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adjacencyMatrixKNN MiRNAss: Genome-wide pre-miRNA discovery from few labeled ex-
amples

Description

This funtions builds the adjacency matrix (the graph) given a data frame of numerical features.

Usage

adjacencyMatrixKNN(sequenceFeatures, sequenceLabels = rep(0,
nrow(sequenceFeatures)), nNearestNeighbor = 10, threadNumber = NA)

Arguments
sequenceFeatures

Data frame with features extracted from stem-loop sequences.

sequenceLabels Vector of labels of the stem-loop sequences. It must have -1 for negative exam-
ples, 1 for known miRNAs and zero for the unknown sequences (the ones that
would be classificated).

nNearestNeighbor

Number of nearest neighbors in the KNN graph. The default value is 10.

threadNumber Number of threads used for the calculations. If it is NA leave OpenMP decide
the number (may vary across different platforms).

Value

Returns the eigen descomposition as a list with two elements: The eigen vectors matrix ’U’ and the
eigen values vector ’D’.

Examples

# First construct the label vector with the CLASS column
y = as.numeric(celegans$CLASS)*2 - 1

# Remove some labels to make a test
y[sample(which(y>0),200)] = 0
y[sample(which(y<0),700)] = 0

# Take all the features but remove the label column
x = subset(celegans, select = -CLASS)

A = adjacencyMatrixKNN(x, y, 10, 8)

for (nev in seq(50,200, 50)) {
# the data frame of features 'x' should not be pass as parameter
p = miRNAss(sequenceLabels = y, AdjMatrix = A,

nEigenVectors = nev)
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# Calculate some performance measures
SE = mean(p[ celegans$CLASS & y==0] > 0)
SP = mean(p[!celegans$CLASS & y==0] < 0)
cat("N: ", nev, "\n SE: ", SE, "\n SP: ", SP, "\n")

}

celegans Features extracted from hairpins of Caenorhabditis elegans.

Description

Small dataset of features extracted from C. elegans hairpins. The full dataset is contained in the zip
file "experiment_scripts.zip" that can be downloaded from:

Usage

celegans

Format

A data frame with 1000 rows and 29 columns. The first 28 columns are numeric features used in
[1]. The last column is a logical variable indicating if the stem-loop is a pre-miRNA or not.

Details

http://sourceforge.net/projects/sourcesinc/files/mirnass/

References

[1] Gudyś, A., Szcześniak, M. W., Sikora, M., & Makałowska, I. (2013). HuntMi: an efficient and
taxon-specific approach in pre-miRNA identification. BMC bioinformatics, 14(1), 1.

eigenDecomposition MiRNAss: Genome-wide pre-miRNA discovery from few labeled ex-
amples

Description

This funtions calculate the eigenvectors and eigen values of the Laplacian of the graph. As this
proccess is quite time comsumin, this functions allows to obtain this decomposition once and the
be able to run miRNAss several times in shorter times.

Usage

eigenDecomposition(AdjMatrix, nEigenVectors)
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Arguments

AdjMatrix Adjacency sparse matrix of the graph.

nEigenVectors Number of eigen vectors.

Value

Returns the eigen descomposition as a list with two elements: The eigen vectors matrix ’U’ and the
eigen values vector ’D’.

Examples

# First construct the label vector with the CLASS column
y = as.numeric(celegans$CLASS)*2 - 1

# Remove some labels to make a test
y[sample(which(y>0),200)] = 0
y[sample(which(y<0),700)] = 0

# Take all the features but remove the label column
x = subset(celegans, select = -CLASS)

A = adjacencyMatrixKNN(x, y, 10, 8)
E = eigenDecomposition(AdjMatrix = A, nEigenVectors = 100)
for (mp in c(0.1,1,10)) {

p = miRNAss(sequenceLabels = y, AdjMatrix = A,
eigenVectors = E, missPenalization = mp)

# Calculate some performance measures
SE = mean(p[ celegans$CLASS & y==0] > 0)
SP = mean(p[!celegans$CLASS & y==0] < 0)
cat("mP: ", mp, "\n SE: ", SE, "\n SP: ", SP, "\n")

}

miRNAss MiRNAss: Genome-wide pre-miRNA discovery from few labeled ex-
amples

Description

This is the main function of the miRNAss package and implements the miRNA prediction method,
It takes as main parameters a matrix with numerical features extracted from RNA hairpins and an
incomplent vector of labels where the positive number represents known miRNAs, the negative are
not-miRNA hairpins and te zero values are unknown sequences (those that will be classified). As a
results it returns a complete label vector.
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Usage

miRNAss(sequenceFeatures = NULL, sequenceLabels, AdjMatrix = NULL,
nNearestNeighbor = 10, missPenalization = 1, scallingMethod = "relief",
thresholdObjective = "Gm", neg2label = 0.05, positiveProp = NULL,
eigenVectors = NULL, nEigenVectors = min(400,
round(length(sequenceLabels)/5)), threadNumber = NA)

Arguments
sequenceFeatures

Data frame with features extracted from stem-loop sequences. It is not required
if the adjacency matrix is provided.

sequenceLabels Vector of labels of the stem-loop sequences. It must have -1 for negative exam-
ples, 1 for known miRNAs and zero for the unknown sequences (the ones that
would be classificated).

AdjMatrix Sparse adjacency matrix representeing the graph. If sequence features are pro-
vided it is ignored.

nNearestNeighbor

Number of nearest neighbors in the KNN graph. The default value is 10.
missPenalization

Penalization of the missclassification of known examples. The default value is
1. If the examples are not very confident, this value can be diminished.

scallingMethod Method used for normalization and scalling of the features. The options are
’none’, ’whitening’ and ’relief’ (the default option). The first option does noth-
ing, the second calls the built-in function ’scale’ and the last one uses the Reli-
efFexpRank algorithm from the coreLearn package.

thresholdObjective

Performance measure that would be optimized when estimating the threshold.
The options are ’Gm’ (geometric mean of the SE and the SP), ’G’ (geometric
mean of the SE and the precision), ’F1’ (harmonic mean between SE and the
precision) and ’none’ (do not calculate any threshold). The default value is
’Gm’.

neg2label Proportion of unlabeled stem-loops that would be labeled as negative with the
automatic method to start the classification algorithm. The default is 0.05.

positiveProp Expected proportion of positive sequences. If it is not provided by the user, is
estimated as sum(y > 0) / sum(y != 0) when there are negative examples or as 2
* sum(y > 0) / sum(y == 0) when not.

eigenVectors Eigen decomposition of the Laplacian matrix, as returned by the function eigen-
Decomposition. If is not provided is calculated internally (this parameter allows
to calculate the eigen vectors once and then run several times miRNAss with the
same eigen vectors).

nEigenVectors Number of eigen vectors used to aproximate the solution of the optimization
problem. If the number is too low, smoother topographic solutions are founded,
probabily losing SP but achieving a better SE. Generally, 400 are enought.

threadNumber Number of threads used for the calculations. If it is NA leave OpenMP decide
the number (may vary across different platforms).
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Value

Returns a vector with the same size of the input vector y with the prediction scores for all sequences
(even the labelled examples). If a threshold Objective different from ’none’ was set, the threshold is
estimated and subtracted from the scores, therefore the new threshold that divide the classes is zero.
Also, the positive scores are divided by the max positive score, and the negative scores are divided
by the magnitud of the minimum negative score.

Examples

# First construct the label vector with the CLASS column
y = as.numeric(celegans$CLASS)*2 - 1

# Remove some labels to make a test
y[sample(which(y>0),200)] = 0
y[sample(which(y<0),700)] = 0

# Take all the features but remove the label column
x = subset(celegans, select = -CLASS)

# Call miRNAss with default parameters
p = miRNAss(x,y)

# Calculate some performance measures
SE = mean(p[ celegans$CLASS & y==0] > 0)
SP = mean(p[!celegans$CLASS & y==0] < 0)
cat("Sensitivity: ", SE, "\nSpecificity: ", SP, "\n")
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