Package 'mdsdt'

March 12, 2016

2 fit.grt

silbert12																					
summary.grt																					
thomas01a.																					
thomas01b.																					
thomas15a.																					
thomas15b.																					
wo89xt																					

Index 13

anova.grt

Compare nested GRT models

Description

Conducts a likelihood-ratio G-test on nested GRT models. Currently only accepts pairs of nested models, not arbitrary sequences.

Usage

```
## S3 method for class 'grt'
anova(object, ...)
```

Arguments

object A fitted GRT model returned by fit.grt
... A larger GRT model, with model1 nested inside

fit.grt

Fit full Gaussian GRT model

Description

Fit the mean and covariance of a bivariate Gaussian distribution for each stimulus class, subject to given constraints. Standard case uses confusion matrix from a 2x2 full-report identification experiment, but will also work in designs with N levels of confidence associated with each dimension (e.g. in Wickens, 1992).

Usage

```
fit.grt(freq, PS_x = FALSE, PS_y = FALSE, PI = "none", method = NA)
```

GOF 3

Arguments

freq	Can be entered in two ways: 1) a 4x4 confusion matrix containing counts, with each row corresponding to a stimulus and each column corresponding to a response. row/col order must be a_1b_1, a_1b_2, a_2b_1, a_2b_2. 2) A three-way 'xtabs' table with the stimuli as the third index and the NxN possible responses as the first two indices.
PS_x	if TRUE, will fit model with assumption of perceptual separability on the x dimension (FALSE by default)
PS_y	if TRUE, will fit model with assumption of perceptual separability on the y dimension (FALSE by default)
PI	'none' by default, imposing no restrictions and fitting different correlations for all distributions. If 'same_rho', will constrain all distributions to have same correlation parameter. If 'all', will constain all distribution to have 0 correlation.
method	The optimization method used to fit the Gaussian model. Newton-Raphson gradient descent by default, but may also specify any method available in optim, e.g. "BFGS".

Value

An S3 grt object

Examples

```
# Fit unconstrained model
data(thomas01b);
grt_obj <- fit.grt(thomas01b);

# Use standard S3 generics to examine
print(grt_obj);
summary(grt_obj);
plot(grt_obj);

# Fit model with assumption of perceptual separability on both dimensions
grt_obj_PS <- fit.grt(thomas01b, PS_x = TRUE, PS_y = TRUE);
summary(grt_obj_PS);
plot(grt_obj_PS);
plot(grt_obj_PS);
# Compare models
GOF(grt_obj, teststat = 'AIC');
GOF(grt_obj_PS, teststat = 'AIC');</pre>
```

GOF

Conduct goodness of fit tests

Description

Includes a number of common goodness of fit measures to compare different GRT models.

4 mriTest

Usage

```
GOF(grtMod, teststat = "X2", observed = NULL)
```

Arguments

grtMod a grt object

teststat a string indicating which statistic to use in the test. May be one of the following:

• 'X2' for a chi-squared test

• 'G2'for a likelihood-ratio G-test

• 'AIC' for Akaike information criterion score

• 'AIC.c' for the AIC with finite sample size correction

• 'BIC' for Bayesian information criterion score

observed optional, to provide a matrix of observed frequencies if no fit conducted.

Examples

```
data(thomas01a)
fit1 <- fit.grt(thomas01a)
fit2 <- fit.grt(thomas01a, PI = 'same_rho')
# Take the model with the lower AIC
GOF(fit1, teststat = 'AIC')
GOF(fit2, teststat = 'AIC')</pre>
```

mriTest

Test marginal response invariance

Description

Tests marginal response invariance at both levels on each dimension

Usage

```
mriTest(x)
```

Arguments

Х

four-by-four confusion matrix

Details

If the p value for either level of the x dimension is significant, we are justified in rejecting the null hypothesis of perceptual separability on the x dimension. Similarly for the y dimension.

The estimator is derived in a footnote of Thomas (2001).

plot.grt 5

Value

data frame containing z-scores and p-values for all four tests

Source

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological review, 93(2), 154.

Thomas, R. D. (2001). Perceptual interactions of facial dimensions in speeded classification and identification. Perception & Psychophysics, 63(4), 625–650.

Silbert, N. H., & Thomas, R. D. (2013). Decisional separability, model identification, and statistical inference in the general recognition theory framework. Psychonomic bulletin & review, 20(1), 1-20.

Examples

```
data(thomas01a)
mriTest(thomas01a)
```

plot.grt

Plot the object returned by fit.grt

Description

Plot the object returned by fit.grt

Usage

```
## $3 method for class 'grt'
plot(x, level = 0.5, xlab = NULL, ylab = NULL,
   marginals = F, main = "", plot.mu = T, ...)
```

Arguments

Х	a grt object, as returned by fit.grt
level	number between 0 and 1 indicating which contour to plot (defaults to .5)
xlab	optional label for the x axis (defaults to NULL)
ylab	optional label for the y axis (defaults to NULL)
marginals	Boolean indicating whether or not to plot marginals (only available for $2x2$ model; defaults to FALSE)
main	string to use as title of plot (defaults to empty string)
plot.mu	Boolean indicating whether or not to plot means (defaults to T)
	Arguments to be passed to methods, as in generic plot function

6 riTest

print.grt

Print the object returned by fit.grt

Description

Print the object returned by fit.grt

Usage

```
## S3 method for class 'grt'
print(x, ...)
```

Arguments

x An object returned by fit.grt

... further arguments passed to or from other methods, as in the generic print function

riTest

Test report independence

Description

Test report independence for each stimulus response distribution

Usage

```
riTest(x)
```

Arguments

Χ

four-by-four confusion matrix

Details

If p value is sufficiently low, we're justified in rejecting the null hypothesis of sampling within that factor. p values come from a chi-squared test on the confusion matrix, as explaned in a footnote of Thomas (2001).

Value

data frame containing z-scores and p-values for all four tests

silbert09a 7

Source

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological review, 93(2), 154.

Thomas, R. D. (2001). Perceptual interactions of facial dimensions in speeded classification and identification. Perception & Psychophysics, 63(4), 625–650.

Silbert, N. H., & Thomas, R. D. (2013). Decisional separability, model identification, and statistical inference in the general recognition theory framework. Psychonomic bulletin & review, 20(1), 1-20.

Examples

```
data(thomas01a)
riTest(thomas01a)
```

silbert09a

2x2 Frequency vs. Duration confusion matrix

Description

Confusion matrix from auditory perception experiment, in which listeners identified noise stimuli varying across frequency range and duration (Experiment 1, Observer 3 in Ref.)

Usage

```
data(silbert09a)
```

Format

A matrix instance, containing counts for all stimulus-response combinations. Rows correspond to stimuli, columns to responses

Author(s)

Noah H. Silbert

Source

Silbert, N. H., Townsend, J. T., & Lentz, J. J. (2009). Independence and separability in the perception of complex nonspeech sounds. Attention, Perception, & Psychophysics, 71(8), 1900-1915.

8 silbert12

silbert09b

2x2 Pitch vs. Timbre confusion matrix

Description

Confusion matrix from auditory perception experiment, in which listeners identified 13-component harmonic stimuli varying across fundamental frequency and location of spectral prominence (Experiment 2, Observer 7 in Ref..

Usage

data(silbert09b)

Format

A matrix instance, containing counts for all stimulus-response combinations. Rows correspond to stimuli, columns to responses

Author(s)

Noah H. Silbert

Source

Silbert, N. H., Townsend, J. T., & Lentz, J. J. (2009). Independence and separability in the perception of complex nonspeech sounds. Attention, Perception, & Psychophysics, 71(8), 1900-1915.

silbert12

2x2 phoneme confusion matrix

Description

Confusion matrix from speech perception experiment probing confusions between noise-masked tokens of English [p],[b],[f], and [v] (observer 3 in Ref.)

Usage

data(silbert12)

Format

A matrix instance, containing counts for all stimulus-response combinations. Rows correspond to stimuli, columns to responses

Author(s)

Noah H. Silbert

summary.grt 9

Source

Silbert, N. H. (2012). Syllable structure and integration of voicing and manner of articulation information in labial consonant identification. Journal of the Acoustical Society of America, 131(5), 4076-4086.

summary.grt

Summarize the object returned by fit.grt

Description

Summarize the object returned by fit.grt

Usage

```
## S3 method for class 'grt'
summary(object, ...)
```

Arguments

object

An object returned by fit.grt

. . .

additional arguments affecting the summary produced, as in the generic sum-

mary function

thomas01a

2x2 face recognition confusion matrix for Observer A

Description

This data set contains the results of a full-report face recognition experiment reported in Thomas (2001). For Observer A, the two channels are degree of eye separation and nose length.

Usage

```
data(thomas01a)
```

Format

a matrix instance, containing counts for all stimulus-response combinations. Each row corresponds to a different stimulus presentation (in the order aa, ab, ba, bb) and each column in that row represents the frequency of each response (in the order aa, ab, ba, bb).

Author(s)

Robin D. Thomas

10 thomas15a

Source

Thomas, R. D. (2001). Characterizing perceptual interactions in face identification using multidimensional signal detection theory. In M.Wenger & J.T. Townsend (Eds.) Computational, geometric, and process perspectives on facial cognition: Contexts and challenges. Hillsdale, NJ: Erlbaum.

thomas01b

2x2 face recognition confusion matrix for Observer B

Description

This data set contains the results of a full-report face recognition experiment reported in Thomas (2001). For Observer B, the two channels are degree of eye separation and mouth width.

Usage

data(thomas01b)

Format

a matrix instance, containing counts for all stimulus-response combinations. Each row corresponds to a different stimulus presentation (in the order aa, ab, ba, bb) and each column in that row represents the frequency of each response (in the order aa, ab, ba, bb).

Author(s)

Robin D. Thomas

Source

Thomas, R. D. (2001). Characterizing perceptual interactions in face identification using multidimensional signal detection theory. In M. Wenger & J.T. Townsend (Eds.) Computational, geometric, and process perspectives on facial cognition: Contexts and challenges. Hillsdale, NJ: Erlbaum.

thomas15a

3x3 face recognition confusion matrix for Observer A

Description

This data set contains the results of a 3x3 full-report face recognition experiment reported in Thomas et al (2015). The two channels are degree of eye separation and nose width, with three levels on each dimension.

Usage

data(thomas15a)

thomas15b

Format

an xtabs instance, containing counts for all stimulus-response combinations. The first two dimensions consist of the response counts on each level of nose width and eye separation, respectively, and the third dimension indexes the stimulus.

Author(s)

Robin D. Thomas

Source

Thomas, R. D., Altieri, N. A., Silbert, N. H., Wenger, M. J., & Wessels, P. M. (2015). Multidimensional signal detection decision models of the uncertainty task: Application to face perception. Journal of Mathematical Psychology, 66, 16-33.

thomas15b

3x3 face recognition confusion matrix for Observer B

Description

This data set contains the results of a 3x3 full-report face recognition experiment reported in Thomas et al (2015). The two channels are degree of eye separation and nose width, with three levels on each dimension.

Usage

data(thomas15b)

Format

an xtabs instance, containing counts for all stimulus-response combinations. The first two dimensions consist of the response counts on each level of nose width and eye separation, respectively, and the third dimension indexes the stimulus.

Author(s)

Robin D. Thomas

Source

Thomas, R. D., Altieri, N. A., Silbert, N. H., Wenger, M. J., & Wessels, P. M. (2015). Multidimensional signal detection decision models of the uncertainty task: Application to face perception. Journal of Mathematical Psychology, 66, 16-33.

12 wo89xt

wo89xt

Cross-tabulated concurrent detection data

Description

This data set contains a slightly coarse-grained version of Table 1 from Wickens and Olzak (1989). For each of four possible combinations of stimuli, participants gave a graded confidence judgement (collapsed here to 1-4) on both dimensions concurrently. A rating of 1 corresponded to "definitely absent" and a rating of 4 corresponded to "definitely present".

Usage

data(wo89xt)

Format

an xtabs instance, containing counts for all stimulus-response combinations. For each of 4 Stim levels (where NN = absent+absent, LN = low-frequency signal+absent, NH = absent+high-frequency signal, LH = low-frequency signal+high-frequency signal), there is a 4x4 table giving the frequency of each rating.

Author(s)

Thomas D. Wickens and Lynn A. Olzak

Source

Wickens, T. D., & Olzak, L. A. (1989). The statistical analysis of concurrent detection ratings. Perception & psychophysics, 45(6), 514-528.

Index

```
{\tt anova.grt, 2}
fit.grt, 2
GOF, 3
mriTest, 4
{\tt optim}, {\color{red} {\it 3}}
plot.grt, 5
print.grt, 6
riTest, 6
silbert09a, 7
silbert09b,8
silbert12,8
summary.grt, 9
thomas01a, 9
thomas01b, 10
thomas 15a, 10
thomas15b, 11
wo89xt, 12
```