mi4p: multiple imputation for proteomics
This repository contains the R code and package for the mi4p methodology (Multiple Imputation for Proteomics), proposed by Marie Chion, Christine Carapito and Frédéric Bertrand (2021) in Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics, https://arxiv.org/abs/2108.07086.
The following material is available on the Github repository of the package https://github.com/mariechion/mi4p/.
The
Functions
folder contains all the functions used for the workflow.The
Simulation-1
,Simulation-2
andSimulation-3
folders contain all the R scripts and data used to conduct simulated experiments and evaluate our methodology.The
Arabidopsis_UPS
andYeast_UPS
folders contain all the R scripts and data used to challenge our methodology on real proteomics datasets. Raw experimental data were deposited with the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD003841 and PXD027800.
This website and these examples were created by M. Chion, C. Carapito and F. Bertrand.
Installation
You can install the released version of mi4p from CRAN with:
install.packages("mi4p")
You can install the development version of mi4p from github with:
::install_github("mariechion/mi4p") devtools
Examples
First section
library(mi4p)
set.seed(4619)
<- protdatasim()
datasim str(datasim)
#> 'data.frame': 200 obs. of 11 variables:
#> $ id.obs: int 1 2 3 4 5 6 7 8 9 10 ...
#> $ X1 : num 99.6 99.9 100.2 99.8 100.4 ...
#> $ X2 : num 97.4 101.3 100.3 100.2 101.7 ...
#> $ X3 : num 100.3 100.9 99.1 101.2 100.6 ...
#> $ X4 : num 99.4 99.2 98.5 99.1 99.5 ...
#> $ X5 : num 98.5 99.7 100 100.2 100.7 ...
#> $ X6 : num 200 199 199 200 199 ...
#> $ X7 : num 200 200 202 199 199 ...
#> $ X8 : num 202 199 200 199 201 ...
#> $ X9 : num 200 200 199 201 200 ...
#> $ X10 : num 200 198 200 201 199 ...
#> - attr(*, "metadata")='data.frame': 10 obs. of 3 variables:
#> ..$ Sample.name: chr [1:10] "X1" "X2" "X3" "X4" ...
#> ..$ Condition : Factor w/ 2 levels "A","B": 1 1 1 1 1 2 2 2 2 2
#> ..$ Bio.Rep : int [1:10] 1 2 3 4 5 6 7 8 9 10
attr(datasim, "metadata")
#> Sample.name Condition Bio.Rep
#> 1 X1 A 1
#> 2 X2 A 2
#> 3 X3 A 3
#> 4 X4 A 4
#> 5 X5 A 5
#> 6 X6 B 6
#> 7 X7 B 7
#> 8 X8 B 8
#> 9 X9 B 9
#> 10 X10 B 10
AMPUTATION
<- MVgen(dataset = datasim[,-1], prop_NA = 0.01)
MV1pct.NA.data
MV1pct.NA.data#> X1 X2 X3 X4 X5 X6 X7
#> 1 99.62136 97.36890 100.28075 99.37889 98.48006 200.28026 199.80422
#> 2 99.86342 101.27309 100.86058 99.19046 99.71866 199.26177 200.39344
#> 3 100.21425 100.30241 99.07865 98.51259 100.02675 199.21966 202.28551
#> 4 99.84381 100.20091 101.18119 99.05420 100.18467 200.06153 199.34245
#> 5 100.36412 101.70192 100.59543 99.49536 100.65887 199.25196 199.47146
#> 6 100.70214 NA 101.65048 99.11372 100.94608 201.74710 198.70242
#> 7 99.65595 99.31420 100.02326 101.56787 100.01322 199.91695 199.59548
#> 8 97.98251 97.59303 100.60547 97.81128 101.07808 199.94233 199.46429
#> 9 99.56975 100.09034 99.30467 99.69204 100.78160 200.79724 199.30691
#> 10 99.66258 99.27055 98.28584 99.76234 100.15253 199.05707 200.98124
#> 11 100.67448 98.76728 99.03524 100.05411 99.65590 99.17835 98.58828
#> 12 99.70519 101.44341 100.27238 100.05246 100.22091 100.72780 99.40128
#> 13 100.22737 98.20463 100.17269 99.25860 97.97791 100.25975 100.44203
#> 14 99.58471 99.56201 100.68163 100.80704 101.25322 100.22989 101.69888
#> 15 98.88906 100.91857 100.40506 98.21385 99.92004 101.20937 101.01489
#> 16 99.72203 100.13020 100.38206 100.30495 100.50996 99.77492 101.92973
#> 17 98.66712 99.87493 98.73070 100.21022 100.16050 98.70055 99.66331
#> 18 101.74826 99.50606 99.06766 100.88594 100.89332 98.20664 99.92798
#> 19 100.37070 99.92320 101.00412 98.77845 99.51780 100.51887 100.65552
#> 20 99.67479 99.88322 99.71573 98.72810 100.61274 97.97179 NA
#> 21 101.22486 101.49935 100.51086 100.64889 101.37527 100.31040 99.45380
#> 22 100.94777 100.74609 98.16971 100.51673 100.34439 100.46798 101.21767
#> 23 99.23466 98.98854 97.70679 99.66054 99.63939 100.49429 99.84157
#> 24 100.73409 100.11633 99.34654 99.01384 101.20664 99.83183 100.18725
#> 25 99.42769 101.44334 100.31472 99.85531 100.97558 98.07407 99.12720
#> 26 97.98284 98.58111 100.72714 100.77219 99.50288 101.16027 97.92605
#> 27 100.77200 99.87912 100.64746 100.26483 99.76495 101.61521 100.04600
#> 28 101.21120 101.21477 98.66129 100.28078 99.24424 99.46075 101.14263
#> 29 99.89863 100.70173 99.77229 98.53766 100.04275 99.75579 101.32759
#> 30 100.06061 100.37637 99.99705 100.47969 99.08339 99.36436 99.03801
#> 31 98.30618 98.66601 99.96445 100.75600 101.78651 99.57463 97.63290
#> 32 99.20158 99.72202 100.56677 101.86184 98.29285 100.69424 99.51856
#> 33 102.69643 99.43994 99.81578 100.45453 100.66046 101.42928 100.05872
#> 34 99.64883 99.69805 100.82740 100.94480 101.13936 100.43190 98.86824
#> 35 100.52176 100.35496 101.18851 100.98460 99.39586 100.72377 100.78591
#> 36 99.14024 100.18434 101.25128 99.24923 99.25243 101.26967 99.00934
#> 37 98.71673 100.27563 101.26047 100.17444 100.22413 99.39826 101.40395
#> 38 99.60300 99.96101 97.69730 100.69089 100.56642 100.59508 100.64289
#> 39 100.95813 99.81860 101.42839 101.09042 99.95280 100.05541 100.25045
#> 40 100.94308 101.05768 101.33514 98.67754 100.78029 101.33639 99.06949
#> 41 100.08233 99.25436 100.18024 99.49072 101.11272 99.46501 99.42307
#> 42 98.08118 98.05493 101.38092 98.98588 100.38570 101.43547 98.73351
#> 43 100.73244 101.01459 99.31688 100.70114 99.63081 100.12055 98.27283
#> 44 101.37057 100.74243 100.25070 100.36574 100.12416 99.61283 99.72949
#> 45 100.57588 98.59631 99.63513 99.14692 100.54662 100.38188 99.85310
#> 46 102.32726 100.72725 100.83068 100.69548 99.14269 99.33752 100.98748
#> 47 100.66396 101.24997 102.74212 100.21230 100.15852 100.11243 98.59912
#> 48 101.18708 99.14272 100.97788 100.43447 100.20844 98.35361 98.66029
#> 49 100.29781 100.05292 101.81405 99.51584 100.27605 99.18655 99.93729
#> 50 98.90440 98.88690 100.10132 98.60870 99.54416 100.53822 99.79307
#> 51 99.13211 101.27766 100.35375 99.01066 98.65777 99.59689 101.53856
#> 52 99.68964 98.53949 NA 99.63273 99.82911 100.20886 99.59244
#> 53 100.20759 100.75656 101.83451 100.83636 101.20224 101.46609 99.25368
#> 54 100.81381 100.86708 98.98648 97.94897 99.05776 100.18764 101.23422
#> 55 97.62262 100.96918 100.88207 99.72121 101.16145 98.67508 99.75286
#> 56 99.87966 99.11009 100.62407 101.51961 99.07788 98.87347 100.09431
#> 57 100.81265 101.40022 101.64736 100.72335 98.98892 99.42230 100.87794
#> 58 99.42476 100.95793 98.97635 101.74751 99.12457 100.38954 98.87197
#> 59 98.54276 100.53223 100.52489 100.72203 100.67585 98.81364 98.79910
#> 60 101.65724 100.08529 100.82927 99.95037 98.87261 99.72656 99.90579
#> 61 100.22370 99.10401 101.10075 100.55131 98.18042 98.01345 NA
#> 62 100.01483 98.93389 101.42779 99.12747 100.93053 100.67624 98.69724
#> 63 98.03262 98.51941 100.64758 98.84928 100.03873 100.56751 99.63268
#> 64 102.48775 100.54013 100.22541 101.07624 100.45880 100.28039 98.74043
#> 65 101.08856 99.96487 99.35269 100.88600 99.88268 99.03970 100.72421
#> 66 99.28101 100.31202 99.58869 98.36661 98.88559 100.42823 100.11403
#> 67 99.94741 99.59370 101.31019 102.00179 99.71711 100.71517 99.53402
#> 68 99.11708 99.87691 100.41860 100.05917 98.87877 100.05524 100.47340
#> 69 99.83367 99.48486 100.47715 100.42913 99.81200 99.04303 99.16834
#> 70 100.26151 98.90834 99.27541 101.30210 100.63369 98.32762 99.53554
#> 71 101.42782 NA 99.47898 99.69239 101.13070 101.38540 97.77069
#> 72 98.37754 97.58114 98.54586 99.71640 99.18235 102.10023 101.28421
#> 73 98.43999 102.07782 99.31780 97.19951 100.03653 98.74474 98.03535
#> 74 99.21218 99.76310 100.58792 100.51794 98.67775 100.30000 100.60982
#> 75 100.31827 100.87590 100.00028 99.41642 99.73776 100.05191 100.53130
#> 76 101.33601 99.30129 101.45846 100.57889 99.82176 99.35001 101.78012
#> 77 98.71098 98.45163 100.50164 99.49692 100.56487 97.99646 101.16713
#> 78 100.54735 100.13119 99.49891 101.94890 100.94310 99.79346 102.36457
#> 79 100.62054 99.90850 99.83848 101.83898 99.71147 98.91599 100.72897
#> 80 100.87418 99.07000 99.39502 99.07229 99.84750 98.21041 98.99321
#> 81 100.58658 100.55023 98.79955 101.56748 99.77204 101.46388 99.25508
#> 82 100.65936 99.83262 100.37488 100.96218 98.40581 101.40310 100.64276
#> 83 101.05624 99.81584 97.94433 100.75954 99.44069 100.06661 99.26098
#> 84 99.76635 99.48239 100.50835 97.81779 99.47231 99.00190 101.11238
#> 85 99.61604 99.94210 99.92007 100.83718 100.31995 100.67056 101.00432
#> 86 102.65635 98.83253 100.94177 100.24468 100.60003 101.03815 99.16664
#> 87 99.16549 98.59323 98.50025 101.09024 98.26549 99.63777 99.77638
#> 88 99.80314 102.83451 98.62313 100.24650 99.66112 100.47485 99.82777
#> 89 100.81485 100.59225 99.68692 101.42699 100.49860 100.32587 100.42828
#> 90 101.15941 99.94095 99.38685 99.12203 99.97329 100.26401 101.33879
#> 91 99.60963 99.75646 99.79006 101.97879 99.59668 98.13397 100.54690
#> 92 98.67055 101.07326 99.37645 101.50588 99.35769 99.36484 101.20923
#> 93 97.18646 100.47113 101.30328 100.19676 100.38262 100.46563 98.08284
#> 94 99.76743 100.12888 100.75160 100.49422 100.80529 100.52150 98.69169
#> 95 98.92139 100.45915 99.08668 101.39591 99.88206 100.57992 99.18996
#> 96 100.14744 99.68685 101.91843 99.53541 99.69815 100.77521 99.18343
#> 97 97.81162 99.63666 100.95298 98.41874 99.46149 101.44124 99.59299
#> 98 99.35723 100.81867 99.36142 99.72925 100.37592 99.54315 100.70182
#> 99 100.44599 101.11855 101.18338 100.11626 98.76637 100.35712 99.79178
#> 100 99.86970 99.79042 99.41267 101.35380 101.48962 98.37529 100.23905
#> 101 101.47431 98.43315 98.51382 100.92065 99.08222 100.16968 100.03368
#> 102 100.03502 100.79062 99.72300 98.84368 99.46481 99.38080 101.09258
#> 103 99.57257 99.97542 100.48245 99.05654 98.94758 99.15383 100.98345
#> 104 98.23869 99.38987 99.10773 99.32141 99.01698 99.83851 100.56555
#> 105 100.05229 100.33658 100.57941 99.92014 100.75167 99.85726 99.12292
#> 106 100.06020 100.36436 101.04839 99.90625 99.06856 99.40304 99.77989
#> 107 100.78697 100.29635 101.34351 98.79847 98.73562 100.37157 99.33851
#> 108 99.04853 101.54802 102.39035 98.74997 100.80311 99.36435 101.00431
#> 109 100.29807 99.91914 100.09647 99.61130 99.68454 99.54542 99.94014
#> 110 100.00996 99.57172 97.71210 98.48492 99.79371 99.03203 99.78460
#> 111 100.42864 99.08919 101.04291 99.00140 98.92389 100.67435 101.32056
#> 112 100.26558 99.69572 102.66571 100.76607 101.27767 100.90411 102.61595
#> 113 100.13789 98.74178 100.02560 100.47585 98.62588 101.19421 100.25107
#> 114 99.20728 99.17320 99.09790 101.46185 100.41534 101.10293 100.96342
#> 115 102.16407 100.02702 100.98123 99.72735 99.48421 100.21467 101.80124
#> 116 99.72329 99.93928 99.68441 101.41197 99.52737 100.77203 99.71528
#> 117 100.32326 102.47447 98.66896 99.85477 100.00976 100.20038 100.19813
#> 118 100.71835 100.37242 101.12338 99.37908 98.55517 99.93682 99.04064
#> 119 99.58769 99.83928 100.90672 99.55379 100.33225 99.24659 98.74261
#> 120 101.45721 98.80147 100.71581 101.50671 100.23384 99.59456 99.37526
#> 121 97.74395 98.03988 97.59257 99.25657 99.14644 99.03216 99.87320
#> 122 99.53648 99.95157 98.97218 97.76637 99.57592 100.24890 99.46475
#> 123 99.59819 101.59246 99.84393 101.65932 98.67497 101.03136 100.53044
#> 124 100.55792 99.31220 100.49243 99.80183 101.25306 101.17637 99.89330
#> 125 99.54014 98.68227 99.50734 100.30816 99.14884 99.28004 100.82403
#> 126 99.67561 100.97418 100.78798 98.25363 100.47608 99.84862 98.79691
#> 127 101.78977 100.74442 102.11208 101.48878 98.63244 99.77325 98.82267
#> 128 99.93485 100.70836 98.93639 100.83899 101.02054 98.52611 99.52462
#> 129 99.66867 100.24496 99.86456 99.09709 98.94273 100.65458 98.56188
#> 130 98.91078 99.79138 100.28155 102.02624 100.04082 100.44048 99.71897
#> 131 100.52715 99.08120 97.97039 100.70692 100.17289 98.38776 101.07585
#> 132 101.32403 97.79270 100.18696 NA NA 100.85701 100.32032
#> 133 102.73243 99.14881 100.88526 97.86413 101.42462 100.23550 99.71745
#> 134 96.91355 100.95539 99.80457 100.63926 99.47184 100.90574 100.13840
#> 135 100.00646 100.01781 100.60791 100.08330 100.38260 101.22518 99.42475
#> 136 99.47235 99.00126 99.77235 101.73736 101.46747 98.92124 99.02748
#> 137 99.69947 101.12740 99.20232 100.19946 100.57561 100.12938 99.17633
#> 138 98.65681 99.41049 99.01536 99.56454 99.91585 101.28376 100.77232
#> 139 101.49248 99.51984 99.81268 98.11798 99.92312 101.75853 100.58909
#> 140 100.02625 99.50784 100.16699 100.13994 99.33484 100.17664 100.35799
#> 141 NA 100.82316 99.33397 100.77537 98.98519 98.55963 101.91384
#> 142 100.36174 101.00079 NA 100.67655 100.23349 99.95319 101.61752
#> 143 101.02046 100.13497 101.07472 100.04054 99.39096 99.56348 100.12796
#> 144 101.66051 100.39221 98.97878 101.13356 99.36175 99.96530 100.34920
#> 145 100.95357 98.98128 99.42823 100.34336 99.55851 101.22819 99.43016
#> 146 101.31600 101.20522 99.07790 100.27579 99.49379 101.12240 101.69111
#> 147 101.19975 101.76567 99.77352 98.29425 98.95770 100.51235 102.12028
#> 148 101.72902 101.13997 101.18694 99.88247 100.61675 99.63506 100.45349
#> 149 101.25394 98.87752 100.12827 99.92861 99.68186 102.10665 99.66894
#> 150 99.35037 100.63539 100.86106 101.01252 102.27363 101.54647 101.36150
#> 151 99.12336 98.67527 99.94660 101.51165 100.18394 100.57840 101.14721
#> 152 99.81429 100.80337 98.63386 99.44536 100.15926 98.99341 98.56855
#> 153 100.84963 100.69379 100.27339 99.39224 101.81707 99.64270 98.38824
#> 154 99.38203 99.34741 98.29750 99.63610 100.55278 99.07040 99.94325
#> 155 100.55099 100.34644 99.65762 100.95519 101.10852 99.93297 100.29483
#> 156 99.97815 100.47497 97.94564 100.04144 100.85421 100.07721 98.85379
#> 157 99.54059 101.12604 100.15236 100.63118 102.00903 98.67124 100.60105
#> 158 98.10429 100.52284 100.39234 98.93840 100.18350 100.13128 99.66122
#> 159 101.56135 99.93320 101.14554 100.26996 99.88758 98.96583 100.09356
#> 160 102.23120 100.06674 98.85129 99.91403 99.58684 100.40701 99.99273
#> 161 98.57279 99.63095 100.21493 99.04134 102.41089 100.38154 98.43762
#> 162 99.17784 99.89608 102.48917 99.83903 99.41488 98.81871 99.74507
#> 163 99.96900 99.79411 98.75010 100.05600 101.19766 100.45228 NA
#> 164 99.35957 101.32700 99.03833 101.23702 100.55556 101.54561 98.78897
#> 165 100.50057 98.47721 98.78752 101.50442 100.43447 100.57654 100.48637
#> 166 101.89837 99.97554 99.26773 101.50717 99.32377 99.09005 99.04513
#> 167 99.35180 101.79105 99.64702 99.89800 101.04325 100.74671 100.36547
#> 168 100.53688 98.92227 101.00901 100.96131 99.99951 100.16389 100.26319
#> 169 99.71419 101.07805 98.07288 99.01365 99.95446 99.92435 98.91927
#> 170 99.53651 100.33546 98.89399 99.00587 99.81884 100.54144 98.97271
#> 171 101.56058 98.99244 98.92080 99.73099 101.16093 99.37887 99.94267
#> 172 100.65938 97.89204 100.79800 98.84261 99.75230 100.40575 102.04211
#> 173 100.25037 99.02550 100.82723 100.15753 100.73882 99.77619 98.70182
#> 174 101.12980 101.98038 99.45999 100.99595 100.32239 100.67340 100.16645
#> 175 99.11433 100.77852 99.53179 99.85204 100.56970 99.88505 100.18686
#> 176 99.15214 100.86095 98.34471 100.74780 100.49989 99.99910 101.38773
#> 177 99.41886 99.64155 98.32468 99.04626 97.24285 100.92949 NA
#> 178 100.11651 97.17275 99.96845 101.54229 99.83505 100.06153 97.62115
#> 179 99.63689 NA 99.75536 100.17754 100.46988 101.10038 98.43990
#> 180 99.84637 100.40601 100.05916 101.11842 99.58872 99.85520 99.91521
#> 181 101.02486 100.56533 98.22518 102.09825 100.32895 100.73310 100.68165
#> 182 100.42347 100.19166 101.60415 99.87739 NA 98.88273 100.06559
#> 183 98.94076 100.19819 98.44077 98.92661 99.74783 99.96964 99.73626
#> 184 99.13814 99.31517 100.13815 100.13031 100.55350 98.54476 99.47979
#> 185 99.30269 100.63327 100.20966 100.68484 100.11970 98.86053 99.71518
#> 186 98.45079 99.59803 100.12693 99.24502 100.40249 99.68512 100.09042
#> 187 99.42206 100.51410 101.06231 99.48820 99.98385 99.90819 99.85013
#> 188 100.63477 99.33093 99.61850 100.99894 101.63869 99.05147 99.74901
#> 189 NA 99.45929 101.51794 101.96529 101.05586 99.89515 97.93553
#> 190 98.97009 99.69542 97.80636 101.14444 98.29563 101.98095 100.07633
#> 191 98.95446 100.41046 101.09266 100.41520 NA 99.98042 98.78365
#> 192 99.04542 99.80184 98.21091 98.60624 99.99515 98.77437 98.66983
#> 193 99.41637 97.97899 99.90412 100.36064 100.73206 101.44844 99.50817
#> 194 101.37685 101.64548 99.27031 100.66480 99.85201 102.89578 100.55931
#> 195 100.82945 99.91609 102.08004 101.17104 101.89766 99.80261 98.70985
#> 196 101.14838 99.30620 100.35242 101.49045 99.30625 101.75551 100.15822
#> 197 99.18477 101.23204 99.68272 98.53520 100.85844 99.76638 99.82926
#> 198 100.30693 99.90599 100.34062 100.27440 100.47983 99.80768 99.97969
#> 199 99.16176 100.09225 98.47229 98.60436 100.57002 99.09112 99.82136
#> 200 100.55205 99.09757 100.02664 100.93515 99.96187 99.94529 100.75802
#> X8 X9 X10
#> 1 201.60954 199.74508 199.75432
#> 2 199.48269 199.72970 198.39845
#> 3 199.71608 198.88835 200.40936
#> 4 199.18647 200.95961 201.27893
#> 5 200.96823 199.98379 198.73031
#> 6 201.80299 199.40298 199.90329
#> 7 201.39032 200.26089 201.08186
#> 8 199.78429 199.69111 199.70172
#> 9 199.78971 201.88039 199.08733
#> 10 200.12561 201.45554 199.41868
#> 11 99.22494 98.54141 101.83299
#> 12 99.56137 102.23024 99.57105
#> 13 99.57370 99.16147 99.52041
#> 14 101.43233 100.21297 100.80091
#> 15 99.91842 100.53775 100.03770
#> 16 100.30625 100.44396 99.33812
#> 17 99.55839 98.62409 100.24479
#> 18 97.68238 98.89593 100.56774
#> 19 101.80858 99.24056 101.23897
#> 20 99.61030 98.69528 100.35563
#> 21 100.46323 100.27759 100.04180
#> 22 99.35589 98.66862 98.92921
#> 23 101.00604 99.00019 101.20803
#> 24 98.13992 101.70280 98.46646
#> 25 99.53977 101.19468 101.62890
#> 26 99.47466 99.10165 99.97932
#> 27 100.55987 99.16342 101.53302
#> 28 101.04240 99.83072 97.23290
#> 29 101.84453 99.57541 99.84934
#> 30 99.57686 99.59102 99.93157
#> 31 99.90373 99.99344 101.02664
#> 32 99.06693 99.07289 101.44852
#> 33 99.89433 99.72724 100.61599
#> 34 99.96153 100.54200 101.70919
#> 35 99.62805 99.01663 100.32899
#> 36 99.24133 99.41116 99.87241
#> 37 101.84888 100.57555 98.78104
#> 38 99.49468 99.37011 99.50465
#> 39 101.35255 100.22298 100.33084
#> 40 101.42822 99.97315 98.71295
#> 41 99.08463 100.73347 100.14049
#> 42 98.25351 99.17284 101.87870
#> 43 99.99836 98.28623 99.04798
#> 44 99.58595 100.59102 100.78820
#> 45 100.14963 99.37502 99.16579
#> 46 99.37594 100.35493 100.13561
#> 47 97.65577 100.91458 100.99970
#> 48 102.58168 100.31207 99.56147
#> 49 100.35470 101.07800 99.64434
#> 50 102.11009 98.73965 100.96517
#> 51 100.48919 99.52892 99.00256
#> 52 99.42755 100.85116 99.45526
#> 53 99.62083 101.46474 99.94194
#> 54 99.56874 100.23675 99.41421
#> 55 101.30089 100.41263 99.82159
#> 56 102.23957 101.24945 99.21182
#> 57 99.81577 99.51272 101.15604
#> 58 99.89209 100.84835 100.76270
#> 59 100.81882 100.46032 101.25812
#> 60 98.94344 99.89661 101.12487
#> 61 100.70073 100.97489 101.00311
#> 62 99.95896 99.09162 100.28762
#> 63 98.33434 101.74138 99.17981
#> 64 98.55782 100.48805 99.06127
#> 65 100.55019 101.13522 99.01184
#> 66 99.46400 99.54982 98.45192
#> 67 100.01518 100.47384 97.41584
#> 68 98.63438 98.65675 101.44591
#> 69 100.31664 99.89835 99.59414
#> 70 101.22029 101.03583 99.05709
#> 71 99.56227 99.91556 100.34972
#> 72 NA 97.77383 100.94120
#> 73 102.24238 99.67195 100.73581
#> 74 100.15740 99.96954 99.92478
#> 75 100.67662 101.86988 98.25933
#> 76 100.04703 101.89692 100.17572
#> 77 99.18905 99.04889 98.77554
#> 78 101.22784 100.68876 99.42993
#> 79 99.38159 98.90303 102.18627
#> 80 102.33368 98.56857 100.57919
#> 81 98.14549 98.95842 99.50920
#> 82 100.57123 101.04280 100.22187
#> 83 99.98457 99.77443 100.01202
#> 84 99.94912 98.83581 100.49362
#> 85 99.40805 99.39592 100.10986
#> 86 99.64301 98.89459 101.33294
#> 87 101.57385 100.94446 100.69335
#> 88 100.45078 100.22406 99.59000
#> 89 100.69815 100.49905 98.37901
#> 90 99.97464 100.31493 98.57134
#> 91 99.71475 102.65816 99.01875
#> 92 101.66662 101.03311 102.42760
#> 93 101.39629 99.03853 98.16374
#> 94 100.96759 98.70530 99.84676
#> 95 100.04035 99.50948 100.51410
#> 96 101.07734 99.54734 98.55898
#> 97 100.52423 100.40615 99.65020
#> 98 100.95334 101.53602 101.36138
#> 99 99.84165 101.68890 99.68010
#> 100 98.64045 100.19707 98.82971
#> 101 101.14528 101.00260 100.38113
#> 102 99.76889 101.29177 99.52597
#> 103 100.73658 99.62709 102.46658
#> 104 100.04455 100.14519 99.68664
#> 105 100.30224 98.46282 100.51789
#> 106 98.95696 98.74467 102.82583
#> 107 99.81845 99.36918 100.50729
#> 108 101.58270 100.59173 99.15632
#> 109 101.36625 99.19570 99.91541
#> 110 101.07580 101.30060 99.27419
#> 111 100.26612 101.31972 99.73967
#> 112 99.43685 99.52570 100.49313
#> 113 98.69532 99.75761 100.84479
#> 114 100.81348 98.51491 99.67011
#> 115 100.16351 101.59292 100.68091
#> 116 99.99175 99.12651 101.00612
#> 117 100.22145 99.12365 100.29100
#> 118 98.89151 100.16667 99.67205
#> 119 100.12206 100.45445 98.98035
#> 120 100.62011 97.42862 100.27381
#> 121 98.78957 99.71182 100.82950
#> 122 99.47013 101.56326 99.00220
#> 123 98.66302 99.22963 100.77061
#> 124 103.17530 99.78989 98.87051
#> 125 101.54236 99.56128 100.88408
#> 126 100.30529 97.97432 99.65551
#> 127 100.41653 98.69798 100.18790
#> 128 98.60685 100.33753 99.38211
#> 129 97.59041 101.54701 100.74700
#> 130 102.71533 99.42912 99.57083
#> 131 100.15810 99.04184 100.12041
#> 132 100.19779 98.18260 99.34926
#> 133 99.18736 100.44620 101.06834
#> 134 100.57072 100.13519 101.25927
#> 135 101.43178 99.62606 98.75997
#> 136 100.21145 100.48916 99.57878
#> 137 NA 101.48055 100.16232
#> 138 99.26532 99.30583 99.34775
#> 139 98.92737 98.96843 101.67678
#> 140 100.59781 99.42692 100.24561
#> 141 100.59833 99.82121 100.39010
#> 142 100.34893 100.69117 99.64098
#> 143 100.93229 99.49657 98.85890
#> 144 101.38495 99.28113 97.71068
#> 145 101.28570 99.81622 101.27804
#> 146 99.37116 99.12229 99.50630
#> 147 100.91637 99.55796 100.27030
#> 148 100.05607 97.59046 100.13782
#> 149 98.86066 100.65749 100.19728
#> 150 100.64655 99.07906 98.43826
#> 151 101.89796 100.36051 99.75036
#> 152 99.22834 97.64830 102.19064
#> 153 99.13401 100.48403 100.41463
#> 154 99.54134 99.90891 100.07935
#> 155 101.20588 100.58404 98.35741
#> 156 98.65663 99.45701 99.84061
#> 157 99.33580 100.27103 100.20660
#> 158 99.55015 99.33020 99.20612
#> 159 100.84752 99.80871 98.13048
#> 160 101.74037 100.84512 101.23351
#> 161 99.70031 100.28413 99.32809
#> 162 100.48981 102.34927 100.66876
#> 163 100.94110 99.62395 100.16423
#> 164 100.35499 99.52542 101.12829
#> 165 99.97883 98.31042 100.89693
#> 166 99.53479 100.40510 99.23999
#> 167 100.30976 99.14864 98.87544
#> 168 99.19505 99.80158 98.66777
#> 169 99.87024 100.53820 99.94677
#> 170 NA 100.05817 100.88796
#> 171 98.83331 101.80895 100.16189
#> 172 99.62743 99.93840 100.67082
#> 173 99.42471 99.72378 99.77871
#> 174 100.29398 99.12843 NA
#> 175 98.58681 98.58413 98.73721
#> 176 98.70339 98.25356 100.96259
#> 177 100.23262 101.82966 99.29007
#> 178 100.39908 100.11528 100.02232
#> 179 99.10681 98.46119 99.39288
#> 180 99.34605 99.79197 101.48782
#> 181 99.92754 99.98381 101.13845
#> 182 99.57566 100.33337 100.26677
#> 183 100.72862 101.25448 98.62645
#> 184 100.66703 99.08472 99.80862
#> 185 99.34550 99.93820 99.99838
#> 186 100.02289 99.81615 98.43183
#> 187 101.91779 100.66520 99.01931
#> 188 98.86573 99.72140 101.12279
#> 189 102.81177 100.31035 100.19551
#> 190 100.96618 98.92151 101.20318
#> 191 101.68623 101.98610 101.26531
#> 192 99.95213 101.44912 100.18530
#> 193 99.36042 99.94494 99.00201
#> 194 99.79288 100.78682 100.69146
#> 195 101.39750 100.23960 100.41265
#> 196 100.69852 100.72249 100.31948
#> 197 99.56309 101.83804 101.06312
#> 198 100.88881 100.19511 98.57926
#> 199 NA 99.70177 102.37253
#> 200 102.14188 99.64349 99.48271
IMPUTATION
<- multi.impute(data = MV1pct.NA.data, conditions = attr(datasim,"metadata")$Condition, method = "MLE", parallel = FALSE) MV1pct.impMLE
ESTIMATION
print(paste(Sys.time(), "Dataset", 1, "out of", 1))
#> [1] "2022-06-13 01:26:49 Dataset 1 out of 1"
<- rubin2.all(data = MV1pct.impMLE, metacond = attr(datasim, "metadata")$Condition) MV1pct.impMLE.VarRubin.Mat
PROJECTION
print(paste("Dataset", 1, "out of",1, Sys.time()))
#> [1] "Dataset 1 out of 1 2022-06-13 01:27:19"
<- as.numeric(lapply(MV1pct.impMLE.VarRubin.Mat, function(aaa){
MV1pct.impMLE.VarRubin.S2 = mi4p::make.design(attr(datasim, "metadata"))
DesMat return(max(diag(aaa)%*%t(DesMat)%*%DesMat))
}))
MODERATED T-TEST
<- mi4limma(qData = apply(MV1pct.impMLE,1:2,mean),
MV1pct.impMLE.mi4limma.res sTab = attr(datasim, "metadata"),
VarRubin = sqrt(MV1pct.impMLE.VarRubin.S2))
MV1pct.impMLE.mi4limma.res#> $logFC
#> A_vs_B_logFC
#> 1 -1.012127e+02
#> 2 -9.927197e+01
#> 3 -1.004769e+02
#> 4 -1.000728e+02
#> 5 -9.911801e+01
#> 6 -9.982359e+01
#> 7 -1.003342e+02
#> 8 -1.007027e+02
#> 9 -1.002846e+02
#> 10 -1.007809e+02
#> 11 1.642084e-01
#> 12 4.052473e-02
#> 13 -6.232310e-01
#> 14 -4.972736e-01
#> 15 -8.743117e-01
#> 16 -1.487572e-01
#> 17 1.704648e-01
#> 18 1.364113e+00
#> 19 -7.736504e-01
#> 20 5.630360e-01
#> 21 9.424812e-01
#> 22 4.170600e-01
#> 23 -1.264042e+00
#> 24 4.178347e-01
#> 25 4.904022e-01
#> 26 -1.515887e-02
#> 27 -3.178319e-01
#> 28 3.805760e-01
#> 29 -6.799174e-01
#> 30 4.990594e-01
#> 31 2.695631e-01
#> 32 -3.121658e-02
#> 33 2.683149e-01
#> 34 1.491150e-01
#> 35 3.924688e-01
#> 36 5.472297e-02
#> 37 -2.712528e-01
#> 38 -2.177595e-01
#> 39 2.072179e-01
#> 40 4.547053e-01
#> 41 2.547398e-01
#> 42 -5.170840e-01
#> 43 1.133979e+00
#> 44 5.092196e-01
#> 45 -8.491259e-02
#> 46 7.063772e-01
#> 47 1.349054e+00
#> 48 4.962941e-01
#> 49 3.511585e-01
#> 50 -1.220144e+00
#> 51 -3.448379e-01
#> 52 -5.184845e-01
#> 53 6.179962e-01
#> 54 -5.934908e-01
#> 55 7.869669e-02
#> 56 -2.914607e-01
#> 57 5.575441e-01
#> 58 -1.067051e-01
#> 59 1.695508e-01
#> 60 3.595042e-01
#> 61 -2.846456e-01
#> 62 3.445642e-01
#> 63 -6.736214e-01
#> 64 1.532072e+00
#> 65 1.427288e-01
#> 66 -3.148159e-01
#> 67 8.832298e-01
#> 68 -1.830318e-01
#> 69 4.032647e-01
#> 70 2.409381e-01
#> 71 1.233375e+00
#> 72 -2.051791e+00
#> 73 -4.717118e-01
#> 74 -4.405299e-01
#> 75 -2.080830e-01
#> 76 -1.506797e-01
#> 77 3.097923e-01
#> 78 -8.702237e-02
#> 79 3.604256e-01
#> 80 -8.521368e-02
#> 81 7.887639e-01
#> 82 -7.293849e-01
#> 83 -1.639307e-02
#> 84 -4.691277e-01
#> 85 9.325053e-03
#> 86 6.400077e-01
#> 87 -1.402221e+00
#> 88 1.201843e-01
#> 89 5.378503e-01
#> 90 -1.762344e-01
#> 91 1.318162e-01
#> 92 -1.143514e+00
#> 93 4.786437e-01
#> 94 6.429156e-01
#> 95 -1.772527e-02
#> 96 3.687938e-01
#> 97 -1.066664e+00
#> 98 -8.906438e-01
#> 99 5.419909e-02
#> 100 1.126928e+00
#> 101 -8.616428e-01
#> 102 -4.405730e-01
#> 103 -9.865894e-01
#> 104 -1.041152e+00
#> 105 6.753898e-01
#> 106 1.474734e-01
#> 107 1.111835e-01
#> 108 1.681135e-01
#> 109 -7.067925e-02
#> 110 -9.789653e-01
#> 111 -9.668787e-01
#> 112 3.390004e-01
#> 113 -5.472008e-01
#> 114 -3.418560e-01
#> 115 -4.138748e-01
#> 116 -6.507368e-02
#> 117 2.593238e-01
#> 118 4.881388e-01
#> 119 5.347332e-01
#> 120 1.084537e+00
#> 121 -1.291370e+00
#> 122 -7.893439e-01
#> 123 2.287629e-01
#> 124 -2.975810e-01
#> 125 -9.810067e-01
#> 126 7.173674e-01
#> 127 1.373830e+00
#> 128 1.012382e+00
#> 129 -2.565706e-01
#> 130 -1.647907e-01
#> 131 -6.508092e-02
#> 132 5.175271e-01
#> 133 2.800798e-01
#> 134 -1.044942e+00
#> 135 1.260690e-01
#> 136 6.445337e-01
#> 137 1.646906e-01
#> 138 -6.823872e-01
#> 139 -6.108207e-01
#> 140 -3.258216e-01
#> 141 -4.868820e-01
#> 142 5.149480e-02
#> 143 5.364877e-01
#> 144 5.671157e-01
#> 145 -7.546692e-01
#> 146 1.110852e-01
#> 147 -6.772738e-01
#> 148 1.336448e+00
#> 149 -3.241622e-01
#> 150 6.122240e-01
#> 151 -8.587254e-01
#> 152 4.453814e-01
#> 153 9.925005e-01
#> 154 -2.654850e-01
#> 155 4.487299e-01
#> 156 4.818324e-01
#> 157 8.746962e-01
#> 158 5.247776e-02
#> 159 9.903067e-01
#> 160 -7.137321e-01
#> 161 3.478403e-01
#> 162 -2.509245e-01
#> 163 -1.043022e+00
#> 164 3.484151e-02
#> 165 -1.089838e-01
#> 166 9.315078e-01
#> 167 4.570214e-01
#> 168 6.675017e-01
#> 169 -2.731210e-01
#> 170 -5.864457e-01
#> 171 4.800880e-02
#> 172 -9.480365e-01
#> 173 7.188479e-01
#> 174 4.299004e-01
#> 175 7.732633e-01
#> 176 5.982326e-02
#> 177 -1.878878e+00
#> 178 8.313797e-02
#> 179 7.412046e-01
#> 180 1.244863e-01
#> 181 -4.439316e-02
#> 182 4.082467e-01
#> 183 -8.122601e-01
#> 184 3.380700e-01
#> 185 6.184746e-01
#> 186 -4.462906e-02
#> 187 -1.780221e-01
#> 188 7.422867e-01
#> 189 8.504415e-01
#> 190 -1.447240e+00
#> 191 -5.486541e-01
#> 192 -6.742420e-01
#> 193 -1.743576e-01
#> 194 -3.833636e-01
#> 195 1.066416e+00
#> 196 -4.101028e-01
#> 197 -5.133464e-01
#> 198 3.714431e-01
#> 199 -6.904036e-01
#> 200 -2.796176e-01
#>
#> $P_Value
#> A_vs_B_pval
#> 1 0.000000000
#> 2 0.000000000
#> 3 0.000000000
#> 4 0.000000000
#> 5 0.000000000
#> 6 0.000000000
#> 7 0.000000000
#> 8 0.000000000
#> 9 0.000000000
#> 10 0.000000000
#> 11 0.796941098
#> 12 0.949367396
#> 13 0.328845493
#> 14 0.435896381
#> 15 0.170804559
#> 16 0.815686143
#> 17 0.789383602
#> 18 0.032678839
#> 19 0.225507500
#> 20 0.377692370
#> 21 0.139852178
#> 22 0.513447430
#> 23 0.047758669
#> 24 0.512665570
#> 25 0.442263162
#> 26 0.981049169
#> 27 0.618473149
#> 28 0.550961487
#> 29 0.286774215
#> 30 0.434250458
#> 31 0.672742627
#> 32 0.960986570
#> 33 0.674170532
#> 34 0.815250906
#> 35 0.538586073
#> 36 0.931665593
#> 37 0.670811526
#> 38 0.732939800
#> 39 0.745408176
#> 40 0.476182828
#> 41 0.689774526
#> 42 0.417839744
#> 43 0.075726038
#> 44 0.424954526
#> 45 0.894149436
#> 46 0.268439313
#> 47 0.034647029
#> 48 0.436800667
#> 49 0.582161204
#> 50 0.056024524
#> 51 0.588971036
#> 52 0.416580176
#> 53 0.332923108
#> 54 0.352443711
#> 55 0.901857291
#> 56 0.647888970
#> 57 0.382361413
#> 58 0.867209930
#> 59 0.790486401
#> 60 0.573226392
#> 61 0.655583701
#> 62 0.589266718
#> 63 0.291258749
#> 64 0.016459648
#> 65 0.823029024
#> 66 0.621807695
#> 67 0.166485512
#> 68 0.774263458
#> 69 0.527474211
#> 70 0.705775614
#> 71 0.053416061
#> 72 0.001327678
#> 73 0.459847684
#> 74 0.490038170
#> 75 0.744382370
#> 76 0.813347884
#> 77 0.627379172
#> 78 0.891535505
#> 79 0.572243878
#> 80 0.893776333
#> 81 0.216578083
#> 82 0.253165324
#> 83 0.979506563
#> 84 0.462309373
#> 85 0.988341624
#> 86 0.315996655
#> 87 0.028121277
#> 88 0.850622027
#> 89 0.399393706
#> 90 0.782431621
#> 91 0.836360270
#> 92 0.073299806
#> 93 0.453280658
#> 94 0.313803559
#> 95 0.977841563
#> 96 0.563358277
#> 97 0.094779581
#> 98 0.162957862
#> 99 0.932318203
#> 100 0.077562329
#> 101 0.177083821
#> 102 0.489995750
#> 103 0.122253377
#> 104 0.102936427
#> 105 0.289994394
#> 106 0.817248618
#> 107 0.861691774
#> 108 0.792221635
#> 109 0.911812677
#> 110 0.125164854
#> 111 0.129891010
#> 112 0.595292753
#> 113 0.391250628
#> 114 0.592196448
#> 115 0.516668791
#> 116 0.918781532
#> 117 0.684490200
#> 118 0.444371933
#> 119 0.402130788
#> 120 0.089380260
#> 121 0.043150430
#> 122 0.216240509
#> 123 0.720000187
#> 124 0.641010594
#> 125 0.124380027
#> 126 0.261066023
#> 127 0.031460293
#> 128 0.112795260
#> 129 0.687662205
#> 130 0.796236910
#> 131 0.918772527
#> 132 0.417441001
#> 133 0.660759379
#> 134 0.101690383
#> 135 0.843400388
#> 136 0.312587589
#> 137 0.796357915
#> 138 0.285027866
#> 139 0.338565258
#> 140 0.609677681
#> 141 0.445545325
#> 142 0.935687696
#> 143 0.400588765
#> 144 0.374246784
#> 145 0.237090770
#> 146 0.861812910
#> 147 0.288651505
#> 148 0.036371683
#> 149 0.611499869
#> 150 0.337457060
#> 151 0.178553900
#> 152 0.485271972
#> 153 0.120032717
#> 154 0.677412026
#> 155 0.481996940
#> 156 0.450277631
#> 157 0.170616625
#> 158 0.934462815
#> 159 0.120853136
#> 160 0.263489240
#> 161 0.585731624
#> 162 0.694184376
#> 163 0.102320308
#> 164 0.956460519
#> 165 0.864401320
#> 166 0.144519990
#> 167 0.473939550
#> 168 0.295662704
#> 169 0.668679110
#> 170 0.358187287
#> 171 0.940032877
#> 172 0.137533834
#> 173 0.260083586
#> 174 0.500568547
#> 175 0.225739623
#> 176 0.925314553
#> 177 0.003280237
#> 178 0.896349025
#> 179 0.245558770
#> 180 0.845341413
#> 181 0.944541547
#> 182 0.522386143
#> 183 0.203206394
#> 184 0.596303267
#> 185 0.332549080
#> 186 0.944247318
#> 187 0.780280965
#> 188 0.244870442
#> 189 0.182777701
#> 190 0.023453268
#> 191 0.389994048
#> 192 0.290814582
#> 193 0.784691114
#> 194 0.548048245
#> 195 0.094856436
#> 196 0.520497055
#> 197 0.421212303
#> 198 0.560559032
#> 199 0.279409182
#> 200 0.661284332
simplify2array(MV1pct.impMLE.mi4limma.res)$P_Value.A_vs_B_pval)[1:10]
(#> [1] 0 0 0 0 0 0 0 0 0 0
simplify2array(MV1pct.impMLE.mi4limma.res)$P_Value.A_vs_B_pval)[11:200]<=0.05
(#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
#> [13] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [37] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [49] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [61] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [73] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [109] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
#> [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [133] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
#> [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
#> [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
True positive rate
sum((simplify2array(MV1pct.impMLE.mi4limma.res)$P_Value.A_vs_B_pval)[1:10]<=0.05)/10
#> [1] 1
False positive rate
sum((simplify2array(MV1pct.impMLE.mi4limma.res)$P_Value.A_vs_B_pval)[11:200]<=0.05)/190
#> [1] 0.05789474
<-limmaCompleteTest.mod(qData = apply(MV1pct.impMLE,1:2,mean), sTab = attr(datasim, "metadata"))
MV1pct.impMLE.dapar.res
MV1pct.impMLE.dapar.res#> $res.l
#> $res.l$logFC
#> A_vs_B_logFC
#> 1 -1.012127e+02
#> 2 -9.927197e+01
#> 3 -1.004769e+02
#> 4 -1.000728e+02
#> 5 -9.911801e+01
#> 6 -9.982359e+01
#> 7 -1.003342e+02
#> 8 -1.007027e+02
#> 9 -1.002846e+02
#> 10 -1.007809e+02
#> 11 1.642084e-01
#> 12 4.052473e-02
#> 13 -6.232310e-01
#> 14 -4.972736e-01
#> 15 -8.743117e-01
#> 16 -1.487572e-01
#> 17 1.704648e-01
#> 18 1.364113e+00
#> 19 -7.736504e-01
#> 20 5.630360e-01
#> 21 9.424812e-01
#> 22 4.170600e-01
#> 23 -1.264042e+00
#> 24 4.178347e-01
#> 25 4.904022e-01
#> 26 -1.515887e-02
#> 27 -3.178319e-01
#> 28 3.805760e-01
#> 29 -6.799174e-01
#> 30 4.990594e-01
#> 31 2.695631e-01
#> 32 -3.121658e-02
#> 33 2.683149e-01
#> 34 1.491150e-01
#> 35 3.924688e-01
#> 36 5.472297e-02
#> 37 -2.712528e-01
#> 38 -2.177595e-01
#> 39 2.072179e-01
#> 40 4.547053e-01
#> 41 2.547398e-01
#> 42 -5.170840e-01
#> 43 1.133979e+00
#> 44 5.092196e-01
#> 45 -8.491259e-02
#> 46 7.063772e-01
#> 47 1.349054e+00
#> 48 4.962941e-01
#> 49 3.511585e-01
#> 50 -1.220144e+00
#> 51 -3.448379e-01
#> 52 -5.184845e-01
#> 53 6.179962e-01
#> 54 -5.934908e-01
#> 55 7.869669e-02
#> 56 -2.914607e-01
#> 57 5.575441e-01
#> 58 -1.067051e-01
#> 59 1.695508e-01
#> 60 3.595042e-01
#> 61 -2.846456e-01
#> 62 3.445642e-01
#> 63 -6.736214e-01
#> 64 1.532072e+00
#> 65 1.427288e-01
#> 66 -3.148159e-01
#> 67 8.832298e-01
#> 68 -1.830318e-01
#> 69 4.032647e-01
#> 70 2.409381e-01
#> 71 1.233375e+00
#> 72 -2.051791e+00
#> 73 -4.717118e-01
#> 74 -4.405299e-01
#> 75 -2.080830e-01
#> 76 -1.506797e-01
#> 77 3.097923e-01
#> 78 -8.702237e-02
#> 79 3.604256e-01
#> 80 -8.521368e-02
#> 81 7.887639e-01
#> 82 -7.293849e-01
#> 83 -1.639307e-02
#> 84 -4.691277e-01
#> 85 9.325053e-03
#> 86 6.400077e-01
#> 87 -1.402221e+00
#> 88 1.201843e-01
#> 89 5.378503e-01
#> 90 -1.762344e-01
#> 91 1.318162e-01
#> 92 -1.143514e+00
#> 93 4.786437e-01
#> 94 6.429156e-01
#> 95 -1.772527e-02
#> 96 3.687938e-01
#> 97 -1.066664e+00
#> 98 -8.906438e-01
#> 99 5.419909e-02
#> 100 1.126928e+00
#> 101 -8.616428e-01
#> 102 -4.405730e-01
#> 103 -9.865894e-01
#> 104 -1.041152e+00
#> 105 6.753898e-01
#> 106 1.474734e-01
#> 107 1.111835e-01
#> 108 1.681135e-01
#> 109 -7.067925e-02
#> 110 -9.789653e-01
#> 111 -9.668787e-01
#> 112 3.390004e-01
#> 113 -5.472008e-01
#> 114 -3.418560e-01
#> 115 -4.138748e-01
#> 116 -6.507368e-02
#> 117 2.593238e-01
#> 118 4.881388e-01
#> 119 5.347332e-01
#> 120 1.084537e+00
#> 121 -1.291370e+00
#> 122 -7.893439e-01
#> 123 2.287629e-01
#> 124 -2.975810e-01
#> 125 -9.810067e-01
#> 126 7.173674e-01
#> 127 1.373830e+00
#> 128 1.012382e+00
#> 129 -2.565706e-01
#> 130 -1.647907e-01
#> 131 -6.508092e-02
#> 132 5.175271e-01
#> 133 2.800798e-01
#> 134 -1.044942e+00
#> 135 1.260690e-01
#> 136 6.445337e-01
#> 137 1.646906e-01
#> 138 -6.823872e-01
#> 139 -6.108207e-01
#> 140 -3.258216e-01
#> 141 -4.868820e-01
#> 142 5.149480e-02
#> 143 5.364877e-01
#> 144 5.671157e-01
#> 145 -7.546692e-01
#> 146 1.110852e-01
#> 147 -6.772738e-01
#> 148 1.336448e+00
#> 149 -3.241622e-01
#> 150 6.122240e-01
#> 151 -8.587254e-01
#> 152 4.453814e-01
#> 153 9.925005e-01
#> 154 -2.654850e-01
#> 155 4.487299e-01
#> 156 4.818324e-01
#> 157 8.746962e-01
#> 158 5.247776e-02
#> 159 9.903067e-01
#> 160 -7.137321e-01
#> 161 3.478403e-01
#> 162 -2.509245e-01
#> 163 -1.043022e+00
#> 164 3.484151e-02
#> 165 -1.089838e-01
#> 166 9.315078e-01
#> 167 4.570214e-01
#> 168 6.675017e-01
#> 169 -2.731210e-01
#> 170 -5.864457e-01
#> 171 4.800880e-02
#> 172 -9.480365e-01
#> 173 7.188479e-01
#> 174 4.299004e-01
#> 175 7.732633e-01
#> 176 5.982326e-02
#> 177 -1.878878e+00
#> 178 8.313797e-02
#> 179 7.412046e-01
#> 180 1.244863e-01
#> 181 -4.439316e-02
#> 182 4.082467e-01
#> 183 -8.122601e-01
#> 184 3.380700e-01
#> 185 6.184746e-01
#> 186 -4.462906e-02
#> 187 -1.780221e-01
#> 188 7.422867e-01
#> 189 8.504415e-01
#> 190 -1.447240e+00
#> 191 -5.486541e-01
#> 192 -6.742420e-01
#> 193 -1.743576e-01
#> 194 -3.833636e-01
#> 195 1.066416e+00
#> 196 -4.101028e-01
#> 197 -5.133464e-01
#> 198 3.714431e-01
#> 199 -6.904036e-01
#> 200 -2.796176e-01
#>
#> $res.l$P_Value
#> A_vs_B_pval
#> 1 0.000000000
#> 2 0.000000000
#> 3 0.000000000
#> 4 0.000000000
#> 5 0.000000000
#> 6 0.000000000
#> 7 0.000000000
#> 8 0.000000000
#> 9 0.000000000
#> 10 0.000000000
#> 11 0.796941098
#> 12 0.949367396
#> 13 0.328845493
#> 14 0.435896381
#> 15 0.170804559
#> 16 0.815686143
#> 17 0.789383602
#> 18 0.032678839
#> 19 0.225507500
#> 20 0.377692370
#> 21 0.139852178
#> 22 0.513447430
#> 23 0.047758669
#> 24 0.512665570
#> 25 0.442263162
#> 26 0.981049169
#> 27 0.618473149
#> 28 0.550961487
#> 29 0.286774215
#> 30 0.434250458
#> 31 0.672742627
#> 32 0.960986570
#> 33 0.674170532
#> 34 0.815250906
#> 35 0.538586073
#> 36 0.931665593
#> 37 0.670811526
#> 38 0.732939800
#> 39 0.745408176
#> 40 0.476182828
#> 41 0.689774526
#> 42 0.417839744
#> 43 0.075726038
#> 44 0.424954526
#> 45 0.894149436
#> 46 0.268439313
#> 47 0.034647029
#> 48 0.436800667
#> 49 0.582161204
#> 50 0.056024524
#> 51 0.588971036
#> 52 0.416580176
#> 53 0.332923108
#> 54 0.352443711
#> 55 0.901857291
#> 56 0.647888970
#> 57 0.382361413
#> 58 0.867209930
#> 59 0.790486401
#> 60 0.573226392
#> 61 0.655583701
#> 62 0.589266718
#> 63 0.291258749
#> 64 0.016459648
#> 65 0.823029024
#> 66 0.621807695
#> 67 0.166485512
#> 68 0.774263458
#> 69 0.527474211
#> 70 0.705775614
#> 71 0.053416061
#> 72 0.001327678
#> 73 0.459847684
#> 74 0.490038170
#> 75 0.744382370
#> 76 0.813347884
#> 77 0.627379172
#> 78 0.891535505
#> 79 0.572243878
#> 80 0.893776333
#> 81 0.216578083
#> 82 0.253165324
#> 83 0.979506563
#> 84 0.462309373
#> 85 0.988341624
#> 86 0.315996655
#> 87 0.028121277
#> 88 0.850622027
#> 89 0.399393706
#> 90 0.782431621
#> 91 0.836360270
#> 92 0.073299806
#> 93 0.453280658
#> 94 0.313803559
#> 95 0.977841563
#> 96 0.563358277
#> 97 0.094779581
#> 98 0.162957862
#> 99 0.932318203
#> 100 0.077562329
#> 101 0.177083821
#> 102 0.489995750
#> 103 0.122253377
#> 104 0.102936427
#> 105 0.289994394
#> 106 0.817248618
#> 107 0.861691774
#> 108 0.792221635
#> 109 0.911812677
#> 110 0.125164854
#> 111 0.129891010
#> 112 0.595292753
#> 113 0.391250628
#> 114 0.592196448
#> 115 0.516668791
#> 116 0.918781532
#> 117 0.684490200
#> 118 0.444371933
#> 119 0.402130788
#> 120 0.089380260
#> 121 0.043150430
#> 122 0.216240509
#> 123 0.720000187
#> 124 0.641010594
#> 125 0.124380027
#> 126 0.261066023
#> 127 0.031460293
#> 128 0.112795260
#> 129 0.687662205
#> 130 0.796236910
#> 131 0.918772527
#> 132 0.417441001
#> 133 0.660759379
#> 134 0.101690383
#> 135 0.843400388
#> 136 0.312587589
#> 137 0.796357915
#> 138 0.285027866
#> 139 0.338565258
#> 140 0.609677681
#> 141 0.445545325
#> 142 0.935687696
#> 143 0.400588765
#> 144 0.374246784
#> 145 0.237090770
#> 146 0.861812910
#> 147 0.288651505
#> 148 0.036371683
#> 149 0.611499869
#> 150 0.337457060
#> 151 0.178553900
#> 152 0.485271972
#> 153 0.120032717
#> 154 0.677412026
#> 155 0.481996940
#> 156 0.450277631
#> 157 0.170616625
#> 158 0.934462815
#> 159 0.120853136
#> 160 0.263489240
#> 161 0.585731624
#> 162 0.694184376
#> 163 0.102320308
#> 164 0.956460519
#> 165 0.864401320
#> 166 0.144519990
#> 167 0.473939550
#> 168 0.295662704
#> 169 0.668679110
#> 170 0.358187287
#> 171 0.940032877
#> 172 0.137533834
#> 173 0.260083586
#> 174 0.500568547
#> 175 0.225739623
#> 176 0.925314553
#> 177 0.003280237
#> 178 0.896349025
#> 179 0.245558770
#> 180 0.845341413
#> 181 0.944541547
#> 182 0.522386143
#> 183 0.203206394
#> 184 0.596303267
#> 185 0.332549080
#> 186 0.944247318
#> 187 0.780280965
#> 188 0.244870442
#> 189 0.182777701
#> 190 0.023453268
#> 191 0.389994048
#> 192 0.290814582
#> 193 0.784691114
#> 194 0.548048245
#> 195 0.094856436
#> 196 0.520497055
#> 197 0.421212303
#> 198 0.560559032
#> 199 0.279409182
#> 200 0.661284332
#>
#>
#> $fit.s2
#> [1] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [9] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [17] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [25] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [33] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [41] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [49] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [57] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [65] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [73] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [81] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [89] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [97] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [105] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [113] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [121] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [129] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [137] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [145] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [153] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [161] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [169] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [177] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [185] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
#> [193] 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841 1.017841
Simulate a list of 100 datasets.
set.seed(4619)
200.m100.sd1.vs.m200.sd1.list <- lapply(1:100, protdatasim)
norm.<- attr(norm.200.m100.sd1.vs.m200.sd1.list[[1]],"metadata") metadata
100 datasets with parallel comuting support. Quite long to run even with parallel computing support.
library(foreach)
::registerDoParallel(cores=NULL)
doParallelrequireNamespace("foreach",quietly = TRUE)
AMPUTATION
<- foreach::foreach(iforeach = norm.200.m100.sd1.vs.m200.sd1.list,
MV1pct.NA.data .errorhandling = 'stop', .verbose = T) %dopar%
MVgen(dataset = iforeach[,-1], prop_NA = 0.01)
IMPUTATION
<- foreach::foreach(iforeach = MV1pct.NA.data,
MV1pct.impMLE .errorhandling = 'stop', .verbose = F) %dopar%
multi.impute(data = iforeach, conditions = metadata$Condition,
method = "MLE", parallel = F)
ESTIMATION
<- lapply(1:length(MV1pct.impMLE), function(index){
MV1pct.impMLE.VarRubin.Mat print(paste(Sys.time(), "Dataset", index, "out of", length(MV1pct.impMLE)))
rubin2.all(data = MV1pct.impMLE[[index]], metacond = metadata$Condition)
})
PROJECTION
<- lapply(1:length(MV1pct.impMLE.VarRubin.Mat), function(id.dataset){
MV1pct.impMLE.VarRubin.S2 print(paste("Dataset", id.dataset, "out of",length(MV1pct.impMLE.VarRubin.Mat), Sys.time()))
as.numeric(lapply(MV1pct.impMLE.VarRubin.Mat[[id.dataset]], function(aaa){
= mi4p::make.design(metadata)
DesMat return(max(diag(aaa)%*%t(DesMat)%*%DesMat))
})) })
MODERATED T-TEST
<- foreach(iforeach = 1:100, .errorhandling = 'stop', .verbose = T) %dopar%
MV1pct.impMLE.mi4limma.res mi4limma(qData = apply(MV1pct.impMLE[[iforeach]],1:2,mean),
sTab = metadata,
VarRubin = sqrt(MV1pct.impMLE.VarRubin.S2[[iforeach]]))
<- foreach(iforeach = 1:100, .errorhandling = 'stop', .verbose = T) %dopar%
MV1pct.impMLE.dapar.res limmaCompleteTest.mod(qData = apply(MV1pct.impMLE[[iforeach]],1:2,mean),
sTab = metadata)