
Package ‘metaMix’
February 11, 2019

Title Bayesian Mixture Analysis for Metagenomic Community Profiling

Version 0.3

Author Sofia Morfopoulou <sofia.morfopoulou.10@ucl.ac.uk>

Maintainer Sofia Morfopoulou <sofia.morfopoulou.10@ucl.ac.uk>

Depends R (>= 3.2)

Imports data.table (>= 1.9.2), Matrix, gtools, Rmpi, ggplot2

Suggests knitr

VignetteBuilder knitr

Description Resolves complex metagenomic mixtures by analysing
deep sequencing data, using a mixture model based approach.
The use of parallel Monte Carlo Markov chains for the exploration
of the species space enables the identification of the set
of species more likely to contribute to the mixture.

License GPL-3

LazyData true

SystemRequirements Open MPI (>=1.4.3)

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-02-11 16:20:03 UTC

R topics documented:
bayes.model.aver . 2
generative.prob . 3
parallel.temper . 5
parallel.temper.nucl . 7
reduce.space . 8
step1 . 9
step2 . 10
step3 . 10

1

2 bayes.model.aver

Index 11

bayes.model.aver Bayesian Model Averaging

Description

Perform Bayesian Model Averaging. We concentrate on the chain with temperature=1 , i.e the
untempered posterior, to study the distribution over the model choices and perform model averaging.
We consider as present the species that have a posterior probability greater than 0.9. We then fit
the mixture model with these species in order to obtain relative abundances and read classification
probabilities. A tab seperated file that has a species summary is produced, as well as log-likelihood
traceplots and cumulative histogram plots.

bayes.model.aver.explicit is the same function as bayes.model.aver with a more involved syntax.

Usage

bayes.model.aver(step2, step3, taxon.name.map = NULL,
poster.prob.thr = 0.9, burnin = 0.4)

bayes.model.aver.explicit(result, pij.sparse.mat, read.weights, outDir,
gen.prob.unknown, taxon.name.map = NULL, poster.prob.thr = 0.9,
burnin = 0.4)

Arguments

step2 list. The output from reduce.space(), i.e the second step of the pipeline. Alter-
natively, it can be a character string containing the path name of the ".RData"
file where step2 list was saved.

step3 list. The output from parallel.temper(), i.e the third step of the pipeline. Alter-
natively, it can be a character string containing the path name of the ".RData"
file where step3 list was saved.

taxon.name.map The ’names.dmp’ taxonomy names file, mapping each taxon identifier to the
corresponding scientific name. It can be downloaded from ftp://ftp.ncbi.
nih.gov/pub/taxonomy/taxdump.tar.gz

poster.prob.thr

Posterior probability of presence of species threshold for reporting in the species
summary.

burnin Percentage of burn in iterations, default value is 0.4
result The list produced by parallel.temper() (or paraller.temper.nucl()) . It holds a

detailed record for each chain, what moves were proposed, which were accepted
and which were rejected as well the log-likelihood through the iterations.

pij.sparse.mat see ?reduce.space
read.weights see ?reduce.space
outDir see ?reduce.space
gen.prob.unknown

see ?reduce.space

ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz

generative.prob 3

Examples

See vignette for more details

Not run:
Either load the object created by previous steps
data(step2) ## example output of step2, i.e reduce.space()
data(step3) ## example ouput of step3, i.e parallel.temper()
step4<-bayes.model.aver(step2=step2, step3=step3, taxon.name.map="pathtoFile/taxon.file")

or alternatively point to the location of the step2.RData and step3.RData objects
step4<-bayes.model.aver(step2="pathtoFile/step2.RData", step3="pathtoFile/step3.RData",

taxon.name.map="pathtoFile/taxon.file")

End(Not run)

generative.prob Compute generative probabilities from BLAST output

Description

generative.prob() computes the probability for a read to be generated by a certain species, given that
it originates from this species. The input for this function is the tabular BLAST output format, either
default or custom. The function uses the recorded mismatches to produce a Poisson probability.

generative.prob.nucl() for when we have nucleotide similarity, i.e we have performed BLASTn.

Usage

generative.prob(blast.output.file = NULL, read.length.file = 80,
contig.weight.file = 1, gi.taxon.file = NULL,
protaccession.taxon.file = NULL, gi.or.prot = "prot",
gen.prob.unknown = 1e-06, outDir = NULL, blast.default = TRUE)

generative.prob.nucl(blast.output.file = NULL, read.length.file = 80,
contig.weight.file = 1, gi.taxon.file, gen.prob.unknown = 1e-20,
outDir = NULL, genomeLength = NULL, blast.default = TRUE)

Arguments

blast.output.file

This is the tabular BLASTx output format for generative.prob(), while it is the
tabular BLASTn output format for generative.prob.nucl(). It can either be the
default output format or a specific custom output format, incorporating read
length and taxon identifier. Please see the vignette for column order and the ex-
act BLAST command to use. You can also use DIAMOND instead of BLASTx
which is much faster and produces default format according to BLAST default
output specifications.

4 generative.prob

read.length.file

This argument can either be a file mapping each read to its length or a numerical
value, representing the average read length.

contig.weight.file

This argument can either be a file where weights are assigned to reads and con-
tigs. For unassembled reads the weight is equal to 1 while for contigs the weight
should reflect the number of reads that assembled it.

gi.taxon.file For generative.prob() this would be the ’gi_taxid_prot.dmp’ taxonomy file, map-
ping each protein gi identifier to the corresponding taxon identifier. It can be
downloaded from ftp://ftp.ncbi.nih.gov/pub/taxonomy/gi_taxid_prot.
dmp.gz . For generative.prob.nucl() this would be the ’gi_taxid_nucl.dmp’ tax-
onomy file, mapping each nucleotide gi identifier to the corresponding taxon
identifier. It can be downloaded from ftp://ftp.ncbi.nih.gov/pub/taxonomy/
gi_taxid_nucl.dmp.gz.

protaccession.taxon.file

This parameter has been added as NCBI is phasing out the usage of GI iden-
tifiers. For generative.prob() this would be the prot.accession2taxid taxonomy
file, mapping each protein accession identifier to the corresponding taxon identi-
fier. It can be downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/
accession2taxid/prot.accession2taxid.gz. I have found that it is useful
to concatenate it with ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/
dead_prot.accession2taxid.gz so you can search in both files for the protein
identifier (sometimes obsolete sequences can still be present in latest RefSeq re-
leases but not in taxonomy files and vice versa and these mismatches can cause
loss of information). TODO add support for nucleotides as well.

gi.or.prot This parameter specifies whether the user is using the GI identifiers or protein
accession identifiers to map to taxon identifiers. Values are ’gi’ or ’prot’. The
default value is ’prot’.

gen.prob.unknown

User-defined generative probability for unknown category. Default value for
generative.prob() is 1e-06, while for generative.prob.nucl() is 1e-20.

outDir Output directory.

blast.default logical. Is the input the default blast output tabular format? Default value is
TRUE. That means that the BLAST output file needs to have the following
fields:Query id, Subject id, percent identity, alignment length, mismatches, gap
openings, query start, query end, subject start, subject end, e-value, bit score.
Alternatively we can use the ’blast.default=FALSE’ option, providing a custom
blast output that has been produced using the option -outfmt ’6 qacc qlen sacc
slen stitle bitscore length pident evalue staxids’.

genomeLength This is applicable only for generative.prob.nucl() . It is a file mapping each
genome/nucleotide to its respective length. The file must be tab seperated and
the first column the nucleotide gi identifier (integer) and the second the cor-
responding sequence length (integer). It will be used to correct the Poisson
probabilities between each read and genome.

ftp://ftp.ncbi.nih.gov/pub/taxonomy/gi_taxid_prot.dmp.gz
ftp://ftp.ncbi.nih.gov/pub/taxonomy/gi_taxid_prot.dmp.gz
ftp://ftp.ncbi.nih.gov/pub/taxonomy/gi_taxid_nucl.dmp.gz
ftp://ftp.ncbi.nih.gov/pub/taxonomy/gi_taxid_nucl.dmp.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/dead_prot.accession2taxid.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/dead_prot.accession2taxid.gz

parallel.temper 5

Value

step1: A list with five elements. The first one (pij.sparse.mat) is a sparse matrix with the generative
probability between each read and each species. The second (ordered.species) is matrix containing
all the potential species as recorded by BLAST, ordered by the number of reads. The third one
(read.weights) is a data.frame mapping each contig to a weight which is essentially the number of
reads that were used to assemble it. For unassembled reads the weight is equal to one. The fourth
one is the generative probability for the unknown category (gen.prob.unknown), to be used in all
subsequent steps. Finally we also record the output directory (outDir) where the results will be
stored.

Examples

See vignette for more details

Not run:
When using custom BLAST output file
step1 <-generative.prob(blast.output.file = "pathtoFile/blastOut.custom", blast.default=FALSE)

When using default BLAST output file
step1 <-generative.prob(blast.output.file = "pathtoFile/blastOut.default",

read.length.file="pathtoFile/read.lengths",
contig.weight.file="pathtoFile/read.weights",
gi.taxon.file = "pathtoFile/taxon.file")

End(Not run)

parallel.temper Parallel Tempering MCMC

Description

Performs Parallel Tempering MCMC to explore the species state space. Two types of moves are
implemented: a mutation step (within chain) and an exchange step (between neighboring chains).
If working with BLASTn data, use parallel.temper.nucl().

parallel.temper.explicit is the same function as parallel.temper but with a more involved syntax.

Usage

parallel.temper(step2, readSupport = 10, noChains = 12, seed = 1,
iter = 500, bypass = FALSE)

parallel.temper.explicit(readSupport = 10, noChains = 12,
pij.sparse.mat, read.weights, ordered.species, gen.prob.unknown, outDir,
seed = 1, iter = 500, bypass = FALSE)

6 parallel.temper

Arguments

step2 list. The output from reduce.space(). Alternatively, it can be a character string
containing the path name of the ".RData" file where step2 list was saved.

readSupport The number of reads the user requires in order to believe in the presence of the
species. It is used to compute the penalty factor. The default value is 10. We
compute the logarithmic penalty value as the log-likelihood difference between
two models: one where all N reads belong to the "unknown" category and one
where r reads have a perfect match to some unspecified species and the remain-
ing reads belong to the "unknown" category.

noChains The number of parallel chains to run. The default value is 12.

seed Optional argument that sets the random seed (default is 1) to make results repro-
ducible.

iter The number of MCMC iterations. The default behavior of metaMix is to take
into account the number of potential species after step 2 in order in order to
compute the number of MCMC iterations. By default metaMix will choose the
greater value between a) the user-specified value for iter and b) the product of
(5 * the number of potential species). This behavior can by bypassed by setting
the bypass parameter to TRUE. Then the MCMC will run for exactly the user-
specified number iter.

bypass A logical flag. If set to TRUE the MCMC will run for exactly "iter" iterations.
If FALSE, metaMix defaults to choosing the greater value between "iter" and
"5*(nrow(ordered.sepcies))".

pij.sparse.mat sparse matrix of generative probabilities, see value of ?reduce.space.

read.weights see ?reduce.space.
ordered.species

see ?reduce.space.
gen.prob.unknown

see ?reduce.space.

outDir see ?reduce.space.

Value

step3: A list with two elements. The first one (result) is a list that records MCMC information from
each parallel chain. The second one (duration) records how much time the MCMC exploration
took.

See Also

parallel.temper.nucl This function should be used when working with BLASTn data.

Examples

See vignette for more details

Not run:
Either load the object created by previous step (i.e from function reduce.space())

parallel.temper.nucl 7

data(step2) ## example output of reduce.space
step3<-parallel.temper(step2=step2)

or alternatively point to the location of the step2.RData object
step3 <- parallel.temper(step2="/pathtoFile/step2.RData")

End(Not run)

parallel.temper.nucl Parallel Tempering MCMC

Description

Performs Parallel Tempering MCMC to explore the species state space. Two types of moves are
implemented: a mutation step (within chain) and an exchange step (between neighboring chains).
If working with BLASTx data, use parallel.temper().

parallel.temper.nucl.explicit is the same function as parallel.temper.nucl with a more involved syn-
tax.

Usage

parallel.temper.nucl(step2, readSupport = 30, noChains = 12,
seed = 1, median.genome.length = 284332)

parallel.temper.nucl.explicit(readSupport = 30, noChains = 12,
pij.sparse.mat, read.weights, ordered.species, gen.prob.unknown, outDir,
seed = 1, median.genome.length = 284332)

Arguments

step2 list. The output from reduce.space(). Alternatively, it can be a character string
containing the path name of the ".RData" file where step2 list was saved.

readSupport The number of reads the user requires in order to believe in the presence of the
species. It is used to compute the penalty factor. The default value is 30. We
compute the logarithmic penalty value as the log-likelihood difference between
two models: one where all N reads belong to the "unknown" category and one
where r reads have a perfect match to some unspecified species and the remain-
ing reads belong to the "unknown" category.

noChains The number of parallel chains to run. The default value is 12.

seed Optional argument that sets the random seed (default is 1) to make results repro-
ducible.

median.genome.length

To use in the penalty computation.

pij.sparse.mat sparse matrix of generative probabilities, see value of ?reduce.space.

read.weights see ?reduce.space.

8 reduce.space

ordered.species

see ?reduce.space.
gen.prob.unknown

see ?reduce.space.

outDir see ?reduce.space.

Value

step3: A list with two elements. The first one (result) is a list that records MCMC information from
each parallel chain. The second one (duration) records how much time the MCMC exploration
took.

See Also

parallel.temper This function should be used when working with BLASTx data.

reduce.space Reduce the space of potential species by fitting the mixture model with
all potential species as categories

Description

Having the generative probabilities from step1 (generative.prob() or generative.prob.nucl()), we
could proceed directly with the PT MCMC to explore the state space. Typically the number of total
potential species is large. Therefore we reduce the size of the state-space, by decreasing the number
of species to the low hundreds. We achieve this by fitting a Mixture Model with as many categories
as all the potential species. Post fitting, we retain only the species categories that are not empty, that
is categories that have at least one read assigned to them.

reduce.space.explicit is the same function as reduce.space but with more involved syntax.

Usage

reduce.space(step1, read.cutoff = 1, EMiter = 500, seed = 1)

reduce.space.explicit(pij.sparse.mat, ordered.species, read.weights,
outDir, gen.prob.unknown, read.cutoff = 1, EMiter = 500, seed = 1)

Arguments

step1 list. The output from generative.prob() (or generative.prob.nucl(), that is the first
step of the pipeline. Alternatively, it can be a character string containing the path
name of the ".RData" file where step1 list was saved.

read.cutoff numeric vector. This is the used to decide which species to retain for the sub-
sequent MCMC exploration. Default value is 1, i.e keep all species that have at
least one read assigned to them. If this number is still in the low thousands as
opposed to the low hundreds the user may set this to a higher number, such as
10.

step1 9

EMiter Number of iterations for the EM algorithm. Default value is 500.

seed Optional argument that sets the random seed (default is 1) to make results repro-
ducible.

pij.sparse.mat sparse Matrix of generative probabilities computed by generative.prob() / gen-
erative.prob.nucl().

ordered.species

data.frame with potential species ordered by numbers of reads matching them.
Computed by generative.prob().

read.weights data.frame mapping each read identifier to a weight. For contigs the weight is
the number of reads that were used to assemble it. For unassembled reads the
weight is equal to one.

outDir character vector holding the path to the output directory where the results are
written.

gen.prob.unknown

numeric vector. This is the generative probability for the unknown category.
Default value for BLASTx-analysis is 1e-06 while for BLASTn-analysis is 1e-
20.

Value

step2: A list with six elements. The first one (ordered.species) is a data.frame containing all the
non-empty species categories, as decided by the all inclusive mixture model, ordered by the number
of reads assigned to them. The second one (pij.sparse.mat) is a sparse matrix with the generative
probability between each read and each species. read.weights, gen.prob.unknown, outDir are all
carried forward from the "step1" object. Finally outputEM which records the species abundances
throughout the EM iterations (not used in step3 and step4).

Examples

See vignette for more details.

Not run:
Either load the object created by previous step
data(step1) ## example output of step1, i.e generative.prob()
step2 <- reduce.space(step1=step1)

or alternatively point to the location of the step1.RData object
step2 <- reduce.space(step1="/pathtoFile/step1.RData")

End(Not run)

step1 Example output of generative.prob() for use in the vignette/examples

Description

Example output of generative.prob() for use in the vignette/examples

10 step3

Format

A list with 5 elements

step2 Example output of reduce.space() for use in the vignette/examples

Description

Example output of reduce.space() for use in the vignette/examples

Format

A list with 6 elements

step3 Example output of parallel.temper() for use in the vignette/examples

Description

Example output of parallel.temper() for use in the vignette/examples

Format

A list with 2 elements

Index

∗Topic bayes.model.aver.explicit
bayes.model.aver, 2

∗Topic bayes.model.aver
bayes.model.aver, 2

∗Topic generative.prob.nucl
generative.prob, 3

∗Topic generative.prob
generative.prob, 3

∗Topic parallel.temper.explicit
parallel.temper, 5

∗Topic parallel.temper.nucl.explicit
parallel.temper.nucl, 7

∗Topic parallel.temper.nucl
parallel.temper.nucl, 7

∗Topic parallel.temper
parallel.temper, 5

∗Topic reduce.space.explicit
reduce.space, 8

∗Topic reduce.space
reduce.space, 8

bayes.model.aver, 2

generative.prob, 3

parallel.temper, 5, 8
parallel.temper.nucl, 6, 7

reduce.space, 8

step1, 9
step2, 10
step3, 10

11

	bayes.model.aver
	generative.prob
	parallel.temper
	parallel.temper.nucl
	reduce.space
	step1
	step2
	step3
	Index

