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add_service Add a Service Route to the Microservice

Description

Expose additional set of services on a separate URL.

Usage

add_service(path = ".", name, overwrite = FALSE)

Arguments

path (character) Where is the project root folder?

name (character) what is the service route name? For example, if name = "reposi-
tory" then the set of services would become available at http://127.0.0.1:8080/repository/.

overwrite (logical) Should existing destination files be overwritten?

Details

Lay the infrastructure for an additional set of services. That includes adding a unit test, adding an
endpoint, and extending the entrypointy.

Note: add_service adds a service to pre-existing plumber microservice which you could deploy
by calling use_microservice.

How It Works:
Given a path (.) to a folder and a name (repository)
When add_service is called
Then the function creates the following files:

tests/testthat/test-endpoint-plumber-repository.R
inst/endpoints/plumber-repository.R

And updates the following files:

inst/entrypoints/plumber-foreground.R

When to Use:
In scenarios where services are thematically linked to each other. Examples for themes that should
be mounted separately:

• ‘forecasting’ and ‘anomaly detection’
• ‘user’ and ‘business’
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Value

No return value, called for side effects.

See Also

Other plumber microservice: use_microservice()

Examples

path <- tempfile()
dir.create(path, showWarnings = FALSE, recursive = TRUE)
use_microservice(path)

add_service(path, name = "repository")

list.files(path, recursive = TRUE)

use_microservice Use a plumber Microservice in an R Project

Description

Lay the infrastructure for a microservice. That includes unit test, dependency packages, configura-
tion file, entrypoints and utility endpoint.

Usage

use_microservice(path = ".", overwrite = FALSE)

Arguments

path (character) Where is the project root folder?

overwrite (logical) Should existing destination files be overwritten?

Details

How It Works:
Given a path to a folder
When use_microservice(path = ".") is called
Then the function creates the following files:

tests/testthat/test-endpoint-plumber-utility.R
inst/configurations/plumber.yml
inst/endpoints/plumber-utility.R
inst/entrypoints/plumber-background.R
inst/entrypoints/plumber-foreground.R

And updates the following files:
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tests/testthat/helpers-xyz.R

And adds the following packages to the DESCRIPTION file:
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type package version
Suggests config *
Suggests httptest *
Suggests httr *
Imports jsonlite *
Suggests pkgload *
Suggests plumber >= 1.0.0
Imports purrr *
Suggests testthat *
Suggests usethis *
Suggests promises *
Suggests future *

When to Use plumber:
• A Single user/machine applications.
• Scheduled tasks. For example, you could use AirFlow with HTTP Operators to automate

processes.

plumber Advantages:
• Comes with familiar way to document the microservice endpoint.
• Maturing package that comes with documentation, examples and support.

plumber Disadvantages:
• Runs on a single thread. That means that parallel algorithms such as random forest, can

only be run on one core.
• Serves only one caller at a time.
• Can’t make inward calls for other services, That means plumber can’t be re-entrant. For ex-

ample, if a microservice has three endpoints,read_table, write_table, and orchestrator,
where the orchestrator reads a data table, transforms it, and writes it back, then the
orchestrator can’t make inwards calls via HTTP to read_table and write_table.

Note: While plumber is single-threaded by nature, it is possible to perform parallel execution
using the promises package. See links under References.

Workflow:
1. Deploy the Microservice infrastructure

microservices::use_microservice(path = ".")
remotes::install_deps()
devtools::document()

1. Spin-up the microservice by running source("./inst/entrypoints/plumber-background.R")

2. Run the microservice unit-test by pressing Ctrl+Shift+T on Windows

Congratulations! You have added a microservice to your application and tested that it works.

References:
• Parallel execution in plumber
• promises package

https://airflow.apache.org/docs/apache-airflow-providers-http/stable/operators.html
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://blog.rstudio.com/2021/03/29/plumber-v1-1-0/#parallel-exec
https://rstudio.github.io/promises/articles/overview.html
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Value

No return value, called for side effects.

See Also

Other plumber microservice: add_service()

Examples

path <- tempfile()
use_microservice(path)

list.files(path, recursive = TRUE)

cat(read.dcf(file.path(path, "DESCRIPTION"), "Imports"))
cat(read.dcf(file.path(path, "DESCRIPTION"), "Suggests"))
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