSource),
15
manifestoR, 15

44

ManifestoSource, 15, 37
median_voter, 16
median_voter_single, 17
median_voter_single (median_voter), 16
mp_availability, 9, 12, 18
mp_bootstrap, 19
mp_check_for_corpus_update, 20
mp_cite, 21
mp_clarity, 21
mp_codebook, 22
mp_coreversions, 20, 23, 28, 35
mp_corpus, 9, 13,24
mp_corpusversions, 10, 23, 25, 35
mp_dedication, 26
mp_describe_code (mp_codebook), 22
mp_emptycache, 26
mp_interpolate, 26
mp_load_cache, 27, 33
mp_maindataset, 9, 18, 24, 28, 29, 35
mp_metadata, 18, 24, 29, 35
mp_nicheness, 30
mp_rmps, 32
mp_save_cache, 24, 33
mp_scale, 33, 40, 41
mp_setapikey, 18, 20, 21, 23-25, 28, 29, 34,
35
mp_southamerica_dataset
(mp_maindataset), 28
mp_update_cache, 24
mp_update_cache
(mp_check_for_corpus_update),
20
mp_use_corpus_version, 20, 35
mp_view_codebook (mp_codebook), 22
mp_view_originals, 35
mp_which_corpus_version
(mp_check_for_corpus_update),
20
mp_which_dataset_versions

INDEX

(mp_check_for_corpus_update),
20
mpdb_api_request, 18

na.approx, 27

na_replace, 36

nicheness_bischof (mp_nicheness), 30

nicheness_meyer_miller (mp_nicheness),
30

null_to_na, 36

pasteo, 37
prefix, 37

read_fk_issue_structure
(franzmann_kaiser), 8

Reader, 37

readManifesto, 37

recode_cee_codes, 38

recode_v5_to_v4 (recode_cee_codes), 38

rep.data. frame, 38

rescale, 39

rile, 39

rile_1 (v4_categories), 42

rile_r (v4_categories), 42

scale, 34

scale_bipolar (scale_weighted), 40
scale_logit (scale_weighted), 40
scale_ratio_1 (scale_weighted), 40
scale_ratio_2 (scale_weighted), 40
scale_weighted, 33, 34, 40, 40

sd, 19

seq.Date, 27

Source, 13

split_belgium, 41

sum, 4

tbl_df, 28, 29
TextDocument, /3

v4_categories, 42

v5_categories (v4_categories), 42

v5_v4_aggregation_relations
(v4_categories), 42

vanilla, 43

45

	aggregate_pers
	aggregate_pers_cee
	attach_year
	clarity_dimensions
	codes
	count_codes
	formatids
	formatmpds
	franzmann_kaiser
	get_mpdb
	get_viacache
	iff
	issue_attention_diversity
	ManifestoAvailability
	ManifestoCorpus
	ManifestoDocument
	ManifestoDocumentMeta
	manifestoR
	ManifestoSource
	median_voter
	mpdb_api_request
	mp_availability
	mp_bootstrap
	mp_check_for_corpus_update
	mp_cite
	mp_clarity
	mp_codebook
	mp_coreversions
	mp_corpus
	mp_corpusversions
	mp_dedication
	mp_emptycache
	mp_interpolate
	mp_load_cache
	mp_maindataset
	mp_metadata
	mp_nicheness
	mp_rmps
	mp_save_cache
	mp_scale
	mp_setapikey
	mp_use_corpus_version
	mp_view_originals
	na_replace
	null_to_na
	prefix
	readManifesto
	recode_cee_codes
	rep.data.frame
	rescale
	rile
	scale_weighted
	split_belgium
	v4_categories
	vanilla
	Index

