
Package ‘microservices’
June 12, 2021

Type Package

Title Breakdown a Monolithic Application to a Suite of Services

URL https://github.com/tidylab/microservices

BugReports https://github.com/tidylab/microservices/issues

Version 0.1.2

Date 2021-05-18

Maintainer Harel Lustiger <tidylab@gmail.com>

Description 'Microservice' architectural style is an approach to developing a
single application as a suite of small services, each running in its own
process and communicating with lightweight mechanisms, often an 'HTTP'
resource 'API'. These services are built around business capabilities and
independently deployable by fully automated deployment machinery. There
is a bare minimum of centralized management of these services, which may
be written in different programming languages and use different data storage
technologies.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Language en-GB

Depends R (>= 3.5)

Suggests testthat (>= 2.3.0), usethis (>= 1.3.0), httptest (>= 3.3.0),
plumber (>= 1.0.0), pkgload, jsonlite, promises, future, httr

Imports config, desc, dplyr, glue, purrr, withr

Config/testthat/edition 3

NeedsCompilation no

Author Harel Lustiger [aut, cre] (<https://orcid.org/0000-0003-2953-9598>),
Tidylab [cph, fnd]

Repository CRAN

Date/Publication 2021-06-12 06:10:02 UTC

1

https://github.com/tidylab/microservices
https://github.com/tidylab/microservices/issues
https://orcid.org/0000-0003-2953-9598

2 add_service

R topics documented:
add_service . 2
use_microservice . 3

Index 7

add_service Add a Service Route to the Microservice

Description

Expose additional set of services on a separate URL.

Usage

add_service(path = ".", name, overwrite = FALSE)

Arguments

path (character) Where is the project root folder?

name (character) what is the service route name? For example, if name = "reposi-
tory" then the set of services would become available at http://127.0.0.1:8080/repository/.

overwrite (logical) Should existing destination files be overwritten?

Details

Lay the infrastructure for an additional set of services. That includes adding a unit test, adding an
endpoint, and extending the entrypointy.

Note: add_service adds a service to pre-existing plumber microservice which you could deploy
by calling use_microservice.

How It Works:
Given a path (.) to a folder and a name (repository)
When add_service is called
Then the function creates the following files:

tests/testthat/test-endpoint-plumber-repository.R
inst/endpoints/plumber-repository.R

And updates the following files:

inst/entrypoints/plumber-foreground.R

When to Use:
In scenarios where services are thematically linked to each other. Examples for themes that should
be mounted separately:

• ‘forecasting’ and ‘anomaly detection’
• ‘user’ and ‘business’

use_microservice 3

Value

No return value, called for side effects.

See Also

Other plumber microservice: use_microservice()

Examples

path <- tempfile()
dir.create(path, showWarnings = FALSE, recursive = TRUE)
use_microservice(path)

add_service(path, name = "repository")

list.files(path, recursive = TRUE)

use_microservice Use a plumber Microservice in an R Project

Description

Lay the infrastructure for a microservice. That includes unit test, dependency packages, configura-
tion file, entrypoints and utility endpoint.

Usage

use_microservice(path = ".", overwrite = FALSE)

Arguments

path (character) Where is the project root folder?

overwrite (logical) Should existing destination files be overwritten?

Details

How It Works:
Given a path to a folder
When use_microservice(path = ".") is called
Then the function creates the following files:

tests/testthat/test-endpoint-plumber-utility.R
inst/configurations/plumber.yml
inst/endpoints/plumber-utility.R
inst/entrypoints/plumber-background.R
inst/entrypoints/plumber-foreground.R

And updates the following files:

4 use_microservice

tests/testthat/helpers-xyz.R

And adds the following packages to the DESCRIPTION file:

use_microservice 5

type package version
Suggests config *
Suggests httptest *
Suggests httr *
Imports jsonlite *
Suggests pkgload *
Suggests plumber >= 1.0.0
Imports purrr *
Suggests testthat *
Suggests usethis *
Suggests promises *
Suggests future *

When to Use plumber:
• A Single user/machine applications.
• Scheduled tasks. For example, you could use AirFlow with HTTP Operators to automate

processes.

plumber Advantages:
• Comes with familiar way to document the microservice endpoint.
• Maturing package that comes with documentation, examples and support.

plumber Disadvantages:
• Runs on a single thread. That means that parallel algorithms such as random forest, can

only be run on one core.
• Serves only one caller at a time.
• Can’t make inward calls for other services, That means plumber can’t be re-entrant. For ex-

ample, if a microservice has three endpoints,read_table, write_table, and orchestrator,
where the orchestrator reads a data table, transforms it, and writes it back, then the
orchestrator can’t make inwards calls via HTTP to read_table and write_table.

Note: While plumber is single-threaded by nature, it is possible to perform parallel execution
using the promises package. See links under References.

Workflow:
1. Deploy the Microservice infrastructure

microservices::use_microservice(path = ".")
remotes::install_deps()
devtools::document()

1. Spin-up the microservice by running source("./inst/entrypoints/plumber-background.R")

2. Run the microservice unit-test by pressing Ctrl+Shift+T on Windows

Congratulations! You have added a microservice to your application and tested that it works.

References:
• Parallel execution in plumber
• promises package

https://airflow.apache.org/docs/apache-airflow-providers-http/stable/operators.html
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://blog.rstudio.com/2021/03/29/plumber-v1-1-0/#parallel-exec
https://rstudio.github.io/promises/articles/overview.html

6 use_microservice

Value

No return value, called for side effects.

See Also

Other plumber microservice: add_service()

Examples

path <- tempfile()
use_microservice(path)

list.files(path, recursive = TRUE)

cat(read.dcf(file.path(path, "DESCRIPTION"), "Imports"))
cat(read.dcf(file.path(path, "DESCRIPTION"), "Suggests"))

Index

∗ plumber microservice
add_service, 2
use_microservice, 3

add_service, 2, 6

use_microservice, 3, 3

7

	add_service
	use_microservice
	Index

